1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2010, 2013 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#ifndef __cmtkActiveShapeModel_h_included_
#define __cmtkActiveShapeModel_h_included_
#include <cmtkconfig.h>
#include <Base/cmtkTypes.h>
#include <Base/cmtkDirectionSet.h>
#include <System/cmtkSmartPtr.h>
namespace
cmtk
{
/** \addtogroup Base */
//@{
/// Class for a three-dimensional active shape model.
class ActiveShapeModel
{
public:
/// Smart pointer to active shape model.
typedef SmartPointer<ActiveShapeModel> SmartPtr;
/// Number of points in this model.
unsigned int NumberOfPoints;
/// Get number of points.
unsigned int GetNumberOfPoints() const { return NumberOfPoints; }
/// Point positions of the mean shape.
CoordinateVector::SmartPtr Mean;
/// Number of modes of variation in this model.
unsigned int NumberOfModes;
/// Get number of modes.
unsigned int GetNumberOfModes() const { return NumberOfModes; }
/// Delta vectors for the modes of variation.
DirectionSet::SmartPtr Modes;
/// Eigenvalue (= variance) associated with each mode
CoordinateVector::SmartPtr ModeVariances;
/// Default constructor.
ActiveShapeModel() : NumberOfPoints( 0 ), Mean( NULL ), NumberOfModes( 0 ), Modes( NULL ) {}
/// Construct using given mean and modes.
ActiveShapeModel( CoordinateVector::SmartPtr& mean, DirectionSet::SmartPtr& modes, CoordinateVector::SmartPtr& modeVariances );
/** Generative constructor.
* For a description of the parameters, see the Construct() member function.
*\see ActiveShapeModel::Construct
*/
ActiveShapeModel( const Types::Coordinate *const* trainingSet, const unsigned int numberOfSamples, const unsigned int numberOfPoints, const unsigned int numberOfModes )
: NumberOfPoints( 0 ), Mean( NULL ), NumberOfModes( 0 ), Modes( NULL )
{
this->Construct( trainingSet, numberOfSamples, numberOfPoints, numberOfModes );
}
/** Construct model.
*\param trainingSet The training set. This is a an array with size
* [numberOfSamples]. Each entry is a pointer to an array of size
* [numberOfPoints] Types::Coordinate values. Each of these latter arrays is a
* sample vector from the training set, for example a sequential
* concatenation of 2-D or 3-D point coordinates. The order of these values
* within the vectors is irrelevant, as long as the order is the same in all
* vectors. This order also defines the order of parameters in the generated
* model.
*\param numberOfSamples The number of samples in the training set. This is
* the size of the pointer array given as parameter "trainingSet".
*\param numberOfPoints This is the number of values in each array pointed
* to by a pointer in the "trainingSet" array.
*\param numberOfModes Number of modes in the generated model. This can be
* at most as many as "numberOfSamples", the number of samples in the
* training set. If the value of this parameter is to large, it will
* automatically be reduced to equal numberOfSamples.
*\return Percentage of the total variance of the training set that is
* explained by the generated model.
*/
float Construct( const Types::Coordinate *const* trainingSet, const unsigned int numberOfSamples, const unsigned int numberOfPoints, const unsigned int numberOfModes );
/** Generate a model instance.
*/
Types::Coordinate* Generate( Types::Coordinate *const instance, const Types::Coordinate* modeWeights ) const;
/** Decompose a vector into mean and modes of this model.
*\param input Input vector.
*\param weights Weights of the modes that make up the given input vector.
* This parameter is optional. If not given, no weights will be returned.
*\return The value of the multivariate Gaussian PDF represented by this
* model atr the location of the input vector.
*/
float Decompose( const CoordinateVector* input, Types::Coordinate *const weights = NULL ) const;
protected:
/** Allocate data structures.
* If this instance already has data structures allocated, these are
* deallocated first.
*/
void Allocate( const unsigned int numberOfPoints, const unsigned int numberOfModes );
};
//@}
} // namespace cmtk
#endif // #ifndef __cmtkActiveShapeModel_h_included_
|