1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2013 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include <Base/cmtkActiveShapeModel.h>
#include <Base/cmtkSymmetricMatrix.h>
#include <Base/cmtkEigenSystemSymmetricMatrix.h>
#include <System/cmtkConsole.h>
#include <math.h>
#include <algorithm>
namespace
cmtk
{
/** \addtogroup Base */
//@{
ActiveShapeModel::ActiveShapeModel
( CoordinateVector::SmartPtr& mean, DirectionSet::SmartPtr& modes, CoordinateVector::SmartPtr& modeVariances ) :
Mean( mean ), Modes( modes ), ModeVariances( modeVariances )
{
NumberOfPoints = Mean->Dim;
NumberOfModes = Modes->GetNumberOfDirections();
}
float
ActiveShapeModel::Construct
( const Types::Coordinate *const* trainingSet, const unsigned int numberOfSamples,
const unsigned int numberOfPoints, const unsigned int numberOfModes )
{
if ( numberOfSamples < numberOfModes )
{
StdErr << "WARNING: number of modes of an ASM can be no higher than number of training samples.\n";
this->Allocate( numberOfPoints, numberOfSamples );
}
else
{
this->Allocate( numberOfPoints, numberOfModes );
}
// first, compute mean shape
Types::Coordinate *meanPtr = Mean->Elements;
for ( unsigned int point = 0; point < NumberOfPoints; ++point, ++meanPtr )
{
Types::Coordinate mean = trainingSet[0][point];
for ( unsigned int sample = 1; sample < numberOfSamples; ++sample )
{
mean += trainingSet[sample][point];
}
(*meanPtr) = (mean / numberOfSamples );
}
// now generate covariance matrix; actually, we're using a slightly
// modified approach following Cootes' 1995 CVIU paper. This is much
// more efficient when the number of samples is smaller than the
// number of data dimensions.
SymmetricMatrix<Types::Coordinate> cc( numberOfSamples );
for ( unsigned int sampleY = 0; sampleY < numberOfSamples; ++sampleY )
{
for ( unsigned int sampleX = 0; sampleX <= sampleY; ++sampleX )
{
Types::Coordinate ccXY = 0;
const Types::Coordinate* meanPtr2 = Mean->Elements;
for ( unsigned int point = 0; point < NumberOfPoints; ++point, ++meanPtr2 )
{
ccXY += ( trainingSet[sampleX][point] - (*meanPtr2) ) * ( trainingSet[sampleY][point] - (*meanPtr2) );
}
cc(sampleX,sampleY) = ccXY / numberOfSamples;
}
}
// here comes the hard part: compute Eigenvectors of cc...
// we do this in a separate routine, for clarity.
const EigenSystemSymmetricMatrix<Types::Coordinate> eigensystem( cc );
// determine permutation that orders eigenvectors by descending eigenvalues
const std::vector<Types::Coordinate> eigenvalues = eigensystem.GetEigenvalues();
std::vector<unsigned int> permutation( numberOfSamples );
// initialize permutation array
for ( unsigned int i = 0; i < numberOfSamples; ++i )
permutation[i] = i;
// now do a simple bubble sort
bool sorted = false;
while ( ! sorted )
{
sorted = true;
for ( unsigned int i = 0; i < numberOfSamples-1; ++i )
if ( eigenvalues[permutation[i]] < eigenvalues[permutation[i+1]] )
{
std::swap( permutation[i], permutation[i+1] );
sorted = false;
}
}
// now, we need to convert the eigenvectors of the simplified matrix
// back to those of the actual covariance matrix. Again, this follows
// Cootes et al., CVIU 1995
for ( unsigned int mode = 0; mode < NumberOfModes; ++mode )
{
ModeVariances->Elements[mode] = eigenvalues[permutation[mode]];
Types::Coordinate* modePtr = (*Modes)[mode]->Elements;
for ( unsigned int point = 0; point < NumberOfPoints; ++point, ++modePtr )
{
unsigned int fromMode = permutation[mode];
Types::Coordinate meanValue = Mean->Elements[point];
*modePtr = 0;
for ( unsigned int sample = 0; sample < numberOfSamples; ++sample )
*modePtr += (eigensystem.EigenvectorElement(sample,fromMode) * (trainingSet[sample][point] - meanValue) );
}
// finally, normalize mode vectors... if Geremy is right ;)
(*(*Modes)[mode]) *= (sqrt( eigenvalues[permutation[mode]] ) / (*Modes)[mode]->EuclidNorm());
}
return 0;
}
Types::Coordinate*
ActiveShapeModel::Generate
( Types::Coordinate *const instance, const Types::Coordinate* modeWeights ) const
{
Types::Coordinate* target = instance;
if ( !target )
target = Memory::ArrayC::Allocate<Types::Coordinate>( NumberOfPoints );
memcpy( target, Mean->Elements, sizeof( *target ) * NumberOfPoints );
if ( modeWeights )
{
for ( unsigned int mode = 0; mode < NumberOfModes; ++mode )
{
Types::Coordinate modeWeight = modeWeights[mode];
Types::Coordinate* targetPtr = target;
const Types::Coordinate* modePtr = (*Modes)[mode]->Elements;
for ( unsigned int point = 0; point < NumberOfPoints; ++point, ++targetPtr, ++modePtr )
(*targetPtr) += ( modeWeight * (*modePtr) );
}
}
return target;
}
float
ActiveShapeModel::Decompose
( const CoordinateVector* input, Types::Coordinate *const weights ) const
{
std::vector<Types::Coordinate> w( this->NumberOfModes );
CoordinateVector deviation( *input );
deviation -= *(this->Mean);
#define RETURN_PDF
#ifdef RETURN_PDF
float pdf = 1.0;
for ( size_t mode = 0; mode < this->NumberOfModes; ++mode )
{
const CoordinateVector* thisMode = (*this->Modes)[mode];
// since Modes are orthogonal basis, we can decompose using scalar product
w[mode] = (deviation * *thisMode) / thisMode->EuclidNorm();
const Types::Coordinate variance = (*(this->ModeVariances))[mode];
pdf *= static_cast<float>( exp( -(w[mode]*w[mode]) / (2.0 * variance) ) / sqrt( 2.0 * M_PI * variance) );
}
#else
float distance = 0.0;
for ( size_t mode = 0; mode < this->NumberOfModes; ++mode )
{
const CoordinateVector* thisMode = (*this->Modes)[mode];
// since Modes are orthogonal basis, we can decompose using scalar product
w[mode] = (deviation * *thisMode) / thisMode->EuclidNorm();
const Types::Coordinate variance = (*(this->ModeVariances))[mode];
distance += w[mode] * w[mode] / variance;
}
distance = sqrt( distance );
#endif
if ( weights )
memcpy( weights, &w[0], this->NumberOfModes * sizeof( *weights ) );
#ifdef RETURN_PDF
return pdf;
#else
return distance;
#endif
}
void
ActiveShapeModel::Allocate
( const unsigned int numberOfPoints, const unsigned int numberOfModes )
{
NumberOfModes = numberOfModes;
NumberOfPoints = numberOfPoints;
Modes = DirectionSet::SmartPtr( new DirectionSet( NumberOfPoints ) );
for ( unsigned int mode = 0; mode < NumberOfModes; ++mode )
Modes->push_back( CoordinateVector::SmartPtr( new CoordinateVector( NumberOfPoints ) ) );
ModeVariances = CoordinateVector::SmartPtr( new CoordinateVector( NumberOfModes ) );
Mean = CoordinateVector::SmartPtr( new CoordinateVector( NumberOfPoints ) );
}
} // namespace cmtk
|