File: mcwarp.cxx

package info (click to toggle)
cmtk 3.3.1p2%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,524 kB
  • sloc: cpp: 87,098; ansic: 23,347; sh: 3,896; xml: 1,551; perl: 707; makefile: 334
file content (376 lines) | stat: -rw-r--r-- 14,622 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/*
//
//  Copyright 1997-2009 Torsten Rohlfing
//
//  Copyright 2004-2012 SRI International
//
//  This file is part of the Computational Morphometry Toolkit.
//
//  http://www.nitrc.org/projects/cmtk/
//
//  The Computational Morphometry Toolkit is free software: you can
//  redistribute it and/or modify it under the terms of the GNU General Public
//  License as published by the Free Software Foundation, either version 3 of
//  the License, or (at your option) any later version.
//
//  The Computational Morphometry Toolkit is distributed in the hope that it
//  will be useful, but WITHOUT ANY WARRANTY; without even the implied
//  warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License along
//  with the Computational Morphometry Toolkit.  If not, see
//  <http://www.gnu.org/licenses/>.
//
//  $Revision: 5436 $
//
//  $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
//  $LastChangedBy: torstenrohlfing $
//
*/

#include <cmtkconfig.h>

#include <System/cmtkConsole.h>
#include <System/cmtkDebugOutput.h>
#include <System/cmtkCommandLine.h>
#include <System/cmtkExitException.h>

#include <Base/cmtkUniformVolume.h>
#include <Base/cmtkUniformVolumeInterpolator.h>
#include <Base/cmtkLinearInterpolator.h>
#include <Base/cmtkCubicInterpolator.h>
#include <Base/cmtkUniformVolumeGaussianFilter.h>

#include <Registration/cmtkMultiChannelRMIRegistrationFunctional.h>
#include <Registration/cmtkMultiChannelHistogramRegistrationFunctional.h>
#include <Registration/cmtkAffineMultiChannelRegistrationFunctional.h>
#include <Registration/cmtkSplineWarpMultiChannelRegistrationFunctional.h>
#include <Registration/cmtkSplineWarpMultiChannelIntensityCorrectionRegistrationFunctional.h>

#include <Registration/cmtkBestDirectionOptimizer.h>
#include <Registration/cmtkRegistrationCallback.h>

#include <IO/cmtkClassStreamInput.h>
#include <IO/cmtkClassStreamOutput.h>
#include <IO/cmtkClassStreamMultiChannelRegistration.h>
#include <IO/cmtkVolumeIO.h>

#include <list>
#include <queue>
#include <algorithm>

#ifdef HAVE_STDINT_H
#  include <stdint.h>
#else
typedef long int uint64_t;
#endif

std::list<const char*> fileListRef;
std::list<const char*> fileListFlt;

const char* mcaffineOutput = NULL;
const char* outArchive = NULL;

std::list<cmtk::UniformVolume::SmartPtr> refChannelList;
std::list<cmtk::UniformVolume::SmartPtr> fltChannelList;

cmtk::Types::Coordinate gridSpacing = 40;
bool exactGridSpacing = false;
int gridRefinements = 0;
bool delayGridRefine = false;

bool adaptiveFixEntropy = false;
float adaptiveFixThreshFactor = 0.0;

bool fixWarpX = false;
bool fixWarpY = false;
bool fixWarpZ = false;

float jacobianConstraintWeight = 0.0;

cmtk::Types::Coordinate initialStepSize = 1.0;
cmtk::Types::Coordinate finalStepSize = 0.125;
cmtk::Optimizer::ReturnType optimizerDeltaFThreshold = 0;

bool metricNMI = false;
bool intensityCorrection = false;
bool useHistograms = true;
bool useCubicInterpolation = false;

int downsampleFrom = 1;
int downsampleTo = 1;
bool downsampleWithAverage = false;

float smoothSigmaFactor = 0.0;

cmtk::UniformVolume::SmartPtr
MakeDownsampled( cmtk::UniformVolume::SmartConstPtr& image, const int downsample, const cmtk::Types::Coordinate smoothSigmaFactor )
{
  if ( downsampleWithAverage )
    return cmtk::UniformVolume::SmartPtr( image->GetDownsampled( downsample * image->GetMinDelta() ) );

  cmtk::UniformVolume::SmartPtr result( image->CloneGrid() );

  if ( (smoothSigmaFactor > 0) && downsample )
    {
    const cmtk::Units::GaussianSigma sigma( smoothSigmaFactor * downsample * image->GetMinDelta() );
    result->SetData( cmtk::UniformVolumeGaussianFilter( image ).GetFiltered3D( sigma ) );
    }
  else
    {
    result->SetData( image->GetData() );
    }

  if ( downsample > 1 )
    result = cmtk::UniformVolume::SmartPtr( result->GetDownsampledAndAveraged( downsample, true /*approxIsotropic*/ ) );
  return result;
}

template<class TMetricFunctional>
void
DoRegistration()
{
  typedef cmtk::SplineWarpMultiChannelRegistrationFunctional<TMetricFunctional> FunctionalType;
  typedef cmtk::SplineWarpMultiChannelIntensityCorrectionRegistrationFunctional<TMetricFunctional> ICFunctionalType;
  typename FunctionalType::SmartPtr functional;
  if ( intensityCorrection )
    {
    functional = typename FunctionalType::SmartPtr( new ICFunctionalType );
    }
  else
    {
    functional = typename FunctionalType::SmartPtr( new FunctionalType );
    }
  functional->SetNormalizedMI( metricNMI );  
  functional->SetAdaptiveFixEntropyThreshold( adaptiveFixEntropy );
  functional->SetAdaptiveFixThreshFactor( adaptiveFixThreshFactor );
  functional->SetJacobianConstraintWeight( jacobianConstraintWeight );

  if ( fixWarpX ) functional->AddFixedCoordinateDimension( 0 );
  if ( fixWarpY ) functional->AddFixedCoordinateDimension( 1 );
  if ( fixWarpZ ) functional->AddFixedCoordinateDimension( 2 );

  if ( mcaffineOutput )
    {
    cmtk::AffineMultiChannelRegistrationFunctional<TMetricFunctional> affineFunctional;
    cmtk::ClassStreamInput inStream( mcaffineOutput );
    if ( !inStream.IsValid() )
      {
      cmtk::StdErr << "ERROR: could not open '" << mcaffineOutput << "' for reading.\n";
      throw cmtk::ExitException( 1 );
      }
    inStream >> affineFunctional;
    inStream.Close();

    functional->SetInitialAffineTransformation( affineFunctional.GetTransformation() );
    for ( size_t idx = 0; idx < affineFunctional.GetNumberOfReferenceChannels(); ++idx )
      {
      cmtk::UniformVolume::SmartPtr channel = affineFunctional.GetReferenceChannel(idx);
      refChannelList.push_back( channel );
      }
    for ( size_t idx = 0; idx < affineFunctional.GetNumberOfFloatingChannels(); ++idx )
      {
      cmtk::UniformVolume::SmartPtr channel = affineFunctional.GetFloatingChannel(idx);
      fltChannelList.push_back( channel );
      }
    }

  const cmtk::Vector3D referenceImageDomain = (*refChannelList.begin())->m_Size;

  cmtk::Types::Coordinate minPixelSize = FLT_MAX;
  for ( std::list<cmtk::UniformVolume::SmartPtr>::const_iterator it = refChannelList.begin(); it != refChannelList.end(); ++it )
    {
    minPixelSize = std::min( (*it)->GetMinDelta(), minPixelSize );
    }
  for ( std::list<cmtk::UniformVolume::SmartPtr>::const_iterator it = fltChannelList.begin(); it != fltChannelList.end(); ++it )
    {
    minPixelSize = std::min( (*it)->GetMinDelta(), minPixelSize );
    }
  
  cmtk::BestDirectionOptimizer optimizer;
  optimizer.SetDeltaFThreshold( optimizerDeltaFThreshold );
  optimizer.SetCallback( cmtk::RegistrationCallback::SmartPtr( new cmtk::RegistrationCallback ) );
  optimizer.SetFunctional( functional );

  int gridRefinementsLeft = gridRefinements;
  std::queue<int> refinementSchedule;
  refinementSchedule.push( -1 ); // init marker
  for ( int downsample = std::max(downsampleFrom, downsampleTo); (downsample >= std::min(downsampleFrom,downsampleTo)) || gridRefinementsLeft; )
    {
    int refinementFlags = 0;
    if ( gridRefinementsLeft )
      {
      refinementFlags |= 2;
      --gridRefinementsLeft;
      }

    if ( downsample > downsampleTo )
      {
      refinementFlags |= 1;
      --downsample;
      }

    if ( ! refinementFlags )
      break;

    if ( delayGridRefine && (refinementFlags == 3) )
      {
      refinementSchedule.push( 1 );
      refinementSchedule.push( 2 );
      }
    else
      {
      refinementSchedule.push( refinementFlags );
      }
    }
  refinementSchedule.push( 0 ); // last iteration marker

  cmtk::CoordinateVector params;
  for ( int downsample = downsampleFrom; !refinementSchedule.empty(); refinementSchedule.pop() )
    {
    cmtk::DebugOutput( 1 ) << "Downsampling stage 1:" << downsample << "\n";

    functional->ClearAllChannels();
    if ( (downsample == 0) || ( (downsample==1) && (smoothSigmaFactor==0) ) )
      {
      functional->AddReferenceChannels( refChannelList.begin(), refChannelList.end() );
      functional->AddFloatingChannels( fltChannelList.begin(), fltChannelList.end() );
      }
    else
      {
      for ( std::list<cmtk::UniformVolume::SmartPtr>::iterator it = refChannelList.begin(); it != refChannelList.end(); ++it )
	{
	cmtk::UniformVolume::SmartPtr image = MakeDownsampled( (*it), downsample, smoothSigmaFactor );
	image->CopyMetaInfo( **it, cmtk::META_FS_PATH );
	functional->AddReferenceChannel( image );
	}

      for ( std::list<cmtk::UniformVolume::SmartPtr>::iterator it = fltChannelList.begin(); it != fltChannelList.end(); ++it )
	{
	cmtk::UniformVolume::SmartPtr image = MakeDownsampled( (*it), downsample, smoothSigmaFactor );
	image->CopyMetaInfo( **it, cmtk::META_FS_PATH );
	functional->AddFloatingChannel( image );
	}
      }

    if ( refinementSchedule.front() == -1 )
      {
      functional->InitTransformation( referenceImageDomain, gridSpacing, exactGridSpacing );
      functional->GetParamVector( params );
      refinementSchedule.pop();
      }
    
    cmtk::DebugOutput( 1 ) << "Number of parameters is" << functional->VariableParamVectorDim() << "\n";
    
    if ( optimizer.Optimize( params, initialStepSize * downsample * minPixelSize, finalStepSize * downsample * minPixelSize )!= cmtk::CALLBACK_OK )
      break;
    
    if ( refinementSchedule.front() & 1 )
      {
      --downsample;
      }

    if ( refinementSchedule.front() & 2 )
      {
      functional->RefineTransformation();
      functional->GetParamVector( params );
      }
    }
  
  if ( outArchive )
    {
    cmtk::ClassStreamOutput stream( outArchive, cmtk::ClassStreamOutput::MODE_WRITE_ZLIB );
    stream << *functional;
    stream.Close();
    }
}

int
doMain( const int argc, const char* argv[] ) 
{
  try 
    {
    cmtk::CommandLine cl;
    cl.SetProgramInfo( cmtk::CommandLine::PRG_TITLE, "Multi-channel nonrigid registration" );
    cl.SetProgramInfo( cmtk::CommandLine::PRG_DESCR, "Multi-channel nonrigid B-spline image registration using histogram-based or covariance-based joint entropy measures" );
    cl.SetProgramInfo( cmtk::CommandLine::PRG_SYNTX, "mcwarp [options] mcaffineOutput" );    
    cl.SetProgramInfo( cmtk::CommandLine::PRG_CATEG, "CMTK.Image Registration" );

    typedef cmtk::CommandLine::Key Key;
    cl.AddOption( Key( 'o', "out-archive" ), &outArchive, "Output archive path." );

    cl.AddOption( Key( 'd', "downsample-from" ), &downsampleFrom, "Initial downsampling factor [1]." );
    cl.AddOption( Key( 'D', "downsample-to" ), &downsampleTo, "Final downsampling factor [1]." );
    cl.AddOption( Key( "downsample-average" ), &downsampleWithAverage, "Downsample using sliding-window averaging [default: off] )" );
    cl.AddOption( Key( "smooth" ), &smoothSigmaFactor, "Sigma of Gaussian smoothing kernel in multiples of template image pixel size [default: off] )" );

    cl.AddOption( Key( "grid-spacing" ), &gridSpacing, "Initial control point grid spacing in mm." );
    cl.AddOption( Key( "grid-spacing-exact" ), &gridSpacing, "Exact initial grid spacing, even if it doesn't match image FOV.", &exactGridSpacing );
    cl.AddOption( Key( "refine-grid" ), &gridRefinements, "Number of control point grid refinements." );
    cl.AddSwitch( Key( "delay-refine-grid" ), &delayGridRefine, true, "Delay control point grid refinement until after pixel refinement." );
    cl.AddOption( Key( "adaptive-fix-thresh-factor" ), &adaptiveFixThreshFactor, "Intensity threshold factor [0..1] for adaptive parameter fixing. [default: 0 -- no fixing]" );
    cl.AddOption( Key( "adaptive-fix-thresh-factor-entropy" ), &adaptiveFixThreshFactor, "Entropy threshold factor [0..1] for adaptive parameter fixing. [default: 0 -- no fixing]", &adaptiveFixEntropy );

    cl.AddSwitch( Key( "fix-warp-x" ), &fixWarpX, true, "Fix transformation (do not warp) in x-direction." );
    cl.AddSwitch( Key( "fix-warp-y" ), &fixWarpY, true, "Fix transformation (do not warp) in y-direction." );
    cl.AddSwitch( Key( "fix-warp-z" ), &fixWarpZ, true, "Fix transformation (do not warp) in z-direction." );

    cl.AddOption( Key( "jacobian-constraint-weight" ), &jacobianConstraintWeight, "Weight for Jacobian volume preservation constraint" );

    cl.AddSwitch( Key( 'H', "histograms" ), &useHistograms, true, "Use multi-dimensional histograms to compute entropies [default." );
    cl.AddSwitch( Key( 'C', "covariance" ), &useHistograms, false, "Use covariance matrix determinants to compute entropies." );
    cl.AddSwitch( Key( 'c', "cubic" ), &useCubicInterpolation, true, "Use cubic interpolation [default: linear]" );

    cl.AddSwitch( Key( "mi" ), &metricNMI, false, "Use standard mutual information metric [default]" );
    cl.AddSwitch( Key( "nmi" ), &metricNMI, true, "Use normalized mutual information metric" );
    cl.AddSwitch( Key( 'I', "intensity-correction" ), &intensityCorrection, true, "Correct image intensities using local transformation Jacobian to preserve total signal" );
    
    cl.AddOption( Key( "initial-step-size" ), &initialStepSize, "Initial optimizer step size in pixels." );
    cl.AddOption( Key( "final-step-size" ), &finalStepSize, "Initial optimizer step size in pixels." );
    cl.AddOption( Key( "delta-f-threshold" ), &optimizerDeltaFThreshold, "Optional threshold to terminate optimization (level) if relative change of target function drops below this value." );

    cl.Parse( argc, argv );

    mcaffineOutput = cl.GetNext();
    }
  catch ( const cmtk::CommandLine::Exception& e ) 
    {
    cmtk::StdErr << e << "\n";
    throw cmtk::ExitException( 1 );
    }

  if ( useCubicInterpolation )
    {
    typedef cmtk::UniformVolumeInterpolator<cmtk::Interpolators::Cubic> InterpolatorType;
    if ( useHistograms )
      {
      typedef cmtk::MultiChannelHistogramRegistrationFunctional<float,InterpolatorType,uint64_t,6> MetricFunctionalType;
      DoRegistration<MetricFunctionalType>();
      }
    else
      {
      typedef cmtk::MultiChannelRMIRegistrationFunctional<float> MetricFunctionalType;
      DoRegistration<MetricFunctionalType>();
      }
    }
  else
    {
    typedef cmtk::UniformVolumeInterpolator<cmtk::Interpolators::Linear> InterpolatorType;
    if ( useHistograms )
      {
      typedef cmtk::MultiChannelHistogramRegistrationFunctional<float,InterpolatorType,uint64_t,6> MetricFunctionalType;
      DoRegistration<MetricFunctionalType>();
      }
    else
      {
      typedef cmtk::MultiChannelRMIRegistrationFunctional<float> MetricFunctionalType;
      DoRegistration<MetricFunctionalType>();
      }
    }

  return 0;
}

#include "cmtkSafeMain"