1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2013 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include <cmtkconfig.h>
#include <System/cmtkCommandLine.h>
#include <System/cmtkExitException.h>
#include <System/cmtkConsole.h>
#include <IO/cmtkClassStreamOutput.h>
#include <IO/cmtkClassStreamAffineXform.h>
#include <Base/cmtkUniformVolume.h>
#include <IO/cmtkVolumeIO.h>
std::string InputFilePath;
std::string OutputFilePath;
std::string OutputXformPath;
int Axis = cmtk::AXIS_Z;
int Factor = 2;
bool Padded = false;
int
doMain( const int argc, const char* argv[] )
{
try
{
cmtk::CommandLine cl;
cl.SetProgramInfo( cmtk::CommandLine::PRG_TITLE, "Split images" );
cl.SetProgramInfo( cmtk::CommandLine::PRG_DESCR, "Split volume image into sub-images, i.e., to separate interleaved images into passes" );
typedef cmtk::CommandLine::Key Key;
cl.BeginGroup( "Orientation", "Orientation Options" );
cmtk::CommandLine::EnumGroup<int>::SmartPtr
interleaveGroup = cl.AddEnum( "slice-orientation", &Axis, "Define slice axis for splitting." );
interleaveGroup->AddSwitch( Key( 'a', "axial" ), (int)cmtk::AXIS_Z, "Interleaved axial images" );
interleaveGroup->AddSwitch( Key( 's', "sagittal" ),(int)cmtk::AXIS_X, "Interleaved sagittal images" );
interleaveGroup->AddSwitch( Key( 'c', "coronal" ), (int)cmtk::AXIS_Y, "Interleaved coronal images" );
interleaveGroup->AddSwitch( Key( 'x', "interleave-x" ), (int)cmtk::AXIS_X, "Interleaved along x axis" );
interleaveGroup->AddSwitch( Key( 'y', "interleave-y" ), (int)cmtk::AXIS_Y, "Interleaved along y axis" );
interleaveGroup->AddSwitch( Key( 'z', "interleave-z" ), (int)cmtk::AXIS_Z, "Interleaved along z axis" );
cl.EndGroup();
cl.BeginGroup( "Splitting", "Splitting Options" );
cl.AddOption( Key( 'f', "factor" ), &Factor, "Interleave factor. This is the number of subimages generated. If this is set to zero, a separate 2D output image is generated for each slice in the input "
"(in the given slice orientation)." );
cl.EndGroup();
cl.BeginGroup( "Output", "Output Options" );
cl.AddSwitch( Key( 'p', "padded" ), &Padded, true, "Padded output, i.e., fill in removed slices" );
cl.AddOption( Key( "output-xform-path" ), &OutputXformPath, "Optional path template (fprintf-style) for output affine transformation that maps input image coordinates to each output image." );
cl.EndGroup();
cl.AddParameter( &InputFilePath, "InputImage", "Input image path" )->SetProperties( cmtk::CommandLine::PROPS_IMAGE );
cl.AddParameter( &OutputFilePath, "OutputImagePattern", "Output image path pattern. Use '%d' to substitute subimage index." )->SetProperties( cmtk::CommandLine::PROPS_IMAGE | cmtk::CommandLine::PROPS_OUTPUT );
cl.Parse( argc, argv );
}
catch ( const cmtk::CommandLine::Exception& e )
{
cmtk::StdErr << e << "\n";
return 1;
}
cmtk::UniformVolume::SmartPtr volume( cmtk::VolumeIO::ReadOriented( InputFilePath ) );
// if Factor is zero, set to number of slices and generate 2D output images.
if ( Factor == 0 )
Factor = volume->m_Dims[Axis];
for ( int i = 0; i < Factor; ++i )
{
cmtk::UniformVolume::SmartPtr subvolume( Padded ? volume->GetInterleavedPaddedSubVolume( Axis, Factor, i ) : volume->GetInterleavedSubVolume( Axis, Factor, i ) );
char path[PATH_MAX];
if ( snprintf( path, PATH_MAX, OutputFilePath.c_str(), i ) > PATH_MAX )
{
cmtk::StdErr << "ERROR: output path exceeds maximum path length\n";
}
else
{
cmtk::VolumeIO::Write( *subvolume, path );
}
if ( !OutputXformPath.empty() )
{
if ( snprintf( path, PATH_MAX, OutputXformPath.c_str(), i ) > PATH_MAX )
{
cmtk::StdErr << "ERROR: output path exceeds maximum path length\n";
}
cmtk::AffineXform xform;
cmtk::Types::Coordinate xlate[3] = {0,0,0};
xlate[Axis] = -i * volume->m_Delta[Axis];
try
{
xform.SetXlate( xlate );
}
catch ( const cmtk::AffineXform::MatrixType::SingularMatrixException& ex )
{
cmtk::StdErr << "ERROR: singular matrix in cmtk::AffineXform::SetXlate()\n";
throw cmtk::ExitException( 1 );
}
cmtk::ClassStreamOutput stream( path, cmtk::ClassStreamOutput::MODE_WRITE );
if ( stream.IsValid() )
{
stream << xform;
stream.Close();
}
}
}
return 0;
}
#include "cmtkSafeMain"
|