1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/*
//
// Copyright 1997-2010 Torsten Rohlfing
//
// Copyright 2004-2014 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 1652 $
//
// $LastChangedDate: 2010-05-14 14:45:52 -0700 (Fri, 14 May 2010) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include <cmtkconfig.h>
#include <System/cmtkCommandLine.h>
#include <System/cmtkConsole.h>
#include <Base/cmtkXform.h>
#include <Base/cmtkXformList.h>
#include <IO/cmtkXformIO.h>
#include <IO/cmtkXformListIO.h>
#include <IO/cmtkVolumeIO.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <iomanip>
#include <iterator>
int
doMain( const int argc, const char* argv[] )
{
cmtk::Types::Coordinate inversionTolerance = 0.001;
std::vector<std::string> inputXformPaths;
const char* sourceImagePath = NULL;
const char* targetImagePath = NULL;
try
{
cmtk::CommandLine cl;
cl.SetProgramInfo( cmtk::CommandLine::PRG_TITLE, "Apply coordinate transformation to point coordinates in VTK file." );
cl.SetProgramInfo( cmtk::CommandLine::PRG_DESCR, "An ASCII-format VTK file is read from standard input and a user-provided coordinate transformation (optionally inverted) is applied to the vertex coordinates. A VTK file with transformed points is then written to standard output." );
typedef cmtk::CommandLine::Key Key;
cl.AddOption( Key( "inversion-tolerance" ), &inversionTolerance, "Numerical tolerance of B-spline inversion in mm. Smaller values will lead to more accurate inversion, but may increase failure rate." );
cl.AddOption( Key( "source-image" ), &sourceImagePath, "Set source image of the transformation (i.e., the image that the transformation maps points FROM) to correct for differences in orientation and coordinate space." );
cl.AddOption( Key( "target-image" ), &targetImagePath, "Set target image of the transformation (i.e., the image that the transformation maps points TO) to correct for differences in orientation and coordinate space." );
cl.AddParameterVector( &inputXformPaths, "XformList", "List of concatenated transformations. Insert '--inverse' to use the inverse of the transformation listed next. "
"(If the first transformation in the sequence is inverted, then '--inverse' must be preceded by '--', i.e., use '-- --inverse xform.path')." )
->SetProperties( cmtk::CommandLine::PROPS_XFORM | cmtk::CommandLine::PROPS_OPTIONAL );
cl.Parse( argc, argv );
}
catch ( cmtk::CommandLine::Exception& ex )
{
cmtk::StdErr << ex << "\n";
throw cmtk::ExitException( 1 );
}
cmtk::XformList xformList = cmtk::XformListIO::MakeFromStringList( inputXformPaths );
xformList.SetEpsilon( inversionTolerance );
if ( sourceImagePath )
{
cmtk::UniformVolume::SmartConstPtr sourceImage( cmtk::VolumeIO::ReadOriented( sourceImagePath ) );
if ( ! sourceImage )
{
cmtk::StdErr << "ERROR: could not read source image '" << sourceImagePath << "'\n";
throw cmtk::ExitException( 1 );
}
try
{
xformList.AddToFront( cmtk::AffineXform::SmartPtr( new cmtk::AffineXform( sourceImage->GetImageToPhysicalMatrix() ) )->GetInverse() );
}
catch ( const cmtk::AffineXform::MatrixType::SingularMatrixException& )
{
cmtk::StdErr << "ERROR: singular source image-to-physical space matrix.\n";
throw cmtk::ExitException( 1 );
}
}
if ( targetImagePath )
{
cmtk::UniformVolume::SmartConstPtr targetImage( cmtk::VolumeIO::ReadOriented( targetImagePath ) );
if ( ! targetImage )
{
cmtk::StdErr << "ERROR: could not read target image '" << targetImagePath << "'\n";
throw cmtk::ExitException( 1 );
}
try
{
xformList.Add( cmtk::AffineXform::SmartPtr( new cmtk::AffineXform( targetImage->GetImageToPhysicalMatrix() ) ) );
}
catch ( const cmtk::AffineXform::MatrixType::SingularMatrixException& )
{
cmtk::StdErr << "ERROR: singular target image-to-physical space matrix.\n";
throw cmtk::ExitException( 1 );
}
}
// Is VTK file stored in binary format?
bool binaryMode = false;
// First, read everything up to and including the "POINTS" line and write everything to output unchanged
std::string line;
while ( !std::cin.eof() )
{
std::getline( std::cin, line );
std::cout << line << std::endl;
if ( ! line.compare( 0, 6, "BINARY" ) )
binaryMode = true;
if ( ! line.compare( 0, 6, "POINTS" ) )
break;
}
// If we're not at EOF, then "line" must be "POINTS <npoints> ..."
if ( ! std::cin.eof() )
{
// Parse number of points out of line
std::stringstream sstream( line.substr( 7 ) );
size_t npoints;
sstream >> npoints;
// Repeat npoints times
cmtk::Xform::SpaceVectorType xyz;
for ( size_t n = 0; (n<npoints) && !std::cin.eof(); ++n )
{
// Read original point coordinates from file
if ( binaryMode )
{
float xyzFloat[3];
std::cin.read( reinterpret_cast<char*>( &xyzFloat[0] ), sizeof( xyzFloat ) );
#ifndef WORDS_BIGENDIAN
for ( size_t i = 0; i<3; ++i )
cmtk::Memory::ByteSwapInPlace( xyzFloat[i] );
#endif // #ifndef WORDS_BIGENDIAN
xyz = cmtk::FixedVector<3,float>::FromPointer( xyzFloat );
}
else
{
std::cin >> xyz[0] >> xyz[1] >> xyz[2];
}
// Apply transformation sequence
const bool valid = xformList.ApplyInPlace( xyz );
if ( ! valid )
{
// well, not sure what to do now... we should delete the current point from the
// mesh, but updating the connectivity isn't a local operation. We could also
// keep track of the previous and the next point and put the failed one in the
// middle, but that would require a memory and all kinds of special case treatment
// (multiple consecutive failues, failures at either end, ...) Also assumes
// a 1D mesh (polyline). So maybe not.
}
// Write transformed point to output
// Read original point coordinates from file
if ( binaryMode )
{
float xyzFloat[3] = { xyz[0], xyz[1], xyz[2] };
#ifndef WORDS_BIGENDIAN
for ( size_t i = 0; i<3; ++i )
cmtk::Memory::ByteSwapInPlace( xyzFloat[i] );
#endif // #ifndef WORDS_BIGENDIAN
std::cout.write( reinterpret_cast<const char*>( &xyzFloat[0] ), sizeof( xyzFloat ) );
}
else
{
std::cout << xyz[0] << " " << xyz[1] << " " << xyz[2] << std::endl;
}
}
}
// Everything else remains unchanged, so copy from input to output.
int c = std::cin.get();
while ( std::cin.good() )
{
std::cout << static_cast<char>( c );
c = std::cin.get();
}
// if we got here, the program probably ran
return 0;
}
#include "cmtkSafeMain"
|