1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2013 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include <cmtkconfig.h>
#include <System/cmtkCommandLine.h>
#include <System/cmtkDebugOutput.h>
#include <System/cmtkExitException.h>
#include <System/cmtkConsole.h>
#include <System/cmtkProgressConsole.h>
#include <Base/cmtkUniformVolume.h>
#include <Base/cmtkTypedArrayNoiseEstimatorNaiveGaussian.h>
#include <Base/cmtkHistogramOtsuThreshold.h>
#include <IO/cmtkVolumeIO.h>
#include <Registration/cmtkBestDirectionOptimizer.h>
#include <GPU/cmtkEntropyMinimizationIntensityCorrectionFunctionalDevice.h>
#include <math.h>
#include <vector>
#include <algorithm>
#ifdef CMTK_USE_SQLITE
# include <Registration/cmtkImageXformDB.h>
#endif
std::string FNameBiasFieldAdd;
std::string FNameBiasFieldMul;
cmtk::Types::DataItem PaddingValue = 0;
bool PaddingFlag = false;
float ThresholdForegroundMin = -FLT_MAX;
float ThresholdForegroundMax = FLT_MAX;
bool ThresholdForegroundFlag = false;
bool ThresholdAuto = false;
int ThresholdOtsuNBins = 0;
std::string FNameMaskImage;
bool UseSamplingDensity = false;
float SamplingDensity = 1.0;
unsigned int NumberOfHistogramBins = 256;
std::string FNameInputImage;
std::string FNameOutputImage;
bool OutputFloatImage = false;
int PolynomialDegreeAdd = 0;
int PolynomialDegreeMul = 2;
bool IncrementalPolynomials = false;
cmtk::Types::Coordinate StepMax = 1.0;
cmtk::Types::Coordinate StepMin = 0.1;
bool LogIntensities = false;
#ifdef CMTK_USE_SQLITE
std::string updateDB;
#endif
int
doMain( const int argc, const char *argv[] )
{
try
{
cmtk::CommandLine cl( cmtk::CommandLine::PROPS_XML );
cl.SetProgramInfo( cmtk::CommandLine::PRG_TITLE, "MR Image Intensity Bias Field Correction on GPU using CUDA" );
cl.SetProgramInfo( cmtk::CommandLine::PRG_DESCR, "This program corrects intensity inhomogeneity artifacts in MR images using a bias field estimated via entropy minimization using GPU-accelerated computation." );
cl.SetProgramInfo( cmtk::CommandLine::PRG_CATEG, "CMTK.Artifact Correction" );
typedef cmtk::CommandLine::Key Key;
cl.BeginGroup( "Bias Field", "Bias Field Parameterization" );
cl.AddOption( Key( 'A', "degree-add" ), &PolynomialDegreeAdd, "Polynomial degree for additive correction." );
cl.AddOption( Key( 'M', "degree-mul" ), &PolynomialDegreeMul, "Polynomial degree for multiplicative correction." );
cl.AddSwitch( Key( 'I', "incremental" ), &IncrementalPolynomials, true, "Incrementally increase polynomial degrees." );
cl.EndGroup();
cl.BeginGroup( "Preprocessing", "Input Image Preprocessing" );
cl.AddOption( Key( "set-padding-value" ), &PaddingValue, "Set padding value for input intensity image. Pixels with this value will be ignored.", &PaddingFlag );
cl.AddOption( Key( 'm', "mask" ), &FNameMaskImage, "Binary mask image filename." )->SetProperties( cmtk::CommandLine::PROPS_IMAGE | cmtk::CommandLine::PROPS_LABELS );
cl.AddOption( Key( 't', "thresh-min" ), &ThresholdForegroundMin, "Minimum intensity threshold for image foreground.", &ThresholdForegroundFlag );
cl.AddOption( Key( 'T', "thresh-max" ), &ThresholdForegroundMax, "Minimum intensity threshold for image foreground.", &ThresholdForegroundFlag );
cl.AddSwitch( Key( "thresh-auto" ), &ThresholdAuto, true, "Automatic minimum intensity threshold selection for image foreground using an estimate of image noise level." );
cl.AddOption( Key( "thresh-otsu-nbins" ), &ThresholdOtsuNBins, "If this is a positive integer, use automatic minimum intensity threshold selection for image foreground by Otsu thresholding with given number of histogram bins." );
cl.EndGroup();
cl.BeginGroup( "Entropy Estimation", "Entropy Estimation Settings" )->SetProperties( cmtk::CommandLine::PROPS_ADVANCED );
cl.AddSwitch( Key( 'L', "log-intensities" ), &LogIntensities, true, "Use log intensities for entropy estimation." );
cl.AddOption( Key( 's', "sampling-density" ), &SamplingDensity, "Image sampling density to use only subset of image pixels", &UseSamplingDensity );
cl.AddOption( Key( 'n', "num-bins" ), &NumberOfHistogramBins, "Number of histogram bins for entropy estimation" );
cl.EndGroup();
cl.BeginGroup( "Optimization", "Optimization Algorithm Settings" )->SetProperties( cmtk::CommandLine::PROPS_ADVANCED );;
cl.AddOption( Key( "step-max" ), &StepMax, "Maximum (initial) search step size." );
cl.AddOption( Key( "step-min" ), &StepMin, "Minimum (final) search step size." );
cl.EndGroup();
cl.BeginGroup( "Output", "Output Options" )->SetProperties( cmtk::CommandLine::PROPS_ADVANCED );;
cl.AddOption( Key( "write-bias-add" ), &FNameBiasFieldAdd, "File name for output of additive bias field." )->SetProperties( cmtk::CommandLine::PROPS_IMAGE | cmtk::CommandLine::PROPS_OUTPUT );
cl.AddOption( Key( "write-bias-mul" ), &FNameBiasFieldMul, "File name for output of multiplicative bias field." )->SetProperties( cmtk::CommandLine::PROPS_IMAGE | cmtk::CommandLine::PROPS_OUTPUT );
cl.AddSwitch( Key( 'F', "write-float" ), &OutputFloatImage, true, "Write output image with floating point pixel data. If this is not given, the input data type is used." );
cl.EndGroup();
#ifdef CMTK_USE_SQLITE
cl.BeginGroup( "Database", "Image/Transformation Database" );
cl.AddOption( Key( "db" ), &updateDB, "Path to image/transformation database that should be updated with the newly created image." );
cl.EndGroup();
#endif
cl.AddParameter( &FNameInputImage, "InputImage", "Input image path" )->SetProperties( cmtk::CommandLine::PROPS_IMAGE );
cl.AddParameter( &FNameOutputImage, "OutputImage", "Output image path" )->SetProperties( cmtk::CommandLine::PROPS_IMAGE | cmtk::CommandLine::PROPS_OUTPUT );
cl.Parse( argc, argv );
}
catch ( const cmtk::CommandLine::Exception& e )
{
cmtk::StdErr << e << "\n";
throw cmtk::ExitException( 1 );
}
// Instantiate programm progress indicator.
cmtk::ProgressConsole progressIndicator( "Intensity Bias Field Correction" );
cmtk::UniformVolume::SmartPtr inputImage( cmtk::VolumeIO::ReadOriented( FNameInputImage ) );
if ( ! inputImage || ! inputImage->GetData() )
{
cmtk::StdErr << "ERROR: Could not read input image " << FNameInputImage << "\n";
throw cmtk::ExitException( 1 );
}
if ( PaddingFlag )
{
inputImage->GetData()->SetPaddingValue( PaddingValue );
}
cmtk::UniformVolume::SmartPtr maskImage;
if ( !FNameMaskImage.empty() )
{
maskImage = cmtk::UniformVolume::SmartPtr( cmtk::VolumeIO::ReadOriented( FNameMaskImage ) );
if ( ! maskImage || ! maskImage->GetData() )
{
cmtk::StdErr << "ERROR: Could not read mask image " << FNameMaskImage << "\n";
throw cmtk::ExitException( 1 );
}
}
else
{
if ( ThresholdAuto )
{
ThresholdForegroundMin = static_cast<float>( cmtk::TypedArrayNoiseEstimatorNaiveGaussian( *(inputImage->GetData()) ).GetNoiseThreshold() );
ThresholdForegroundFlag = true;
cmtk::DebugOutput( 1 ) << "INFO: estimated foreground threshold from noise level as " << ThresholdForegroundMin << "\n";
}
if ( ThresholdOtsuNBins > 0 )
{
ThresholdForegroundMin = static_cast<float>( cmtk::HistogramOtsuThreshold< cmtk::Histogram<unsigned int> >( *(inputImage->GetData()->GetHistogram( ThresholdOtsuNBins )) ).Get() );
ThresholdForegroundFlag = true;
cmtk::DebugOutput( 1 ) << "INFO: Otsu thresholding at " << ThresholdForegroundMin << "\n";
}
if ( ThresholdForegroundFlag )
{
maskImage = cmtk::UniformVolume::SmartPtr( inputImage->Clone( true /*copyData*/ ) );
maskImage->GetData()->SetPaddingValue( 0.0 );
maskImage->GetData()->ThresholdToPadding( cmtk::Types::DataItemRange( ThresholdForegroundMin, ThresholdForegroundMax ) );
}
}
typedef cmtk::EntropyMinimizationIntensityCorrectionFunctionalBase::SmartPtr FunctionalPointer;
FunctionalPointer functional( NULL );
cmtk::UniformVolume::SmartPtr outputImage;
cmtk::CoordinateVector v;
size_t polynomialDegreeFrom = std::max( PolynomialDegreeAdd, PolynomialDegreeMul );
const size_t polynomialDegreeTo = polynomialDegreeFrom + 1;
if ( IncrementalPolynomials )
polynomialDegreeFrom = 1;
for ( size_t polynomialDegree = polynomialDegreeFrom; polynomialDegree < polynomialDegreeTo; ++polynomialDegree )
{
const size_t degreeAdd = std::min<size_t>( polynomialDegree, PolynomialDegreeAdd );
const size_t degreeMul = std::min<size_t>( polynomialDegree, PolynomialDegreeMul );
functional = cmtk::CreateEntropyMinimizationIntensityCorrectionFunctionalDevice( degreeAdd, degreeMul, functional );
functional->SetUseLogIntensities( LogIntensities );
if ( SamplingDensity > 0 )
functional->SetSamplingDensity( SamplingDensity );
if ( NumberOfHistogramBins )
functional->SetNumberOfHistogramBins( NumberOfHistogramBins );
functional->SetInputImage( inputImage );
if ( maskImage && maskImage->GetData() )
{
functional->SetForegroundMask( *maskImage );
}
else
{
cmtk::StdErr << "ERROR: please use a mask image. Seriously.\n";
throw cmtk::ExitException( 1 );
}
functional->GetParamVector( v );
cmtk::DebugOutput( 1 ).GetStream().printf( "Estimating bias field with order %u multiplicative / %u additive polynomials.\nNumber of parameters: %d\n", degreeMul, degreeAdd, v.Dim );
if ( (PolynomialDegreeAdd > 0) || (PolynomialDegreeMul > 0) )
{
try
{
cmtk::Optimizer::SmartPtr optimizer;
optimizer = cmtk::Optimizer::SmartPtr( new cmtk::BestDirectionOptimizer );
optimizer->SetFunctional( functional );
optimizer->Optimize( v, StepMax, StepMin );
}
catch ( const char* cp )
{
cmtk::StdErr << "EXCEPTION: " << cp << "\n";
}
v.Print();
}
}
// make sure everything is according to optimum parameters
outputImage = functional->GetOutputImage( v, false/*foregroundOnly*/ );
if ( !FNameOutputImage.empty() )
{
if ( ! OutputFloatImage )
{
outputImage->GetData()->ReplacePaddingData( 0.0 );
cmtk::TypedArray::SmartPtr convertedData( outputImage->GetData()->Convert( inputImage->GetData()->GetType() ) );
outputImage->SetData( convertedData );
}
cmtk::VolumeIO::Write( *outputImage, FNameOutputImage );
#ifdef CMTK_USE_SQLITE
if ( !updateDB.empty() )
{
try
{
cmtk::ImageXformDB db( updateDB );
db.AddImage( FNameOutputImage, FNameInputImage );
}
catch ( const cmtk::SQLite::Exception& ex )
{
cmtk::StdErr << "ERROR: updating SQLite database failed - " << ex.what() << "\n";
}
}
#endif
}
if ( PolynomialDegreeAdd && !FNameBiasFieldAdd.empty() )
{
cmtk::UniformVolume::SmartPtr biasField( functional->GetBiasFieldAdd( true /*completeImage*/ ) );
cmtk::VolumeIO::Write( *biasField, FNameBiasFieldAdd );
#ifdef CMTK_USE_SQLITE
if ( !updateDB.empty() )
{
try
{
cmtk::ImageXformDB db( updateDB );
db.AddImage( FNameBiasFieldAdd, FNameInputImage );
}
catch ( const cmtk::SQLite::Exception& ex )
{
cmtk::StdErr << "ERROR: updating SQLite database failed - " << ex.what() << "\n";
}
}
#endif
}
if ( PolynomialDegreeMul && !FNameBiasFieldMul.empty() )
{
cmtk::UniformVolume::SmartPtr biasField( functional->GetBiasFieldMul( true /*completeImage*/ ) );
cmtk::VolumeIO::Write( *biasField, FNameBiasFieldMul );
#ifdef CMTK_USE_SQLITE
if ( !updateDB.empty() )
{
try
{
cmtk::ImageXformDB db( updateDB );
db.AddImage( FNameBiasFieldMul, FNameInputImage );
}
catch ( const cmtk::SQLite::Exception& ex )
{
cmtk::StdErr << "ERROR: updating SQLite database failed - " << ex.what() << "\n";
}
}
#endif
}
return 0;
}
#include "cmtkSafeMain"
|