1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2013 SRI International
//
// Copyright 2015 Google, Inc.
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 2697 $
//
// $LastChangedDate: 2011-01-10 16:40:53 -0800 (Mon, 10 Jan 2011) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include <cmtkconfig.h>
#include <System/cmtkConsole.h>
#include <System/cmtkDebugOutput.h>
#include <System/cmtkCommandLine.h>
#include <System/cmtkExitException.h>
#include <System/cmtkTimers.h>
#include <Base/cmtkUniformVolume.h>
#include <Base/cmtkFilterVolume.h>
#include <Base/cmtkTypedArrayFunctionHistogramMatching.h>
#include <Base/cmtkWarpXform.h>
#include <Registration/cmtkSplineWarpGroupwiseRegistrationRMIFunctional.h>
#include <Registration/cmtkSplineWarpCongealingFunctional.h>
#include <Registration/cmtkBestDirectionOptimizer.h>
#include <Registration/cmtkGroupwiseRegistrationOutput.h>
#include <IO/cmtkVolumeIO.h>
#include <IO/cmtkClassStreamInput.h>
#include <vector>
bool OptimizeRMI = false;
int DownsampleFrom = 4;
int DownsampleTo = 1;
const char* PreDefinedTemplatePath = NULL;
bool UseTemplateData = false;
const char* DisableControlPointsMaskPath = NULL;
int RefineTransformationGrid = 0;
float JacobianConstraintWeight = 0.0;
float BendingEnergyWeight = 0.0;
cmtk::Types::Coordinate GridSpacing = 40.0;
bool GridSpacingExact = true;
bool ForceZeroSum = false;
bool ForceZeroSumNoAffine = false;
unsigned int ForceZeroSumFirstN = 0;
unsigned int NormalGroupFirstN = 0;
float SamplingDensity = -1.0;
bool DeactivateUninformative = true;
float PartialGradientThreshold = 0.0;
bool UseNumberOfHistogramBins = false;
unsigned int NumberOfHistogramBins = 0;
bool CropImageHistograms = false;
bool HistogramMatching = false;
bool RepeatHistogramMatching = false;
bool UseSmoothSigmaFactorPixel = false;
cmtk::Types::Coordinate SmoothSigmaFactorPixel = 0.0;
bool UseSmoothSigmaFactorControlPointSpacing = false;
cmtk::Types::Coordinate SmoothSigmaFactorControlPointSpacing = 0.0;
cmtk::Types::Coordinate Accuracy = 0.01;
cmtk::Types::Coordinate Exploration = 0.25;
cmtk::Types::Coordinate OptimizerStepFactor = 0.5;
cmtk::Optimizer::ReturnType OptimizerDeltaFThreshold = 0;
bool OptimizerAggressive = true;
int OptimizerRepeatLevel = 2;
bool DisableOptimization = false;
const char* AffineGroupRegistration = NULL;
const char* OutputRootDirectory = NULL;
const char* OutputArchive = "groupwise.xforms";
const char* OutputStudyListGroup = "groupwise.list";
const char* OutputStudyListIndividual = "pairs";
const char* AverageImagePath = "average.nii";
cmtk::Interpolators::InterpolationEnum AverageImageInterpolation = cmtk::Interpolators::LINEAR;
byte UserBackgroundValue = 0;
bool UserBackgroundFlag = false;
int
doMain( int argc, const char* argv[] )
{
try
{
cmtk::CommandLine cl;
cl.SetProgramInfo( cmtk::CommandLine::PRG_TITLE, "Nonrigid population registration" );
cl.SetProgramInfo( cmtk::CommandLine::PRG_DESCR, "This tool nonrigidly registers a population of input images simultaneously, without a template, using either the 'congealing' algorithm or a groupwise similarity measure based on "
"a continuous approximation of mutual information ('RMI')." );
cl.SetProgramInfo( cmtk::CommandLine::PRG_SYNTX, "groupwise_warp [options] affineGroupRegistration" );
cl.SetProgramInfo( cmtk::CommandLine::PRG_CATEG, "CMTK.Image Registration" );
typedef cmtk::CommandLine::Key Key;
cl.BeginGroup( "Metric", "Registration Metric Options" );
cl.AddSwitch( Key( "rmi" ), &OptimizeRMI, true, "Use the RMI (a.k.a. regional mutual information) metric to drive the registration)." );
cl.AddSwitch( Key( "congeal" ), &OptimizeRMI, false, "Use the congealing algorithm using pixelwise stack entropies to drive the registration." );
cl.EndGroup();
cl.BeginGroup( "Template", "Template Image Options" );
cl.AddOption( Key( 't', "template" ), &PreDefinedTemplatePath, "Override template image with given file." );
cl.AddOption( Key( 'T', "template-with-data" ), &PreDefinedTemplatePath, "Use user-supplied template images's pixel data in registration", &UseTemplateData );
cl.EndGroup();
cl.BeginGroup( "Multuresolution", "Multuresolution Parameters" );
cl.AddOption( Key( 'd', "downsample-from" ), &DownsampleFrom, "Initial downsampling factor [4]." );
cl.AddOption( Key( 'D', "downsample-to" ), &DownsampleTo, "Final downsampling factor [1]." );
cl.AddOption( Key( 's', "sampling-density" ), &SamplingDensity, "Probabilistic sampling density [default: off]." );
cl.EndGroup();
cl.BeginGroup( "Output", "Output Options" );
cl.AddOption( Key( 'O', "output-root" ), &OutputRootDirectory, "Root directory for all output files." );
cl.AddOption( Key( 'o', "output" ), &OutputArchive, "Output filename for groupwise registration archive." );
cl.AddOption( Key( "output-average" ), &AverageImagePath, "Output filename for registered average image." );
cl.AddSwitch( Key( "no-output-average" ), &AverageImagePath, (const char*)NULL, "Do not write average image." );
cl.AddSwitch( Key( "average-cubic" ), &AverageImageInterpolation, cmtk::Interpolators::CUBIC, "Use cubic interpolation for average image (default: linear)" );
cl.EndGroup();
cl.BeginGroup( "Image", "Image Options and Operations" );
cl.AddOption( Key( 'B', "force-background" ), &UserBackgroundValue, "Force background pixels (outside FOV) to given (bin) value.", &UserBackgroundFlag );
cl.AddOption( Key( 'H', "histogram-bins" ), &NumberOfHistogramBins, "Set number of histogram bins for entropy evaluation.", &UseNumberOfHistogramBins );
cl.AddSwitch( Key( "crop-histograms" ), &CropImageHistograms, true, "Crop image histograms to make better use of histogram bins." );
cl.AddSwitch( Key( "match-histograms" ), &HistogramMatching, true, "Match all image histograms to template data (or first image, if no template image is given)" );
cl.AddSwitch( Key( "repeat-match-histograms" ), &RepeatHistogramMatching, true, "Frequetly repeat histogram-based intensity matching to account for changing volume proportions." );
cl.AddOption( Key( "smooth-pixels" ), &SmoothSigmaFactorPixel, "Sigma of Gaussian smoothing kernel in multiples of template image pixel size", &UseSmoothSigmaFactorPixel );
cl.AddOption( Key( "smooth-cps" ), &SmoothSigmaFactorControlPointSpacing, "Sigma of Gaussian smoothing kernel in multiples of control point delta", &UseSmoothSigmaFactorControlPointSpacing );
cl.EndGroup();
cl.BeginGroup( "Transformation", "Transformation Parameters" );
cl.AddOption( Key( "grid-spacing" ), &GridSpacing, "Control point grid spacing." );
cl.AddSwitch( Key( "grid-spacing-fit" ), &GridSpacingExact, false, "Use grid spacing that fits volume FOV" );
cl.AddOption( Key( 'r', "refine-grid" ), &RefineTransformationGrid, "Number of times to refine transformation grid [default: 0]." );
cl.EndGroup();
cl.BeginGroup( "Constraints", "Transformation Constraint Options" );
cl.AddSwitch( Key( 'z', "zero-sum" ), &ForceZeroSum, true, "Enforce zero-sum computation." );
cl.AddSwitch( Key( "zero-sum-no-affine" ), &ForceZeroSumNoAffine, true, "Enforce zero-sum computation EXCLUDING affine components." );
cl.AddOption( Key( 'N', "normal-group-first-n" ), &NormalGroupFirstN, "First N images are from the normal group and should be registered unbiased." );
cl.AddOption( Key( 'Z', "zero-sum-first-n" ), &ForceZeroSumFirstN, "Enforce zero-sum computation for first N images.", &ForceZeroSum );
cl.AddOption( Key( 'J', "jacobian-weight" ), &JacobianConstraintWeight, "Weight for Jacobian volume preservation constraint [default: off]" );
cl.AddOption( Key( 'E', "bending-energy-weight" ), &BendingEnergyWeight, "Weight for grid bending energy regularization constraint [default: off]" );
cl.EndGroup();
cl.BeginGroup( "Optimization", "Optimization Parameters" );
cl.AddOption( Key( 'e', "exploration" ), &Exploration, "Exploration of optimization in pixels" );
cl.AddOption( Key( 'a', "accuracy" ), &Accuracy, "Accuracy of optimization in pixels" );
cl.AddOption( Key( 'S', "step-factor" ), &OptimizerStepFactor, "Step factor for successive optimization passes" );
cl.AddOption( Key( "delta-f-threshold" ), &OptimizerDeltaFThreshold, "Optional threshold to terminate optimization (level) if relative change of target function drops below this value." );
cl.AddOption( Key( 'p', "partial-gradient-thresh" ), &PartialGradientThreshold, "Threshold factor for partial gradient zeroing [<0 turn off]" );
cl.AddSwitch( Key( "activate-uninformative" ), &DeactivateUninformative, false, "Activate potentially uninformative control points" );
cl.AddOption( Key( "disable-cp-mask" ), &DisableControlPointsMaskPath, "Path to mask image (matching template grid) defining areas in which control points should be disabled. "
"This guarantees that mask foreground areas remain undeformed." );
cl.AddSwitch( Key( "disable-optimization" ), &DisableOptimization, true, "Disable optimization and output initial configuration." );
cl.EndGroup();
cl.Parse( argc, const_cast<const char**>( argv ) );
AffineGroupRegistration = cl.GetNext();
}
catch ( const cmtk::CommandLine::Exception& e )
{
cmtk::StdErr << e << "\n";
throw cmtk::ExitException( 1 );
}
cmtk::GroupwiseRegistrationFunctionalXformTemplate<cmtk::SplineWarpXform>::SmartPtr functional;
if ( OptimizeRMI )
functional = cmtk::SplineWarpGroupwiseRegistrationRMIFunctional::SmartPtr( new cmtk::SplineWarpGroupwiseRegistrationRMIFunctional );
else
functional = cmtk::SplineWarpCongealingFunctional::SmartPtr( new cmtk::SplineWarpCongealingFunctional );
functional->SetFreeAndRereadImages( ! HistogramMatching ); // we cannot unload the original images if we still need them for histogram matching
functional->SetForceZeroSumFirstN( ForceZeroSumFirstN );
functional->SetForceZeroSum( ForceZeroSum || ForceZeroSumNoAffine );
functional->SetForceZeroSumNoAffine( ForceZeroSumNoAffine );
functional->SetCropImageHistograms( CropImageHistograms );
if ( UserBackgroundFlag )
functional->SetUserBackgroundValue( UserBackgroundValue );
if ( UseNumberOfHistogramBins )
{
// must be done IMMEDIATELY after creating the functional!
// otherwise, scaling and conversion of input images goes
// WRONG!
functional->SetNumberOfHistogramBins( NumberOfHistogramBins );
}
// disable parameters with less than 1% of maximum contribution
functional->SetPartialGradientMode( (PartialGradientThreshold > 0) , PartialGradientThreshold );
functional->SetDeactivateUninformativeMode( DeactivateUninformative );
cmtk::ClassStreamInput stream( AffineGroupRegistration );
if ( ! stream.IsValid() )
{
cmtk::StdErr << "Input archive " << AffineGroupRegistration << " could not be opened for reading.\n";
throw cmtk::ExitException( 1 );
}
stream >> *functional;
stream.Close();
// Make sure we don't exceed maximum number of supported images. This is due to
// using, for example, "byte" for pixelwise image counts in averaging.
if ( functional->GetNumberOfTargetImages() > 255 )
{
cmtk::StdErr << "ERROR: no more than 255 images are supported.\n";
throw cmtk::ExitException( 1 );
}
if ( PreDefinedTemplatePath )
{
cmtk::UniformVolume::SmartPtr templateImage;
if ( UseTemplateData )
{
templateImage = cmtk::UniformVolume::SmartPtr( cmtk::VolumeIO::ReadOriented( PreDefinedTemplatePath ) );
}
else
{
templateImage = cmtk::UniformVolume::SmartPtr( cmtk::VolumeIO::ReadGridOriented( PreDefinedTemplatePath ) );
}
if ( ! templateImage )
{
cmtk::StdErr << "ERROR: could not read template grid/image " << PreDefinedTemplatePath << "\n";
throw cmtk::ExitException( 2 );
}
functional->SetTemplateGrid( templateImage, 0 /*downsample*/, false /*useTemplateData: set this later*/ );
}
// this vector holds the original (not downsampled) images.
std::vector<cmtk::UniformVolume::SmartPtr> imageListOriginal;
functional->GetOriginalTargetImages( imageListOriginal );
cmtk::UniformVolume::SmartPtr originalTemplateGrid = functional->GetTemplateGrid();
if ( HistogramMatching )
{
const cmtk::TypedArray* referenceDataForHistogramMatching = NULL;
bool useTemplateForHistogramMatching = true;
if ( originalTemplateGrid && UseTemplateData )
{
referenceDataForHistogramMatching = originalTemplateGrid->GetData();
}
if ( !referenceDataForHistogramMatching )
{
useTemplateForHistogramMatching = false;
referenceDataForHistogramMatching = imageListOriginal[0]->GetData();
}
if ( referenceDataForHistogramMatching )
{
for ( size_t idx = useTemplateForHistogramMatching?0:1; idx < imageListOriginal.size(); ++idx )
{
imageListOriginal[idx]->GetData()->ApplyFunctionObject( cmtk::TypedArrayFunctionHistogramMatching( *(imageListOriginal[idx]->GetData()), *referenceDataForHistogramMatching ) );
}
}
}
functional->InitializeXforms( GridSpacing, GridSpacingExact ); // must do this before downsampling template grid
functional->SetRepeatIntensityHistogramMatching( RepeatHistogramMatching );
const cmtk::Types::Coordinate FinestGridSpacing = GridSpacing / (1<<RefineTransformationGrid);
if ( DisableControlPointsMaskPath )
{
functional->SetDisableControlPointsMask( cmtk::UniformVolume::SmartConstPtr( cmtk::VolumeIO::Read( DisableControlPointsMaskPath ) ) );
}
const double timeBaselineProcess = cmtk::Timers::GetTimeProcess();
if ( ! DisableOptimization )
{
cmtk::CoordinateVector v;
const int downsampleFrom = std::max( DownsampleFrom, DownsampleTo );
const int downsampleTo = std::min( DownsampleFrom, DownsampleTo );
for ( int downsample = downsampleFrom; (downsample >= downsampleTo) || RefineTransformationGrid; downsample = downsample?downsample/2:-1 )
{
if ( (RefineTransformationGrid > 0) && (downsample != downsampleFrom) )
{
functional->RefineTransformationGrids();
--RefineTransformationGrid;
}
functional->GetParamVector( v );
const int actualDownsample = std::max( downsampleTo, downsample );
functional->SetTemplateGrid( originalTemplateGrid, actualDownsample, UseTemplateData );
cmtk::UniformVolume::SmartPtr templateGrid = functional->GetTemplateGrid();
if ( UseSmoothSigmaFactorPixel )
{
functional->SetGaussianSmoothImagesSigma( SmoothSigmaFactorPixel * templateGrid->GetMinDelta() );
functional->SetTargetImages( imageListOriginal );
}
else
{
if ( UseSmoothSigmaFactorControlPointSpacing )
{
functional->SetGaussianSmoothImagesSigma( SmoothSigmaFactorControlPointSpacing * FinestGridSpacing * (1<<RefineTransformationGrid) );
functional->SetTargetImages( imageListOriginal );
}
}
cmtk::DebugOutput( 1 ).GetStream().printf( "Template grid is %d x %d x %d pixels of size %f x %f x %f\n",
templateGrid->m_Dims[0], templateGrid->m_Dims[1], templateGrid->m_Dims[2],
templateGrid->m_Delta[0], templateGrid->m_Delta[1], templateGrid->m_Delta[2] );
if ( SamplingDensity > 0 )
{
functional->SetProbabilisticSampleDensity( SamplingDensity );
functional->SetProbabilisticSampleUpdatesAfter( 10 );
}
functional->AllocateStorage();
cmtk::BestDirectionOptimizer optimizer( OptimizerStepFactor );
optimizer.SetAggressiveMode( OptimizerAggressive );
optimizer.SetRepeatLevelCount( OptimizerRepeatLevel );
optimizer.SetDeltaFThreshold( OptimizerDeltaFThreshold );
optimizer.SetFunctional( functional );
cmtk::Types::Coordinate exploration = Exploration * templateGrid->GetMinDelta();
cmtk::Types::Coordinate accuracy = Accuracy * templateGrid->GetMinDelta();
if ( (downsample > downsampleTo) || RefineTransformationGrid )
accuracy = std::max<cmtk::Types::Coordinate>( accuracy, .25*exploration );
try
{
// do we have a normal subgroup?
if ( NormalGroupFirstN )
{
// yes: first run normal group by itself
cmtk::StdErr << "Running normal subgroup...\n";
functional->SetForceZeroSum( ForceZeroSum );
functional->SetActiveImagesFromTo( 0, NormalGroupFirstN );
functional->SetActiveXformsFromTo( 0, NormalGroupFirstN );
optimizer.Optimize( v, exploration, accuracy );
// second: run abnormal group, but keep using normal group's data for reference
cmtk::StdErr << "Running diseased subgroup...\n";
functional->SetForceZeroSum( false ); // no point here
functional->SetActiveImagesFromTo( 0, imageListOriginal.size() );
functional->SetActiveXformsFromTo( NormalGroupFirstN, imageListOriginal.size() );
optimizer.Optimize( v, exploration, accuracy );
}
else
{
optimizer.Optimize( v, exploration, accuracy );
}
}
catch ( cmtk::GroupwiseRegistrationFunctionalBase::BadXform )
{
cmtk::StdErr << "FAILED: at least one image has too few pixels in the template area.\n";
return 1;
}
}
}
// determine and print CPU time
const double timeElapsedProcess = cmtk::Timers::GetTimeProcess() - timeBaselineProcess;
cmtk::StdErr.printf( "Process CPU time [s]: %f\n", timeElapsedProcess );
functional->SetTargetImages( imageListOriginal );
functional->SetTemplateGrid( originalTemplateGrid );
cmtk::GroupwiseRegistrationOutput output;
output.SetFunctional( functional );
output.SetOutputRootDirectory( OutputRootDirectory );
output.WriteGroupwiseArchive( OutputArchive );
output.WriteXformsSeparateArchives( OutputStudyListIndividual, AverageImagePath );
output.WriteAverageImage( AverageImagePath, AverageImageInterpolation, cmtk::TYPE_FLOAT, UseTemplateData );
return 0;
}
#include "cmtkSafeMain"
|