File: cmtkActiveShapeModel.cxx

package info (click to toggle)
cmtk 3.3.1p2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 10,492 kB
  • sloc: cpp: 87,098; ansic: 23,347; sh: 3,896; xml: 1,551; perl: 707; makefile: 332
file content (241 lines) | stat: -rw-r--r-- 7,927 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*
//
//  Copyright 1997-2009 Torsten Rohlfing
//
//  Copyright 2004-2013 SRI International
//
//  This file is part of the Computational Morphometry Toolkit.
//
//  http://www.nitrc.org/projects/cmtk/
//
//  The Computational Morphometry Toolkit is free software: you can
//  redistribute it and/or modify it under the terms of the GNU General Public
//  License as published by the Free Software Foundation, either version 3 of
//  the License, or (at your option) any later version.
//
//  The Computational Morphometry Toolkit is distributed in the hope that it
//  will be useful, but WITHOUT ANY WARRANTY; without even the implied
//  warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License along
//  with the Computational Morphometry Toolkit.  If not, see
//  <http://www.gnu.org/licenses/>.
//
//  $Revision: 5436 $
//
//  $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
//  $LastChangedBy: torstenrohlfing $
//
*/

#include <Base/cmtkActiveShapeModel.h>

#include <Base/cmtkSymmetricMatrix.h>
#include <Base/cmtkEigenSystemSymmetricMatrix.h>

#include <System/cmtkConsole.h>

#include <math.h>
#include <algorithm>

namespace
cmtk
{

/** \addtogroup Base */
//@{

ActiveShapeModel::ActiveShapeModel
( CoordinateVector::SmartPtr& mean, DirectionSet::SmartPtr& modes, CoordinateVector::SmartPtr& modeVariances ) :
  Mean( mean ), Modes( modes ), ModeVariances( modeVariances )
{
  NumberOfPoints = Mean->Dim;
  NumberOfModes = Modes->GetNumberOfDirections();
}

float 
ActiveShapeModel::Construct
( const Types::Coordinate *const* trainingSet, const unsigned int numberOfSamples,
  const unsigned int numberOfPoints, const unsigned int numberOfModes )
{
  if ( numberOfSamples < numberOfModes ) 
    {
    StdErr << "WARNING: number of modes of an ASM can be no higher than number of training samples.\n";
    this->Allocate( numberOfPoints, numberOfSamples );
    } 
  else
    {
    this->Allocate( numberOfPoints, numberOfModes );
    }
  

  // first, compute mean shape
  Types::Coordinate *meanPtr = Mean->Elements;
  for ( unsigned int point = 0; point < NumberOfPoints; ++point, ++meanPtr ) 
    {
    Types::Coordinate mean = trainingSet[0][point];
    for ( unsigned int sample = 1; sample < numberOfSamples; ++sample ) 
      {
      mean += trainingSet[sample][point];
      }
    (*meanPtr) = (mean / numberOfSamples );
    }
  
  // now generate covariance matrix; actually, we're using a slightly
  // modified approach following Cootes' 1995 CVIU paper. This is much
  // more efficient when the number of samples is smaller than the
  // number of data dimensions.
  SymmetricMatrix<Types::Coordinate> cc( numberOfSamples );
  
  for ( unsigned int sampleY = 0; sampleY < numberOfSamples; ++sampleY )
    {
    for ( unsigned int sampleX = 0; sampleX <= sampleY; ++sampleX ) 
      {
      Types::Coordinate ccXY = 0;
      
      const Types::Coordinate* meanPtr2 = Mean->Elements;
      for ( unsigned int point = 0; point < NumberOfPoints; ++point, ++meanPtr2 )
	{
	ccXY += ( trainingSet[sampleX][point] - (*meanPtr2) ) * ( trainingSet[sampleY][point] - (*meanPtr2) );
	}
      cc(sampleX,sampleY) = ccXY / numberOfSamples;
      }
    }
  
  // here comes the hard part: compute Eigenvectors of cc...
  // we do this in a separate routine, for clarity.
  const EigenSystemSymmetricMatrix<Types::Coordinate> eigensystem( cc );

  // determine permutation that orders eigenvectors by descending eigenvalues
  const std::vector<Types::Coordinate> eigenvalues = eigensystem.GetEigenvalues();
  std::vector<unsigned int> permutation( numberOfSamples );
  // initialize permutation array
  for ( unsigned int i = 0; i < numberOfSamples; ++i )
    permutation[i] = i;
  
  // now do a simple bubble sort
  bool sorted = false;
  while ( ! sorted ) 
    {
    sorted = true;
    for ( unsigned int i = 0; i < numberOfSamples-1; ++i )
      if ( eigenvalues[permutation[i]] < eigenvalues[permutation[i+1]] ) 
	{
	std::swap( permutation[i], permutation[i+1] );
	sorted = false;
	}
    }
  
  // now, we need to convert the eigenvectors of the simplified matrix
  // back to those of the actual covariance matrix. Again, this follows
  // Cootes et al., CVIU 1995
  for ( unsigned int mode = 0; mode < NumberOfModes; ++mode ) 
    {    
    ModeVariances->Elements[mode] = eigenvalues[permutation[mode]];

    Types::Coordinate* modePtr = (*Modes)[mode]->Elements;
    for ( unsigned int point = 0; point < NumberOfPoints; ++point, ++modePtr ) 
      {
      unsigned int fromMode = permutation[mode];
      Types::Coordinate meanValue = Mean->Elements[point];
      
      *modePtr = 0;
      for ( unsigned int sample = 0; sample < numberOfSamples; ++sample )
	*modePtr += (eigensystem.EigenvectorElement(sample,fromMode) * (trainingSet[sample][point] - meanValue) );
      }
    
    // finally, normalize mode vectors... if Geremy is right ;)
    (*(*Modes)[mode]) *= (sqrt( eigenvalues[permutation[mode]] ) / (*Modes)[mode]->EuclidNorm());
    }
  
  return 0;
}

Types::Coordinate*
ActiveShapeModel::Generate
( Types::Coordinate *const instance, const Types::Coordinate* modeWeights ) const
{
  Types::Coordinate* target = instance;
  if ( !target )
    target = Memory::ArrayC::Allocate<Types::Coordinate>( NumberOfPoints );

  memcpy( target, Mean->Elements, sizeof( *target ) * NumberOfPoints );

  if ( modeWeights )
    {
    for ( unsigned int mode = 0; mode < NumberOfModes; ++mode ) 
      {
      Types::Coordinate modeWeight = modeWeights[mode];
      
      Types::Coordinate* targetPtr = target;
      const Types::Coordinate* modePtr = (*Modes)[mode]->Elements;
      
      for ( unsigned int point = 0; point < NumberOfPoints; ++point, ++targetPtr, ++modePtr )
	(*targetPtr) += ( modeWeight * (*modePtr) );
      }
    }
  
  return target;
}

float
ActiveShapeModel::Decompose
( const CoordinateVector* input, Types::Coordinate *const weights ) const
{
  std::vector<Types::Coordinate> w( this->NumberOfModes );
  CoordinateVector deviation( *input );
  deviation -= *(this->Mean);

#define RETURN_PDF
#ifdef RETURN_PDF
  float pdf = 1.0;
  for ( size_t mode = 0; mode < this->NumberOfModes; ++mode ) 
    {
    const CoordinateVector* thisMode = (*this->Modes)[mode];
    // since Modes are orthogonal basis, we can decompose using scalar product
    w[mode] = (deviation * *thisMode) / thisMode->EuclidNorm();
    
    const Types::Coordinate variance = (*(this->ModeVariances))[mode];
    pdf *= static_cast<float>( exp( -(w[mode]*w[mode]) / (2.0 * variance) ) / sqrt( 2.0 * M_PI * variance) );
    }
#else
  float distance = 0.0;
  for ( size_t mode = 0; mode < this->NumberOfModes; ++mode ) 
    {
    const CoordinateVector* thisMode = (*this->Modes)[mode];
    // since Modes are orthogonal basis, we can decompose using scalar product
    w[mode] = (deviation * *thisMode) / thisMode->EuclidNorm();
    
    const Types::Coordinate variance = (*(this->ModeVariances))[mode];
    distance += w[mode] * w[mode] / variance;
    }
  distance = sqrt( distance );
#endif
  
  if ( weights )
    memcpy( weights, &w[0], this->NumberOfModes * sizeof( *weights ) );
  
#ifdef RETURN_PDF
  return pdf;
#else
  return distance;
#endif
}

void
ActiveShapeModel::Allocate
( const unsigned int numberOfPoints, const unsigned int numberOfModes )
{
  NumberOfModes = numberOfModes;
  NumberOfPoints = numberOfPoints;

  Modes = DirectionSet::SmartPtr( new DirectionSet( NumberOfPoints ) );
  for ( unsigned int mode = 0; mode < NumberOfModes; ++mode )
    Modes->push_back( CoordinateVector::SmartPtr( new CoordinateVector( NumberOfPoints ) ) );
  ModeVariances = CoordinateVector::SmartPtr( new CoordinateVector( NumberOfModes ) );
  Mean = CoordinateVector::SmartPtr( new CoordinateVector( NumberOfPoints ) );
}

} // namespace cmtk