1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
/*
//
// Copyright 2010 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 2113 $
//
// $LastChangedDate: 2010-07-30 11:22:13 -0700 (Fri, 30 Jul 2010) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include "cmtkEntropyMinimizationIntensityCorrectionFunctionalDevice_kernels.h"
#include "GPU/cmtkCUDA.h"
__constant__ float deviceWeights[34];
__constant__ float deviceCorrections[34];
__global__
void
cmtkEntropyMinimizationIntensityCorrectionFunctionalUpdateOutputImageKernel
( float* output, float* input, int degree, int multiply, int nPixels, int dims0, int dims1, int dims2 )
{
const int offset = blockIdx.x * blockDim.x + threadIdx.x;
if ( offset < nPixels )
{
const int x = offset % dims0;
const int y = (offset / dims0) % dims1;
const int z = offset / (dims0 * dims1);
const float X = 2.0f * (x-dims0/2) / dims0;
const float Y = 2.0f * (y-dims1/2) / dims1;
const float Z = 2.0f * (z-dims2/2) / dims2;
const float in = input[offset];
float bias =
deviceWeights[0] * (X - deviceCorrections[0]) +
deviceWeights[1] * (Y - deviceCorrections[1]) +
deviceWeights[2] * (Z - deviceCorrections[2]);
if ( degree > 1 )
{
bias +=
deviceWeights[3] * (X * X - deviceCorrections[3]) +
deviceWeights[4] * (X * Y - deviceCorrections[4]) +
deviceWeights[5] * (X * Z - deviceCorrections[5]) +
deviceWeights[6] * (Y * Y - deviceCorrections[6]) +
deviceWeights[7] * (Y * Z - deviceCorrections[7]) +
deviceWeights[8] * (Z * Z - deviceCorrections[8]);
}
if ( degree > 2 )
{
bias +=
deviceWeights[ 9] * (X * X * X - deviceCorrections[ 9]) +
deviceWeights[10] * (X * X * Y - deviceCorrections[10]) +
deviceWeights[11] * (X * X * Z - deviceCorrections[11]) +
deviceWeights[12] * (X * Y * Y - deviceCorrections[12]) +
deviceWeights[13] * (X * Y * Z - deviceCorrections[13]) +
deviceWeights[14] * (X * Z * Z - deviceCorrections[14]) +
deviceWeights[15] * (Y * Y * Y - deviceCorrections[15]) +
deviceWeights[16] * (Y * Y * Z - deviceCorrections[16]) +
deviceWeights[17] * (Y * Z * Z - deviceCorrections[17]) +
deviceWeights[18] * (Z * Z * Z - deviceCorrections[18]);
}
if ( degree > 3 )
{
bias +=
deviceWeights[19] * (X * X * X * X - deviceCorrections[19]) +
deviceWeights[20] * (X * X * X * Y - deviceCorrections[20]) +
deviceWeights[21] * (X * X * X * Z - deviceCorrections[21]) +
deviceWeights[22] * (X * X * Y * Y - deviceCorrections[22]) +
deviceWeights[23] * (X * X * Y * Z - deviceCorrections[23]) +
deviceWeights[24] * (X * X * Z * Z - deviceCorrections[24]) +
deviceWeights[25] * (X * Y * Y * Y - deviceCorrections[25]) +
deviceWeights[26] * (X * Y * Y * Z - deviceCorrections[26]) +
deviceWeights[27] * (X * Y * Z * Z - deviceCorrections[27]) +
deviceWeights[28] * (X * Z * Z * Z - deviceCorrections[28]) +
deviceWeights[29] * (Y * Y * Y * Y - deviceCorrections[29]) +
deviceWeights[30] * (Y * Y * Y * Z - deviceCorrections[30]) +
deviceWeights[31] * (Y * Y * Z * Z - deviceCorrections[31]) +
deviceWeights[32] * (Y * Z * Z * Z - deviceCorrections[32]) +
deviceWeights[33] * (Z * Z * Z * Z - deviceCorrections[33]);
}
if ( multiply )
{
output[offset] = in * (bias+1);
}
else
{
output[offset] = in + bias;
}
}
}
void
cmtk::EntropyMinimizationIntensityCorrectionFunctionalDeviceUpdateOutputImage
( float* output, float* input, const int dims0, const int dims1, const int dims2, const int degree, const int multiply, const int nargs, const float* weights, const float* corrections )
{
cmtkCheckCallCUDA( cudaMemcpyToSymbol( deviceWeights, weights, nargs * sizeof( *weights ), 0, cudaMemcpyHostToDevice ) );
cmtkCheckCallCUDA( cudaMemcpyToSymbol( deviceCorrections, corrections, nargs * sizeof( *corrections ), 0, cudaMemcpyHostToDevice ) );
const int nPixels = dims0 * dims1 * dims2;
// how many local copies of the histogram can we fit in shared memory?
int device;
cmtkCheckCallCUDA( cudaGetDevice( &device ) );
cudaDeviceProp dprop;
cmtkCheckCallCUDA( cudaGetDeviceProperties( &dprop, device ) );
int nThreads = nPixels;
if ( nThreads > dprop.maxThreadsPerBlock )
nThreads = dprop.maxThreadsPerBlock;
dim3 dimBlock( nThreads, 1, 1 );
dim3 dimGrid( (nPixels+nThreads-1)/nThreads, 1 );
cmtkEntropyMinimizationIntensityCorrectionFunctionalUpdateOutputImageKernel<<<dimGrid,dimBlock>>>( output, input, degree, multiply, nPixels, dims0, dims1, dims2 );
cmtkCheckLastErrorCUDA;
}
|