File: fibxform.cxx

package info (click to toggle)
cmtk 3.3.1p2%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,524 kB
  • sloc: cpp: 87,098; ansic: 23,347; sh: 3,896; xml: 1,551; perl: 707; makefile: 334
file content (186 lines) | stat: -rw-r--r-- 6,654 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
//
//  Copyright 1997-2012 Torsten Rohlfing
//
//  Copyright 2004-2014 SRI International
//
//  This file is part of the Computational Morphometry Toolkit.
//
//  http://www.nitrc.org/projects/cmtk/
//
//  The Computational Morphometry Toolkit is free software: you can
//  redistribute it and/or modify it under the terms of the GNU General Public
//  License as published by the Free Software Foundation, either version 3 of
//  the License, or (at your option) any later version.
//
//  The Computational Morphometry Toolkit is distributed in the hope that it
//  will be useful, but WITHOUT ANY WARRANTY; without even the implied
//  warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License along
//  with the Computational Morphometry Toolkit.  If not, see
//  <http://www.gnu.org/licenses/>.
//
//  $Revision: 5436 $
//
//  $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
//  $LastChangedBy: torstenrohlfing $
//
*/

#include <cmtkconfig.h>

#include <System/cmtkCommandLine.h>
#include <System/cmtkConsole.h>

#include <Base/cmtkXform.h>
#include <Base/cmtkXformList.h>

#include <IO/cmtkXformIO.h>
#include <IO/cmtkXformListIO.h>
#include <IO/cmtkVolumeIO.h>

#include <iostream>
#include <sstream>

int
doMain( const int argc, const char* argv[] )
{
  cmtk::Types::Coordinate inversionTolerance = 0.001;

  std::vector<std::string> inputXformPaths;

  const char* sourceImagePath = NULL;
  const char* targetImagePath = NULL;

  try
    {
    cmtk::CommandLine cl;
    cl.SetProgramInfo( cmtk::CommandLine::PRG_TITLE, "Apply coordinate transformations to point coordinates in .fib file." );
    cl.SetProgramInfo( cmtk::CommandLine::PRG_DESCR, "A file with fiber tracking results from the UNC Fiber Tracking tool is read from Standard Input and one or more (concatenated) coordinate transformations are applied to all fiber point coordinates. "
		       "The result is written to Standard Output, again in UNC fiber file format." );

    typedef cmtk::CommandLine::Key Key;
    cl.AddOption( Key( "inversion-tolerance" ), &inversionTolerance, "Numerical tolerance of B-spline inversion in mm. Smaller values will lead to more accurate inversion, but may increase failure rate." );

    cl.AddOption( Key( "source-image" ), &sourceImagePath, "Set source image of the transformation (i.e., an image defining the space in which fiber tracking was performed) "
		  "to correct for differences in orientation and coordinate space." )->SetProperties( cmtk::CommandLine::PROPS_IMAGE );
    cl.AddOption( Key( "target-image" ), &targetImagePath, "Set target image of the transformation (i.e., the image that the fiber track points are mapped into) "
		  "to correct for differences in orientation and coordinate space." )->SetProperties( cmtk::CommandLine::PROPS_IMAGE );

    cl.AddParameterVector( &inputXformPaths, "XformList", "List of concatenated transformations. Insert '--inverse' to use the inverse of the transformation listed next."
			   "(If the first transformation in the sequence is inverted, then '--inverse' must be preceded by '--', i.e., use '-- --inverse xform.path')." )->SetProperties( cmtk::CommandLine::PROPS_XFORM )
      ->SetProperties( cmtk::CommandLine::PROPS_XFORM | cmtk::CommandLine::PROPS_OPTIONAL );  
    
    cl.Parse( argc, argv );
    }
  catch ( cmtk::CommandLine::Exception& ex )
    {
    cmtk::StdErr << ex << "\n";
    throw cmtk::ExitException( 1 );
    }

  cmtk::XformList xformList = cmtk::XformListIO::MakeFromStringList( inputXformPaths );
  xformList.SetEpsilon( inversionTolerance );

  if ( sourceImagePath )
    {
    cmtk::UniformVolume::SmartPtr sourceImage( cmtk::VolumeIO::ReadOriented( sourceImagePath ) );
    if ( ! sourceImage )
      {
      cmtk::StdErr << "ERROR: could not read source image '" << sourceImagePath << "'\n";
      throw cmtk::ExitException( 1 );
      }
    
    sourceImage->ChangeCoordinateSpace( sourceImage->GetMetaInfo( cmtk::META_SPACE_ORIGINAL ) );
    try
      {
      xformList.AddToFront( cmtk::AffineXform::SmartPtr( new cmtk::AffineXform(sourceImage->GetImageToPhysicalMatrix() ) ) );
      }
    catch ( const cmtk::AffineXform::MatrixType::SingularMatrixException& )
      {
      cmtk::StdErr << "ERROR: singular source image-to-physical space matrix encountered\n";
      throw cmtk::ExitException( 1 );
      }
    }

  if ( targetImagePath )
    {
    cmtk::UniformVolume::SmartPtr targetImage( cmtk::VolumeIO::ReadOriented( targetImagePath ) );
    if ( ! targetImage )
      {
      cmtk::StdErr << "ERROR: could not read target image '" << targetImagePath << "'\n";
      throw cmtk::ExitException( 1 );
      }

    targetImage->ChangeCoordinateSpace( targetImage->GetMetaInfo( cmtk::META_SPACE_ORIGINAL ) );
    try
      {
      xformList.Add( cmtk::AffineXform::SmartPtr( new cmtk::AffineXform( targetImage->GetImageToPhysicalMatrix().GetInverse() ) ) );
      }
    catch ( const cmtk::AffineXform::MatrixType::SingularMatrixException& )
      {
      cmtk::StdErr << "ERROR: singular target image-to-physical space matrix encountered\n";
      throw cmtk::ExitException( 1 );
      }
    }
  
  cmtk::Xform::SpaceVectorType xyz;    
  std::vector<std::string> outputPointLines;

  std::string line;
  while ( !std::cin.eof() )
    {
    std::getline( std::cin, line );

    if ( line.compare( 0, 7, "NPoints" ) != 0 )
      {
      std::cout << line << std::endl;
      }
    else
      {
      const size_t npoints = atoi( line.substr( line.find( '=' )+1, std::string::npos ).c_str() );
      outputPointLines.resize( npoints );

      size_t npointsOut = 0;

      // skip "Points = "
      std::getline( std::cin, line );
      std::cout << line << "\n";
      
      for ( size_t n = 0; n<npoints; ++n )
	{
	// read x,y,z from beginning of line
	std::cin >> xyz[0] >> xyz[1] >> xyz[2];
	
	// read everything else on the same line
	std::string restOfLine;
	std::getline( std::cin, restOfLine );
	
	// Apply transformation sequence
	const bool valid = xformList.ApplyInPlace( xyz );
	
	if ( valid )
	  {
	  std::stringstream sout;
	  sout << xyz[0] << " " << xyz[1] << " " << xyz[2];;
	  outputPointLines[npointsOut++] = std::string( sout.str() + " " + restOfLine );
	  }
	}
      
      std::cout << "NPoints = " << outputPointLines.size() << "\n";
      std::cout << "Points =\n";
      for ( size_t n = 0; n < npointsOut; ++n )
	{
	std::cout << outputPointLines[n] << "\n";
	}
      }
    }

  // if we got here, the program probably ran
  return 0;
}

#include "cmtkSafeMain"