1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2012 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#ifndef __cmtkSmartConstPtr_h_included_
#define __cmtkSmartConstPtr_h_included_
#include <cmtkconfig.h>
#ifndef NULL
# define NULL 0
#endif
#include <algorithm>
#include <cassert>
#include <System/cmtkSafeCounter.h>
namespace
cmtk
{
/** \addtogroup System */
//@{
/** Smart pointer with reference counting.
*/
template<class T>
class SmartConstPointer
{
public:
/// This class instance.
typedef SmartConstPointer<T> Self;
/// The underlying raw pointer type.
typedef const T* PointerType;
/// Reference to static null object.
static Self& Null()
{
static Self null;
return null;
}
/// Get current reference counter value: use with caution!
unsigned int GetReferenceCount() const
{
return this->m_ReferenceCount->Get();
}
/** Default constructor.
* This needs to be separate because the constructor that takes a dumb pointer
* must be explicit, but the default constructor should not be.
*/
SmartConstPointer()
: m_ReferenceCount( new SafeCounter( 1 ) )
{
this->m_Object.ptrConst = NULL;
}
/** Construct from dumb pointer.
* Note that you MUST NEVER use this constructor more than once for each
* dumb pointer, other than NULL!
*/
explicit SmartConstPointer( T *const object )
: m_ReferenceCount( new SafeCounter( 1 ) )
{
this->m_Object.ptrConst = object;
}
/** Copy constructor template.
* Increment reference counter in the process.
*/
template<class T2>
SmartConstPointer( const SmartConstPointer<T2>& ptr )
: m_ReferenceCount( ptr.m_ReferenceCount )
{
this->m_Object.ptrConst = ptr.m_Object.ptrConst;
this->m_ReferenceCount->Increment();
}
/** Copy constructor to prevent compiler-generated copy constructor.
* Increment reference counter in the process.
*/
SmartConstPointer( const Self& ptr )
: m_ReferenceCount( ptr.m_ReferenceCount )
{
this->m_Object.ptrConst = ptr.m_Object.ptrConst;
this->m_ReferenceCount->Increment();
}
/// Destruct: decrease reference pointer and free dumb pointer if necessary.
~SmartConstPointer()
{
assert( this->m_ReferenceCount != NULL ); // we may have m_Object=NULL, but m_ReferenceCount should never be!
if ( ! this->m_ReferenceCount->Decrement() )
{
delete this->m_ReferenceCount;
#ifdef DEBUG
this->m_ReferenceCount = NULL;
#endif
if ( this->m_Object.ptrConst )
{
delete this->m_Object.ptrConst;
#ifdef DEBUG
this->m_Object.ptrConst = NULL;
#endif
}
}
}
/// Get dumb pointer.
const T* GetPtr() const { return this->m_Object.ptrConst; }
/// De-referencing operator (returns constant object).
const T& operator*() const { return *this->m_Object.ptrConst; }
/// De-referencing operator (returns constant object pointer).
const T* operator->() const { return this->m_Object.ptrConst; }
/// Implicit conversion to constant pointer.
operator const T*() const { return m_Object.ptrConst; }
/// Explicit conversion to constant pointer.
const T* GetConstPtr() const { return this->m_Object.ptrConst; }
/** Release control of this pointer.
*\note This is a dangerous function. Be sure you know what you are doing!
*/
const T* ReleasePtr()
{
const T* object = this->m_Object.ptrConst;
this->m_Object.ptrConst = NULL;
return object;
}
/** Assignment operator.
* This is implemented using the std::swap function.
*\warning The "other" parameter HAS TO USE CALL BY VALUE for this function to work,
* because we are not creating an explicit copy of the original object before
* calling Swap() (see Effective C++, 3rd, Item 11, p.56).
*\warning Open question: given that we pass the parameter by value, not reference, does
* this really prevent the definition of a compiler-generated assignment (which passes
* parameter by reference)?
*/
const Self& operator= ( const Self other ) const
{
using std::swap;
swap( this->m_ReferenceCount, other.m_ReferenceCount );
swap( this->m_Object.ptrConst, other.m_Object.ptrConst );
return *this;
}
/** Equality operator using pointer.
*/
bool operator== ( const Self& other ) const
{
return (this->m_Object.ptrConst == other.m_Object.ptrConst);
}
/** Inequality operator.
*/
bool operator!= ( const Self& other ) const
{
return (this->m_Object.ptrConst != other.m_Object.ptrConst);
}
/** "Smaller than" operator (necessay for storing objects in std::map).
*/
bool operator< ( const Self& other ) const
{
return ( this->m_Object.ptrConst < other.m_Object.ptrConst );
}
///Dynamic cast between smart pointer types.
template<class T2>
static Self DynamicCastFrom( const T2& from_P )
{
return Self( dynamic_cast<typename Self::PointerType>( from_P.GetConstPtr() ), from_P.m_ReferenceCount );
}
protected:
/// Pointer to detached reference counter for this object.
mutable SafeCounter* m_ReferenceCount;
/// Union for const and non-const pointer for reference-counted object.
mutable union
{
/// Pointer to const.
const T* ptrConst;
/// Pointer to non-const.
T* ptr;
} m_Object;
/** Construct from dumb pointer and existing reference counter.
* The reference counter is increased in the process.
*/
SmartConstPointer( const T *const object, SafeCounter *const counter )
{
this->m_Object.ptrConst = object;
this->m_ReferenceCount = counter;
this->m_ReferenceCount->Increment();
}
/// Make all template instances friends for easy type casting.
template<class T2> friend class SmartConstPointer;
};
//@}
} // namespace cmtk
#endif // define __cmtkSmartConstPtr_h_included_
|