1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
/*
//
// Copyright 1997-2012 Torsten Rohlfing
//
// Copyright 2004-2012, 2014 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include "cmtkLabelCombinationShapeBasedAveraging.h"
#include <System/cmtkDebugOutput.h>
#include <System/cmtkThreads.h>
#include <Base/cmtkDistanceMap.h>
#include <Base/cmtkUniformDistanceMap.h>
#include <Base/cmtkTypedArray.h>
#include <Base/cmtkTemplateArray.h>
#include <algorithm>
namespace
cmtk
{
/** \addtogroup Segmentation */
//@{
LabelCombinationShapeBasedAveraging::LabelCombinationShapeBasedAveraging( const std::vector<UniformVolume::SmartConstPtr>& labelImages, const Self::LabelIndexType numberOfLabels )
: m_NumberOfLabels( numberOfLabels ),
m_LabelImages( labelImages )
{
if ( ! this->m_NumberOfLabels )
{
this->m_NumberOfLabels = 1;
for ( size_t k = 0; k < this->m_LabelImages.size(); ++k )
{
const Types::DataItemRange range = this->m_LabelImages[k]->GetData()->GetRange();
this->m_NumberOfLabels = std::max( this->m_NumberOfLabels, static_cast<Self::LabelIndexType>( 1 + range.m_UpperBound ) );
}
DebugOutput( 9 ) << "Determined number of labels to be " << this->m_NumberOfLabels << "\n";
}
this->m_NumberOfPixels = this->m_LabelImages[0]->GetNumberOfPixels();
this->m_LabelFlags.resize( this->m_NumberOfLabels, false );
for ( size_t k = 0; k < this->m_LabelImages.size(); ++k )
{
const cmtk::TypedArray& data = *(this->m_LabelImages[k]->GetData());
cmtk::Types::DataItem l;
for ( size_t i = 0; i < this->m_NumberOfPixels; ++i )
{
if ( data.Get( l, i ) )
this->m_LabelFlags[static_cast<unsigned short>( l )] = true;
}
}
}
TypedArray::SmartPtr
LabelCombinationShapeBasedAveraging::GetResult( const bool detectOutliers ) const
{
cmtk::TypedArray::SmartPtr result( cmtk::TypedArray::Create( cmtk::TYPE_USHORT, this->m_NumberOfPixels ) );
result->BlockSet( 0 /*value*/, 0 /*idx*/, this->m_NumberOfPixels /*len*/ );
result->SetDataClass( DATACLASS_LABEL );
std::vector<Self::DistanceMapRealType> totalDistance( this->m_NumberOfPixels, 0.0 );
std::vector<Self::DistanceMapRealType> labelDistanceMap( this->m_NumberOfPixels );
for ( int label = 0; label < this->m_NumberOfLabels; ++label )
{
/// skip labels that are not in any image.
if ( ! this->m_LabelFlags[label] ) continue;
cmtk::DebugOutput( 1 ) << "Processing label #" << label << "\r";
std::fill( labelDistanceMap.begin(), labelDistanceMap.end(), static_cast<Self::DistanceMapRealType>( 0 ) );
if ( detectOutliers )
{
// if this is the first label, write directly to totalDistance, otherwise labelDistanceMap
this->ProcessLabelExcludeOutliers( label, (label == 0) ? totalDistance : labelDistanceMap );
}
else
{
// if this is the first label, write directly to totalDistance, otherwise labelDistanceMap
this->ProcessLabelIncludeOutliers( label, (label == 0) ? totalDistance : labelDistanceMap );
}
// compare sum over all inputs of this label's distance maps pixel by pixel with current total distance map.
// Set result map to this label where it is closer than previous closest label.
if ( label )
{
#pragma omp parallel for
for ( int i = 0; i < static_cast<int>( this->m_NumberOfPixels ); ++i )
{
if ( labelDistanceMap[i] < totalDistance[i] )
{
totalDistance[i] = labelDistanceMap[i];
result->Set( label, i );
}
else
{
if ( !(labelDistanceMap[i] > totalDistance[i]) )
{
result->Set( this->m_NumberOfLabels, i );
}
}
}
}
}
return result;
}
void
LabelCombinationShapeBasedAveraging::ProcessLabelExcludeOutliers
( const Self::LabelIndexType label, std::vector<Self::DistanceMapRealType>& labelDistanceMap ) const
{
const size_t nLabelMaps = this->m_LabelImages.size();
std::vector<cmtk::UniformVolume::SmartConstPtr> signedDistanceMaps( nLabelMaps );
for ( size_t k = 0; k < nLabelMaps; ++k )
{
signedDistanceMaps[k] = cmtk::UniformDistanceMap<Self::DistanceMapRealType>( *(this->m_LabelImages[k]), DistanceMap::VALUE_EXACT + DistanceMap::SIGNED, label ).Get();
}
std::vector<Self::DistanceMapRealType> distances( nLabelMaps );
for ( int i = 0; i < static_cast<int>( this->m_NumberOfPixels ); ++i )
{
for ( size_t k = 0; k < nLabelMaps; ++k )
{
distances[k] = static_cast<Self::DistanceMapRealType>( signedDistanceMaps[k]->GetDataAt( i ) );
}
// sort distance
std::sort( distances.begin(), distances.end() );
// determine 1st and 3rd quartile values
const double Q1 = distances[static_cast<size_t>( 0.25 * nLabelMaps )];
const double Q3 = distances[static_cast<size_t>( 0.75 * nLabelMaps )];
// compute thresholds from quartiles and inter-quartile range
const double lThresh = Q1 - 1.5 * (Q3-Q1);
const double uThresh = Q3 + 1.5 * (Q3-Q1);
for ( size_t k = 0; k < nLabelMaps; ++k )
{
if ( (distances[k] >= lThresh) && (distances[k] <= uThresh) )
labelDistanceMap[i] += distances[k];
}
}
}
void
LabelCombinationShapeBasedAveraging::ProcessLabelIncludeOutliers
( const Self::LabelIndexType label, std::vector<Self::DistanceMapRealType>& labelDistanceMap ) const
{
for ( size_t k = 0; k < this->m_LabelImages.size(); ++k )
{
cmtk::UniformVolume::SmartPtr signedDistanceMap = cmtk::UniformDistanceMap<Self::DistanceMapRealType>( *(this->m_LabelImages[k]), DistanceMap::VALUE_EXACT + DistanceMap::SIGNED, label ).Get();
const Self::DistanceMapRealType* signedDistancePtr = static_cast<const Self::DistanceMapRealType*>( signedDistanceMap->GetData()->GetDataPtr() );
#pragma omp parallel for
for ( int i = 0; i < static_cast<int>( this->m_NumberOfPixels ); ++i )
{
labelDistanceMap[i] += signedDistancePtr[i];
}
}
}
} // namespace cmtk
|