1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2014 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include <cmtkconfig.h>
#include <System/cmtkCommandLine.h>
#include <System/cmtkExitException.h>
#include <System/cmtkConsole.h>
#include <System/cmtkStrUtility.h>
#include <IO/cmtkVolumeIO.h>
#include <vector>
#include <map>
#include <string>
#include <fstream>
#include <sstream>
int
doMain
( const int argc, const char *argv[] )
{
std::string regionsImagePath;
std::string labelsFilePath;
double pscaleFactor = 1;
std::string pscaleImagePath;
std::string outputFilePath;
std::string densityLabels;
std::vector<std::string> densityImagePaths;
cmtk::Types::DataItem normalizeDensities = 1.0;
try
{
cmtk::CommandLine cl;
cl.SetProgramInfo( cmtk::CommandLine::PRG_TITLE, "Compute regional volumes and write to CSV file." );
cl.SetProgramInfo( cmtk::CommandLine::PRG_DESCR, "This tool computes the volumes of regions in a label image. "
"It optionally accepts density maps (e.g., for different tissues) and computes and prints the per-region content for each. "
"Also, the tool can accept an optional 'pixel volume' map to account for local pixel volume variations, e.g., due to spatial distortion." );
cl.AddParameter( ®ionsImagePath, "RegionsImage", "Image of labeled regions." )->SetProperties( cmtk::CommandLine::PROPS_IMAGE );
cl.AddParameterVector( &densityImagePaths, "DensityImages", "List of density images. For each image given here, the total density per region is computed for each label in the regions image.")
->SetProperties( cmtk::CommandLine::PROPS_IMAGE | cmtk::CommandLine::PROPS_OPTIONAL );
typedef cmtk::CommandLine::Key Key;
cl.BeginGroup( "input", "Input Options" );
cl.AddOption( Key( "normalize-densities" ), &normalizeDensities, "Optional normalization factor for density images. Typically, the values in the density images should be in the range 0..1, but often such images are scaled to "
"different ranges to accomodate storage as integers. If, for example, densities are stored as values 0..255, set this paramater to 255." );
cl.AddOption( Key( "labels-file" ), &labelsFilePath, "If provided, this text file contains names for all labels in the regions image. These names are then used to label the rows of the CSV output." );
cl.EndGroup();
cl.BeginGroup( "correct", "Correction Options" );
cl.AddOption( Key( "pixel-scale-factor" ), &pscaleFactor, "If provided, this global scale factor is applied to all pixel volumes to compensate for deviations between world and image scale." );
cl.AddOption( Key( "pixel-scale-image" ), &pscaleImagePath, "If provided, this volume contains scale factors for the volume of each pixel. This is typically the Jacobian determinant map of a spatial unwarping deformation." )
->SetProperties( cmtk::CommandLine::PROPS_IMAGE );
cl.EndGroup();
cl.BeginGroup( "output", "Output Options" );
cl.AddOption( Key( "density-labels" ), &densityLabels, "This option can be used to provide labels for the density maps, which are used as column labels in the output. "
"Labels must be separated by commas and must not contain any unescaped spaces." );
cl.AddOption( Key( 'o', "output" ), &outputFilePath, "If provided, program output is written to this file. If not provided, output is written to the STDOUT stream." );
cl.EndGroup();
cl.Parse( argc, argv );
}
catch ( const cmtk::CommandLine::Exception& e )
{
cmtk::StdErr << e << "\n";
throw cmtk::ExitException( 1 );
}
// read ROI image
cmtk::UniformVolume::SmartConstPtr regionsImage( cmtk::VolumeIO::ReadOriented( regionsImagePath ) );
if ( ! regionsImage )
{
cmtk::StdErr << "ERROR: could not read regions image " << regionsImagePath << "\n";
throw cmtk::ExitException( 1 );
}
// read optional label name text file
std::map<size_t, std::string> labelToNameMap;
if ( !labelsFilePath.empty() )
{
std::ifstream labelsFile( labelsFilePath.c_str() );
if ( !labelsFile.good() )
{
cmtk::StdErr << "ERROR: could not read label file " << labelsFilePath << "\n";
throw cmtk::ExitException( 1 );
}
size_t idx;
std::string name;
std::string restOfLine;
while ( ! labelsFile.eof() )
{
labelsFile >> idx >> name;
labelToNameMap[idx] = name;
std::getline( labelsFile, restOfLine );
}
}
// read optional pixel volume scale image
cmtk::UniformVolume::SmartPtr pscaleImage;
if ( !pscaleImagePath.empty() )
{
pscaleImage = cmtk::VolumeIO::ReadOriented( pscaleImagePath );
if ( ! pscaleImage )
{
cmtk::StdErr << "ERROR: could not read pixel volume image " << pscaleImagePath << "\n";
throw cmtk::ExitException( 1 );
}
if ( ! regionsImage->GridMatches( *pscaleImage ) )
{
cmtk::StdErr << "ERROR: grid of pixel volume image " << pscaleImagePath << " does not match that of the regions image.\n";
throw cmtk::ExitException( 1 );
}
}
// read optional density images
std::vector<cmtk::UniformVolume::SmartConstPtr> densityImages;
for ( size_t idx = 0; idx < densityImagePaths.size(); ++idx )
{
cmtk::UniformVolume::SmartPtr nextImage( cmtk::VolumeIO::ReadOriented( densityImagePaths[idx] ) );
if ( ! nextImage )
{
cmtk::StdErr << "ERROR: could not read density image " << densityImagePaths[idx] << "\n";
throw cmtk::ExitException( 1 );
}
if ( ! regionsImage->GridMatches( *nextImage ) )
{
cmtk::StdErr << "ERROR: grid of density image " << densityImagePaths[idx] << " does not match that of the regions image.\n";
throw cmtk::ExitException( 1 );
}
if ( normalizeDensities != 1.0 )
nextImage->GetData()->Rescale( 1.0 / normalizeDensities );
densityImages.push_back( nextImage );
}
// parse optional density labels for output columns
std::vector<std::string> densityLabelsVector;
if ( densityLabels.empty() )
{
for ( size_t midx = 0; midx < densityImages.size(); ++midx )
{
std::ostringstream strm;
strm << "density" << midx;
densityLabelsVector.push_back( strm.str() );
}
}
else
{
densityLabelsVector = cmtk::StrSplit( densityLabels, "," );
}
// make sure we have exactly one label per column
if ( densityLabelsVector.size() != densityImages.size() )
{
cmtk::StdErr << "ERROR: must provide exactly one density label per density image (identified " << densityLabelsVector.size() << " labels for " << densityImages.size() << " images)\n";
throw cmtk::ExitException();
}
// compute pixel volume
const cmtk::Types::Coordinate pixelVolumeRegionsImage = regionsImage->m_Delta.Product();
// compute number of labels in the ROI image
const size_t maxLabel = std::max( 1, static_cast<int>( regionsImage->GetData()->GetRange().m_UpperBound ) );
std::vector<cmtk::Types::Coordinate> regionVolumes( 1+maxLabel, 0.0 );
// prepare vector for volume per label and density map
std::vector< std::vector<cmtk::Types::Coordinate> > regionDensities( densityImages.size() );
for ( size_t midx = 0; midx < densityImages.size(); ++midx )
{
regionDensities[midx].resize( 1+maxLabel, 0.0 );
}
// go over all pixels and count/compound volumes
for ( size_t px = 0; px < regionsImage->GetNumberOfPixels(); ++px )
{
const size_t label = std::min<size_t>( maxLabel, std::max( 0, static_cast<int>( regionsImage->GetDataAt( px ) ) ) );
// get size for this pixel and scale, depending on whether we have a per-pixel map or not.
cmtk::Types::Coordinate pixelVolume = pixelVolumeRegionsImage * pscaleFactor;
if ( pscaleImage )
pixelVolume *= pscaleImage->GetDataAt( px );
regionVolumes[label] += pixelVolume;
for ( size_t midx = 0; midx < densityImages.size(); ++midx )
{
regionDensities[midx][label] += pixelVolume * densityImages[midx]->GetDataAt( px );
}
}
// select either output file or standard output
std::ofstream outputFile;
std::ostream& output = !outputFilePath.empty() ? outputFile.open( outputFilePath.c_str(), std::ios::out), outputFile : std::cout;
// write column labels
output << "label,volume";
for ( size_t midx = 0; midx < densityImages.size(); ++midx )
{
output << "," << densityLabelsVector[midx];
}
output << "\n";
// write rows with label volumes
for ( size_t label = 0; label <= maxLabel; ++label )
{
if ( !labelsFilePath.empty() )
{
std::map<size_t, std::string>::const_iterator it = labelToNameMap.find( label );
if ( it == labelToNameMap.end() )
continue;
output << "\"" << it->second << "\"";
}
else
{
output << label;
}
output << "," << regionVolumes[label];
for ( size_t midx = 0; midx < densityImages.size(); ++midx )
{
output << "," << regionDensities[midx][label];
}
output << "\n";
}
return 0;
}
#include "cmtkSafeMain"
|