File: volume_injection.cxx

package info (click to toggle)
cmtk 3.3.1p2%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,524 kB
  • sloc: cpp: 87,098; ansic: 23,347; sh: 3,896; xml: 1,551; perl: 707; makefile: 334
file content (332 lines) | stat: -rw-r--r-- 12,461 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*
//
//  Copyright 1997-2009 Torsten Rohlfing
//
//  Copyright 2004-2014 SRI International
//
//  This file is part of the Computational Morphometry Toolkit.
//
//  http://www.nitrc.org/projects/cmtk/
//
//  The Computational Morphometry Toolkit is free software: you can
//  redistribute it and/or modify it under the terms of the GNU General Public
//  License as published by the Free Software Foundation, either version 3 of
//  the License, or (at your option) any later version.
//
//  The Computational Morphometry Toolkit is distributed in the hope that it
//  will be useful, but WITHOUT ANY WARRANTY; without even the implied
//  warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License along
//  with the Computational Morphometry Toolkit.  If not, see
//  <http://www.gnu.org/licenses/>.
//
//  $Revision: 5436 $
//
//  $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
//  $LastChangedBy: torstenrohlfing $
//
*/

#include <cmtkconfig.h>

#include <System/cmtkCommandLine.h>
#include <System/cmtkConsole.h>
#include <System/cmtkDebugOutput.h>

#include <Base/cmtkUniformVolume.h>
#include <Base/cmtkVector3D.h>
#include <Base/cmtkTransformChangeFromSpaceAffine.h>

#include <Registration/cmtkAffineRegistration.h>
#include <Registration/cmtkProtocolCallback.h>

#include <Recon/cmtkVolumeInjectionReconstruction.h>

#include <IO/cmtkXformIO.h>
#include <IO/cmtkVolumeIO.h>

#include <algorithm>
#include <map>
#include <vector>

const char* ReconstructionGridPath = NULL;
bool ExcludeFirstImage = false;

std::vector<const char*> XformPaths;
std::vector<const char*> ImagePaths;

std::vector<cmtk::Xform::SmartPtr> Xforms;
std::vector<cmtk::UniformVolume::SmartPtr> Images;

const char* OutputImagePath = "volume_injection.nii";
bool WriteImagesAsFloat = false;

bool VolumeInjectionIsotropic = false;
double VolumeInjectionSigma = 1;
int VolumeInjectionRadius = 0;

std::map<size_t,float> PassWeights;

void
CallbackSetPassWeight( const char* argv )
{
  int pass = 0;
  float weight = 1.0;
  if ( 2 == sscanf( argv, "%4d:%10f", &pass, &weight ) )
    {
    PassWeights[pass] = weight;
    }
  else
    {
    cmtk::StdErr << "ERROR: pass weights must be given as 'pass:weight', where 'pass' is an integer and 'weight' is a number between 0 and 1.\n"
		 << "       Parameter provided was '" << argv << "'\n";
    throw cmtk::ExitException( 1 );
    }
}

bool UseCropRegion = false;
cmtk::DataGrid::RegionType CropRegion;

void
CallbackCrop( const char* arg )
{
  int cropFrom[3], cropTo[3];
  UseCropRegion = (6 == sscanf( arg, "%6d,%6d,%6d,%6d,%6d,%6d", cropFrom, cropFrom+1, cropFrom+2, cropTo,cropTo+1,cropTo+2 ) );

  if ( UseCropRegion )
    {
    CropRegion = cmtk::DataGrid::RegionType( cmtk::DataGrid::IndexType::FromPointer( cropFrom ), cmtk::DataGrid::IndexType::FromPointer( cropTo ) );
    }
  else
    {
    cmtk::StdErr.printf( "ERROR: string '%s' does not describe a valid crop region\n", arg );
    throw cmtk::ExitException( 1 );
    }
}

cmtk::UniformVolume::SmartPtr ReconGrid( NULL );

void
CallbackReconGrid( const char* arg )
{
  int gridDims[3] = { 0, 0, 0 };
  float gridDelta[3] = { 0, 0, 0 };
  float gridOffset[3] = { 0, 0, 0 };

  const size_t numArgs = sscanf( arg, "%6d,%6d,%6d:%15f,%15f,%15f:%15f,%15f,%15f", gridDims, gridDims+1, gridDims+2, gridDelta, gridDelta+1, gridDelta+2, gridOffset, gridOffset+1, gridOffset+2 );
  if ( (numArgs != 6) && (numArgs != 9) )
    {
    cmtk::StdErr << "ERROR: reconstruction volume definition must be int,int,int:float,float,float or int,int,int:float,float,float:float,float,float\n";
    throw cmtk::ExitException( 1 );
    }
  
  ReconGrid = cmtk::UniformVolume::SmartPtr( new cmtk::UniformVolume( cmtk::UniformVolume::IndexType::FromPointer( gridDims ), gridDelta[0], gridDelta[1], gridDelta[2] ) );
  ReconGrid->SetMetaInfo( cmtk::META_SPACE, cmtk::AnatomicalOrientation::ORIENTATION_STANDARD );
  ReconGrid->SetMetaInfo( cmtk::META_SPACE_ORIGINAL, cmtk::AnatomicalOrientation::ORIENTATION_STANDARD );
  ReconGrid->SetMetaInfo( cmtk::META_IMAGE_ORIENTATION, cmtk::AnatomicalOrientation::ORIENTATION_STANDARD );
  ReconGrid->SetMetaInfo( cmtk::META_IMAGE_ORIENTATION_ORIGINAL, cmtk::AnatomicalOrientation::ORIENTATION_STANDARD );
  
  if ( numArgs == 9 )
    {
    ReconGrid->SetOffset( cmtk::UniformVolume::CoordinateVectorType::FromPointer( gridOffset ) );
    }
}

void
WriteOutputImage( cmtk::UniformVolume::SmartPtr& image, const char* path )
{
  cmtk::UniformVolume::SmartPtr outputImage = image;

  const cmtk::ScalarDataType type = Images[0]->GetData()->GetType();
  if ( !WriteImagesAsFloat && (outputImage->GetData()->GetType() != type) )
    {
    outputImage = cmtk::UniformVolume::SmartPtr( outputImage->CloneGrid() );
    outputImage->SetData( cmtk::TypedArray::SmartPtr( image->GetData()->Convert( type ) ) );
    }
  cmtk::VolumeIO::Write( *outputImage, path );
}

int
doMain( const int argc, const char* argv[] )
{
  /*
  // Parse command line
  */
  try
    {
    cmtk::CommandLine cl;
    cl.SetProgramInfo( cmtk::CommandLine::PRG_TITLE, "Volume injection" );
    cl.SetProgramInfo( cmtk::CommandLine::PRG_DESCR, "Reconstruction a high-resolution volume from multiple co-registered (low-resolution) images using forward volume injection" ); 
    cl.SetProgramInfo( cmtk::CommandLine::PRG_SYNTX, "volume_injection [options] refImage xform0 inImage0 [xform1 inImage1 ...]" );
    
    typedef cmtk::CommandLine::Key Key;
    cl.BeginGroup( "Input", "Input Options" );
    cl.AddSwitch( Key( 'x', "exclude-first-image" ), &ExcludeFirstImage, true, "Exclude first image from reconstruction as a separate registration target image)" );
    cl.AddCallback( Key( 'W', "pass-weight" ), CallbackSetPassWeight, "Set contribution weight for a pass in the form 'pass:weight'" );
    cl.EndGroup();

    cl.BeginGroup( "Grid", "Reconstruction Grid Options" );
    cl.AddCallback( Key( "recon-grid" ), CallbackReconGrid, "Define reconstruction grid as Nx,Ny,Nz:dX,dY,dZ[:Ox,Oy,Oz] (dims:pixel:offset)" );
    cl.AddOption( Key( 'R', "recon-grid-path" ), &ReconstructionGridPath, "Give path to grid that defines reconstructed image grid [including offset]" );
    cl.AddCallback( Key( "crop" ), CallbackCrop, "Crop reference to pixel region x0,y0,z1:x1,y1,z1" );
    cl.EndGroup();

    cl.BeginGroup( "Injection", "Volume Injection Options" );
    cl.AddSwitch( Key( "isotropic-injection" ), &VolumeInjectionIsotropic, true, "Use isotropic volume injection [default: scaled with pass image pixel size per dimension]" );
    cl.AddOption( Key( 'S', "injection-kernel-sigma" ), &VolumeInjectionSigma, "Gauss contribution" );
    cl.AddOption( Key( 'r', "injection-kernel-radius" ), &VolumeInjectionRadius, "VolumeInjectionRadius of affected pixel" );
    cl.EndGroup();

    cl.BeginGroup( "Output", "Output Options" );
    cl.AddOption( Key( 'o', "output" ), &OutputImagePath, "Output image path" );
    cl.AddSwitch( Key( 'F', "write-images-as-float" ), &WriteImagesAsFloat, true, "Write output images as floating point [default: same as input]" );
    cl.EndGroup();

    cl.Parse( argc, argv );

    ImagePaths.push_back( cl.GetNext() );
    XformPaths.push_back( NULL );
    
    const char* nextXform = cl.GetNext();
    const char* nextImage = cl.GetNext();
    while ( nextXform && nextImage )
      {
      XformPaths.push_back( nextXform );
      ImagePaths.push_back( nextImage );

      nextXform = cl.GetNextOptional();
      nextImage = cl.GetNextOptional();
      }
    }
  catch ( const cmtk::CommandLine::Exception& e )
    {
    cmtk::StdErr << e << "\n";
    return 1;
    }

  if ( ExcludeFirstImage )
    ReconstructionGridPath = ImagePaths[0];

  if ( ReconstructionGridPath )
    {
    ReconGrid = cmtk::UniformVolume::SmartPtr( cmtk::VolumeIO::ReadOriented( ReconstructionGridPath ) );
    if ( ! ReconGrid )
      {
      cmtk::StdErr << "ERROR: Could not read reconstruction grid from image " << ReconstructionGridPath << "\n";
      throw cmtk::ExitException( 1 );
      }
    }
  
  for ( size_t idx = (ExcludeFirstImage?1:0); idx < ImagePaths.size(); ++idx )
    {
    cmtk::UniformVolume::SmartPtr image( cmtk::VolumeIO::ReadOriented( ImagePaths[idx] ) );
    if ( ! image || ! image->GetData() )
      {
      cmtk::StdErr << "ERROR: Could not read image " << ImagePaths[idx] << "\n";
      throw cmtk::ExitException( 1 );
      }

    cmtk::Xform::SmartPtr xform( new cmtk::AffineXform );
    if ( XformPaths[idx] && strcmp( XformPaths[idx], "--" ) )
      {
      xform = cmtk::Xform::SmartPtr( cmtk::XformIO::Read( XformPaths[idx] ) );
      if ( ! xform )
	{
	cmtk::StdErr << "ERROR: Could read transformation from file" << XformPaths[idx] << "\n";
	}
      }

    cmtk::AffineXform::SmartPtr affineXform( cmtk::AffineXform::SmartPtr::DynamicCastFrom( xform ) );
    if ( affineXform && (affineXform->GetMetaInfo( cmtk::META_SPACE ) != cmtk::AnatomicalOrientation::ORIENTATION_STANDARD) )
      {
      try
	{
	cmtk::TransformChangeFromSpaceAffine toStandardSpace( *affineXform, *ReconGrid, *image );
	*affineXform = toStandardSpace.GetTransformation();
	}
      catch ( const cmtk::AffineXform::MatrixType::SingularMatrixException& )
	{
	cmtk::StdErr << "ERROR: singular matrix encountered in cmtk::TransformChangeFromSpaceAffine constructor\n";
	throw cmtk::ExitException( 1 );
	}      
      affineXform->SetMetaInfo( cmtk::META_SPACE, cmtk::AnatomicalOrientation::ORIENTATION_STANDARD );
      }

    Images.push_back( image );
    Xforms.push_back( xform );
    }

  if ( ! ReconGrid )
    {
    // No recon grid from command line: use first input image.
    ReconGrid = Images[0];
    }
  else
    {
    // If we have a pre-defined reconstruction grid, make its physical coordinates match the first input image
    // First, get the recon grid offset
    const cmtk::UniformVolume::CoordinateVectorType offset = ReconGrid->m_Offset;
    // Convert offset to input image index coordinates
    const cmtk::UniformVolume::CoordinateVectorType indexOffset = cmtk::ComponentDivide( offset, Images[0]->m_Delta );
    // New offset is the index grid offset transformed to physical space
    const cmtk::UniformVolume::CoordinateVectorType newOffset = Images[0]->IndexToPhysical( indexOffset );
    // Copy image-to-physical matrix from input to recon image
    ReconGrid->SetImageToPhysicalMatrix( Images[0]->GetImageToPhysicalMatrix() );
    // Finally, copy new offset into recon image-to-physical matrix.
    for ( int i = 0; i < 3; ++i )
      {
      ReconGrid->m_IndexToPhysicalMatrix[3][i] = newOffset[i];
      }
    }
  
  if ( UseCropRegion )
    {
    ReconGrid->CropRegion() = CropRegion;
    ReconGrid = cmtk::UniformVolume::SmartPtr( ReconGrid->GetCroppedVolume() );
    }

  cmtk::DebugOutput( 1 ).GetStream().printf( "Reconstruction grid: %dx%dx%d pixels, %fx%fx%f pixel size, offset=%f,%f,%f\n",
					     ReconGrid->m_Dims[0], ReconGrid->m_Dims[1], ReconGrid->m_Dims[2], (float)ReconGrid->m_Delta[0], (float)ReconGrid->m_Delta[1], (float)ReconGrid->m_Delta[2],
					     (float)ReconGrid->m_Offset[0], (float)ReconGrid->m_Offset[1], (float)ReconGrid->m_Offset[2] );
  
  cmtk::VolumeInjectionReconstruction injection( ReconGrid, Images );
  try
    {
    injection.SetTransformationsToPassImages( Xforms );
    }
  catch ( const cmtk::AffineXform::MatrixType::SingularMatrixException& )
    {
    cmtk::StdErr << "ERROR: singular matrix encountered in cmtk::VolumeInjection::SetTransformationsToPassImages()\n";
    throw cmtk::ExitException( 1 );
    }
  
  for ( std::map<size_t,float>::const_iterator it = PassWeights.begin(); it != PassWeights.end(); ++it )
    {
    injection.SetPassWeight( it->first, it->second );
    }
  
  try
    {
    if ( VolumeInjectionIsotropic )
      injection.VolumeInjectionIsotropic( VolumeInjectionSigma, VolumeInjectionRadius );
    else
      injection.VolumeInjectionAnisotropic( VolumeInjectionSigma, VolumeInjectionRadius );
    }
  catch ( const cmtk::AffineXform::MatrixType::SingularMatrixException& )
    {
    cmtk::StdErr << "ERROR: singular coordinate transformation matrix encountered in volume injection function\n";
    throw cmtk::ExitException( 1 );
    }

  if ( OutputImagePath )
    {
    WriteOutputImage( injection.GetCorrectedImage(), OutputImagePath );
    }
  
  return 0;
}

#include "cmtkSafeMain"