1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2014 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include <cmtkconfig.h>
#include <System/cmtkCommandLine.h>
#include <System/cmtkConsole.h>
#include <System/cmtkDebugOutput.h>
#include <Base/cmtkUniformVolume.h>
#include <Base/cmtkVector3D.h>
#include <Base/cmtkLinearInterpolator.h>
#include <Base/cmtkCubicInterpolator.h>
#include <Base/cmtkSincInterpolator.h>
#include <Base/cmtkTransformChangeFromSpaceAffine.h>
#include <Registration/cmtkAffineRegistration.h>
#include <Registration/cmtkProtocolCallback.h>
#include <Recon/cmtkInverseInterpolationVolumeReconstruction.h>
#include <Recon/cmtkPointSpreadFunctionBox.h>
#include <Recon/cmtkPointSpreadFunctionGaussian.h>
#include <Recon/cmtkDeblurringVolumeReconstruction.h>
#include <IO/cmtkXformIO.h>
#include <IO/cmtkVolumeIO.h>
#include <algorithm>
#include <map>
#include <vector>
const char* ReconstructionGridPath = NULL;
bool ExcludeFirstImage = false;
std::vector<const char*> XformPaths;
std::vector<const char*> ImagePaths;
std::vector<cmtk::Xform::SmartPtr> Xforms;
std::vector<cmtk::UniformVolume::SmartPtr> Images;
const char* OutputImagePath = "reconstructed.nii";
const char* LowestMaxErrorImagePath = NULL;
bool VolumeInjectionIsotropic = false;
double InjectionKernelSigma = 1;
double InjectionKernelRadius = 2;
bool FourthOrderError = false;
double ConstraintWeightLNorm = 0;
int InverseInterpolationKernel = cmtk::Interpolators::CUBIC;
enum {
DEBLURRING_BOX = 1,
DEBLURRING_GAUSSIAN = 2
};
int DeblurringKernel = 0;
cmtk::Vector3D PointSpreadFunction;
bool PointSpreadFunctionSet = false;
cmtk::Types::Coordinate PointSpreadFunctionScale = 1.0;
void
CallbackSetPSF( const char* arg )
{
float xyz[3];
if ( 3 != sscanf( arg, "%15f,%15f,%15f", xyz, xyz+1, xyz+2 ) )
{
throw "ERROR: point spread function size must be given as three comma-separated real values: x,y,z\n";
}
PointSpreadFunction = cmtk::Vector3D::FromPointer( xyz );
PointSpreadFunctionSet = true;
}
int NumberOfIterations = 20;
bool RegionalIntensityTruncation = true;
const char* SplattedImagePath = NULL;
bool WriteImagesAsFloat = false;
std::map<size_t,float> PassWeights;
void
CallbackSetPassWeight( const char* argv )
{
int pass = 0;
float weight = 1.0;
if ( 2 == sscanf( argv, "%4d:%10f", &pass, &weight ) )
{
PassWeights[pass] = weight;
}
else
{
cmtk::StdErr << "ERROR: pass weights must be given as 'pass:weight', where 'pass' is an integer and 'weight' is a number between 0 and 1.\n"
<< " Parameter provided was '" << argv << "'\n";
throw cmtk::ExitException( 1 );
}
}
bool UseCropRegion = false;
cmtk::DataGrid::RegionType CropRegion;
void
CallbackCrop( const char* arg )
{
int cropFrom[3], cropTo[3];
UseCropRegion = (6 == sscanf( arg, "%6d,%6d,%6d,%6d,%6d,%6d", cropFrom, cropFrom+1, cropFrom+2, cropTo,cropTo+1,cropTo+2 ) );
if ( UseCropRegion )
{
CropRegion = cmtk::DataGrid::RegionType( cmtk::DataGrid::IndexType::FromPointer( cropFrom ), cmtk::DataGrid::IndexType::FromPointer( cropTo ) );
}
else
{
cmtk::StdErr.printf( "ERROR: string '%s' does not describe a valid crop region\n", arg );
throw cmtk::ExitException( 1 );
}
}
cmtk::UniformVolume::SmartPtr ReconGrid( NULL );
void
CallbackReconGrid( const char* arg )
{
int gridDims[3] = { 0, 0, 0 };
float gridDelta[3] = { 0, 0, 0 };
float gridOffset[3] = { 0, 0, 0 };
const size_t numArgs = sscanf( arg, "%6d,%6d,%6d:%15f,%15f,%15f:%15f,%15f,%15f", gridDims, gridDims+1, gridDims+2, gridDelta, gridDelta+1, gridDelta+2, gridOffset, gridOffset+1, gridOffset+2 );
if ( (numArgs != 6) && (numArgs != 9) )
{
cmtk::StdErr << "ERROR: reconstruction volume definition must be int,int,int:float,float,float or int,int,int:float,float,float:float,float,float\n";
throw cmtk::ExitException( 1 );
}
ReconGrid = cmtk::UniformVolume::SmartPtr( new cmtk::UniformVolume( cmtk::UniformVolume::IndexType::FromPointer( gridDims ), gridDelta[0], gridDelta[1], gridDelta[2] ) );
ReconGrid->SetMetaInfo( cmtk::META_SPACE, cmtk::AnatomicalOrientation::ORIENTATION_STANDARD );
ReconGrid->SetMetaInfo( cmtk::META_SPACE_ORIGINAL, cmtk::AnatomicalOrientation::ORIENTATION_STANDARD );
ReconGrid->SetMetaInfo( cmtk::META_IMAGE_ORIENTATION, cmtk::AnatomicalOrientation::ORIENTATION_STANDARD );
ReconGrid->SetMetaInfo( cmtk::META_IMAGE_ORIENTATION_ORIGINAL, cmtk::AnatomicalOrientation::ORIENTATION_STANDARD );
if ( numArgs == 9 )
{
ReconGrid->SetOffset( cmtk::Vector3D::FromPointer( gridOffset ) );
}
}
void
WriteOutputImage( cmtk::UniformVolume::SmartPtr& image, const char* path )
{
cmtk::UniformVolume::SmartPtr outputImage = image;
const cmtk::ScalarDataType type = Images[0]->GetData()->GetType();
if ( !WriteImagesAsFloat && (outputImage->GetData()->GetType() != type) )
{
outputImage = cmtk::UniformVolume::SmartPtr( outputImage->CloneGrid() );
outputImage->SetData( cmtk::TypedArray::SmartPtr( image->GetData()->Convert( type ) ) );
}
cmtk::VolumeIO::Write( *outputImage, path );
}
template<class TRecon>
cmtk::UniformVolume::SmartPtr
ReconstructVolume()
{
TRecon volRecon( ReconGrid, Images );
volRecon.SetTransformationsToPassImages( Xforms );
for ( std::map<size_t,float>::const_iterator it = PassWeights.begin(); it != PassWeights.end(); ++it )
{
volRecon.SetPassWeight( it->first, it->second );
}
volRecon.SetUseRegionalIntensityTruncation( RegionalIntensityTruncation );
volRecon.SetUseFourthOrderError( FourthOrderError );
volRecon.SetConstraintWeightLNorm( ConstraintWeightLNorm );
cmtk::DebugOutput( 1 ) << "Volume injection...\n";
if ( VolumeInjectionIsotropic )
volRecon.VolumeInjectionIsotropic( InjectionKernelSigma, InjectionKernelRadius );
else
volRecon.VolumeInjectionAnisotropic( InjectionKernelSigma, InjectionKernelRadius );
if ( SplattedImagePath )
{
WriteOutputImage( volRecon.GetCorrectedImage(), SplattedImagePath );
}
const double timeBaseline = cmtk::Timers::GetTimeProcess();
if ( NumberOfIterations )
{
volRecon.Optimize( NumberOfIterations );
}
cmtk::DebugOutput( 1 ) << "OPT_TIME\t" << cmtk::Timers::GetTimeProcess() - timeBaseline << "\n";
if ( LowestMaxErrorImagePath )
{
WriteOutputImage( volRecon.GetLowestMaxErrorImage(), LowestMaxErrorImagePath );
}
return volRecon.GetCorrectedImage();
}
template<class TRecon>
cmtk::UniformVolume::SmartPtr
ReconstructVolumeDeblurring()
{
cmtk::Vector3D psf = PointSpreadFunctionScale * PointSpreadFunction;
TRecon volRecon( ReconGrid, Images, psf );
volRecon.SetTransformationsToPassImages( Xforms );
for ( std::map<size_t,float>::const_iterator it = PassWeights.begin(); it != PassWeights.end(); ++it )
{
volRecon.SetPassWeight( it->first, it->second );
}
volRecon.SetUseRegionalIntensityTruncation( RegionalIntensityTruncation );
volRecon.SetUseFourthOrderError( FourthOrderError );
volRecon.SetConstraintWeightLNorm( ConstraintWeightLNorm );
cmtk::DebugOutput( 1 ) << "Volume injection...\n";
if ( VolumeInjectionIsotropic )
volRecon.VolumeInjectionIsotropic( InjectionKernelSigma, InjectionKernelRadius );
else
volRecon.VolumeInjectionAnisotropic( InjectionKernelSigma, InjectionKernelRadius );
if ( SplattedImagePath )
{
WriteOutputImage( volRecon.GetCorrectedImage(), SplattedImagePath );
}
const double timeBaseline = cmtk::Timers::GetTimeProcess();
if ( NumberOfIterations )
{
volRecon.Optimize( NumberOfIterations );
}
cmtk::DebugOutput( 1 ) << "OPT_TIME\t" << cmtk::Timers::GetTimeProcess() - timeBaseline << "\n";
if ( LowestMaxErrorImagePath )
{
WriteOutputImage( volRecon.GetLowestMaxErrorImage(), LowestMaxErrorImagePath );
}
return volRecon.GetCorrectedImage();
}
int
doMain( const int argc, const char* argv[] )
{
/*
// Parse command line
*/
try
{
cmtk::CommandLine cl;
cl.SetProgramInfo( cmtk::CommandLine::PRG_TITLE, "Volume reconstruction" );
cl.SetProgramInfo( cmtk::CommandLine::PRG_DESCR, "Iterative volume reconstruction from co-registered images using inverse interpolation or joint deblurring" );
cl.SetProgramInfo( cmtk::CommandLine::PRG_SYNTX, "volume_reconstruction [options] refImage xform0 inImage0 [xform1 inImage1 ...]" );
typedef cmtk::CommandLine::Key Key;
cl.BeginGroup( "Input", "Input Options" );
cl.AddSwitch( Key( 'x', "exclude-first-image" ), &ExcludeFirstImage, true, "Exclude first image from reconstruction as a separate registration target image)" );
cl.AddCallback( Key( "crop" ), CallbackCrop, "Crop reference to pixel region x0,y0,z1:x1,y1,z1" );
cl.AddCallback( Key( 'W', "pass-weight" ), CallbackSetPassWeight, "Set contribution weight for a pass in the form 'pass:weight'" );
cl.EndGroup();
cl.BeginGroup( "ReconGrid", "Reconstruction Grid" );
cl.AddCallback( Key( "recon-grid" ), CallbackReconGrid, "Define reconstruction grid as Nx,Ny,Nz:dX,dY,dZ[:Ox,Oy,Oz] (dims:pixel:offset)" );
cl.AddOption( Key( 'R', "recon-grid-path" ), &ReconstructionGridPath, "Give path to grid that defines reconstructed image grid [including offset]" );
cl.EndGroup();
cl.BeginGroup( "Injection", "Initial Volume Injection Parameters" );
cl.AddSwitch( Key( "isotropic-injection" ), &VolumeInjectionIsotropic, true, "Use isotropic volume injection [otherwise: scaled with pass image pixel size per dimension]" );
cl.AddOption( Key( 'S', "injection-kernel-sigma" ), &InjectionKernelSigma, "Standard deviation of Gaussian kernel for volume injection in multiples of pixel size in each direction." );
cl.AddOption( Key( 'r', "injection-kernel-radius" ), &InjectionKernelRadius, "Truncation radius factor of injection kernel. The kernel is truncated at sigma*radius, where sigma is the kernel standard deviation." );
cl.EndGroup();
cl.BeginGroup( "Reconstruction", "Volume Reconstruction Options" );
cmtk::CommandLine::EnumGroup<int>::SmartPtr kernelGroup =
cl.AddEnum( "inverse-interpolation-kernel", &InverseInterpolationKernel, "Kernel for the inverse interpolation reconstruction" );
kernelGroup->AddSwitch( Key( 'C', "cubic" ), cmtk::Interpolators::CUBIC, "Tricubic interpolation" );
kernelGroup->AddSwitch( Key( 'L', "linear" ), cmtk::Interpolators::LINEAR, "Trilinear interpolation (faster but less accurate)" );
kernelGroup->AddSwitch( Key( 'H', "hamming-sinc" ), cmtk::Interpolators::HAMMING_SINC, "Hamming-windowed sinc interpolation" );
kernelGroup->AddSwitch( Key( 'O', "cosine-sinc" ), cmtk::Interpolators::COSINE_SINC, "Cosine-windowed sinc interpolation (most accurate but slowest)" );
cmtk::CommandLine::EnumGroup<int>::SmartPtr deblurGroup =
cl.AddEnum( "deblurring", &DeblurringKernel, "Kernel shape to approximate the point spread function for joint deblurring reconstruction (selecting one of these disables inverse interpolation reconstruction)" );
deblurGroup->AddSwitch( Key( "box" ), (int)DEBLURRING_BOX, "Box-shaped kernel" );
deblurGroup->AddSwitch( Key( "gaussian" ), (int)DEBLURRING_GAUSSIAN, "Gaussian kernel" );
cl.AddCallback( Key( "psf" ), CallbackSetPSF, "Explicitly set point spread function size as x,y,z. Use with 'deblurring' kernel reconstrunction." );
cl.AddOption( Key( "psf-scale" ), &PointSpreadFunctionScale, "Scale point spread function size by this value. Use with 'deblurring' kernel reconstrunction." );
cl.EndGroup();
cl.BeginGroup( "Optimization", "Optimization Parameters" );
cl.AddOption( Key( 'n', "num-iterations" ), &NumberOfIterations, "Maximum number of inverse interpolation iterations" );
cl.AddSwitch( Key( 'f', "fourth-order-error" ), &FourthOrderError, true, "Use fourth-order (rather than second-order) error for optimization." );
cl.EndGroup();
cl.BeginGroup( "Regularization", "Regularization Parameters" );
cl.AddOption( Key( "l-norm-weight" ), &ConstraintWeightLNorm, "Set constraint weight for Tikhonov-type L-Norm regularization (0 disables constraint)" );
cl.AddSwitch( Key( 'T', "no-truncation" ), &RegionalIntensityTruncation, false, "Turn off non-linear regional intensity truncation" );
cl.EndGroup();
cl.BeginGroup( "Output", "Output Options" );
cl.AddOption( Key( 'o', "output" ), &OutputImagePath, "Output path for final reconstructed image" );
cl.AddOption( Key( "write-injected-image" ), &SplattedImagePath, "Write initial volume-injected image to this path" );
cl.AddOption( Key( "write-lowest-max-error-image" ), &LowestMaxErrorImagePath, "Optional path to write reconstructed image with lowest MAXIMUM error." );
cl.AddSwitch( Key( 'F', "write-images-as-float" ), &WriteImagesAsFloat, true, "Write output images as floating point" );
cl.EndGroup();
cl.Parse( argc, argv );
ImagePaths.push_back( cl.GetNext() );
XformPaths.push_back( NULL );
const char* nextXform = cl.GetNext();
const char* nextImage = cl.GetNext();
while ( nextXform && nextImage )
{
XformPaths.push_back( nextXform );
ImagePaths.push_back( nextImage );
nextXform = cl.GetNextOptional();
nextImage = cl.GetNextOptional();
}
}
catch ( const cmtk::CommandLine::Exception& e )
{
cmtk::StdErr << e << "\n";
return 1;
}
if ( ExcludeFirstImage )
ReconstructionGridPath = ImagePaths[0];
if ( ReconstructionGridPath )
{
ReconGrid = cmtk::UniformVolume::SmartPtr( cmtk::VolumeIO::ReadOriented( ReconstructionGridPath ) );
if ( ! ReconGrid )
{
cmtk::StdErr << "ERROR: Could not read reconstruction grid from image " << ReconstructionGridPath << "\n";
throw cmtk::ExitException( 1 );
}
}
for ( size_t idx = (ExcludeFirstImage?1:0); idx < ImagePaths.size(); ++idx )
{
cmtk::UniformVolume::SmartPtr image( cmtk::VolumeIO::ReadOriented( ImagePaths[idx] ) );
if ( ! image || ! image->GetData() )
{
cmtk::StdErr << "ERROR: Could not read image " << ImagePaths[idx] << "\n";
throw cmtk::ExitException( 1 );
}
cmtk::AffineXform::SmartPtr affineXform( new cmtk::AffineXform );
if ( XformPaths[idx] && strcmp( XformPaths[idx], "--" ) )
{
cmtk::Xform::SmartPtr xform( cmtk::XformIO::Read( XformPaths[idx] ) );
if ( ! xform )
{
cmtk::StdErr << "ERROR: Could read affine transformation from file" << XformPaths[idx] << "\n";
}
affineXform = cmtk::AffineXform::SmartPtr::DynamicCastFrom( xform );
if ( ! affineXform )
{
cmtk::StdErr << "ERROR: transformation " << XformPaths[idx] << " is not affine\n";
}
}
if ( affineXform->GetMetaInfo( cmtk::META_SPACE ) != cmtk::AnatomicalOrientation::ORIENTATION_STANDARD )
{
try
{
cmtk::TransformChangeFromSpaceAffine toStandardSpace( *affineXform, *ReconGrid, *image );
*affineXform = toStandardSpace.GetTransformation();
}
catch ( const cmtk::AffineXform::MatrixType::SingularMatrixException& )
{
cmtk::StdErr << "ERROR: singular matrix encountered in cmtk::TransformChangeFromSpaceAffine constructor\n";
throw cmtk::ExitException( 1 );
}
affineXform->SetMetaInfo( cmtk::META_SPACE, cmtk::AnatomicalOrientation::ORIENTATION_STANDARD );
}
Images.push_back( image );
Xforms.push_back( affineXform );
}
if ( ! ReconGrid )
{
// No recon grid from command line: use first input image.
ReconGrid = Images[0];
}
else
{
// If we have a pre-defined reconstruction grid, make its physical coordinates match the first input image
// First, get the recon grid offset
const cmtk::UniformVolume::CoordinateVectorType offset = ReconGrid->m_Offset;
// Convert offset to input image index coordinates
const cmtk::UniformVolume::CoordinateVectorType indexOffset = cmtk::ComponentDivide( offset, Images[0]->m_Delta );
// New offset is the index grid offset transformed to physical space
const cmtk::UniformVolume::CoordinateVectorType newOffset = Images[0]->IndexToPhysical( indexOffset );
// Copy image-to-physical matrix from input to recon image
ReconGrid->SetImageToPhysicalMatrix( Images[0]->GetImageToPhysicalMatrix() );
// Finally, copy new offset into recon image-to-physical matrix.
for ( int i = 0; i < 3; ++i )
{
ReconGrid->m_IndexToPhysicalMatrix[3][i] = newOffset[i];
}
}
if ( UseCropRegion )
{
ReconGrid->CropRegion() = CropRegion;
ReconGrid = cmtk::UniformVolume::SmartPtr( ReconGrid->GetCroppedVolume() );
}
cmtk::DebugOutput( 1 ).GetStream().printf( "Reconstruction grid: %dx%dx%d pixels, %fx%fx%f pixel size, offset=%f,%f,%f\n",
ReconGrid->m_Dims[0], ReconGrid->m_Dims[1], ReconGrid->m_Dims[2], (float)ReconGrid->m_Delta[0], (float)ReconGrid->m_Delta[1], (float)ReconGrid->m_Delta[2],
(float)ReconGrid->m_Offset[0], (float)ReconGrid->m_Offset[1], (float)ReconGrid->m_Offset[2] );
cmtk::UniformVolume::SmartPtr correctedVolume;
if ( !DeblurringKernel )
{
switch ( InverseInterpolationKernel )
{
case cmtk::Interpolators::LINEAR:
default:
correctedVolume = ReconstructVolume< cmtk::InverseInterpolationVolumeReconstruction<cmtk::Interpolators::Linear> >();
break;
case cmtk::Interpolators::CUBIC:
correctedVolume = ReconstructVolume< cmtk::InverseInterpolationVolumeReconstruction<cmtk::Interpolators::Cubic> >();
break;
case cmtk::Interpolators::HAMMING_SINC:
correctedVolume = ReconstructVolume< cmtk::InverseInterpolationVolumeReconstruction<cmtk::Interpolators::HammingSinc<3> > >();
break;
case cmtk::Interpolators::COSINE_SINC:
correctedVolume = ReconstructVolume< cmtk::InverseInterpolationVolumeReconstruction<cmtk::Interpolators::CosineSinc<3> > >();
break;
}
}
else
{
if ( ! PointSpreadFunctionSet )
{
cmtk::StdErr << "ERROR: must set point spread function size for deblurring reconstruction\n";
throw cmtk::ExitException( 1 );
}
switch ( DeblurringKernel )
{
case DEBLURRING_BOX:
default:
correctedVolume = ReconstructVolumeDeblurring< cmtk::DeblurringVolumeReconstruction<cmtk::PointSpreadFunctions::Box> >();
break;
case DEBLURRING_GAUSSIAN:
correctedVolume = ReconstructVolumeDeblurring< cmtk::DeblurringVolumeReconstruction<cmtk::PointSpreadFunctions::Gaussian> >();
break;
}
}
WriteOutputImage( correctedVolume, OutputImagePath );
return 0;
}
#include "cmtkSafeMain"
|