File: cmtkFixedSquareMatrix.txx

package info (click to toggle)
cmtk 3.3.1p2%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,524 kB
  • sloc: cpp: 87,098; ansic: 23,347; sh: 3,896; xml: 1,551; perl: 707; makefile: 334
file content (303 lines) | stat: -rw-r--r-- 8,088 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/*
//
//  Copyright 1997-2009 Torsten Rohlfing
//
//  Copyright 2004-2012, 2014 SRI International
//
//  This file is part of the Computational Morphometry Toolkit.
//
//  http://www.nitrc.org/projects/cmtk/
//
//  The Computational Morphometry Toolkit is free software: you can
//  redistribute it and/or modify it under the terms of the GNU General Public
//  License as published by the Free Software Foundation, either version 3 of
//  the License, or (at your option) any later version.
//
//  The Computational Morphometry Toolkit is distributed in the hope that it
//  will be useful, but WITHOUT ANY WARRANTY; without even the implied
//  warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License along
//  with the Computational Morphometry Toolkit.  If not, see
//  <http://www.gnu.org/licenses/>.
//
//  $Revision: 5287 $
//
//  $LastChangedDate: 2014-04-05 22:46:09 -0700 (Sat, 05 Apr 2014) $
//
//  $LastChangedBy: torsten_at_home $
//
*/

#include <Base/cmtkDataTypeTraits.h>

#include <algorithm>

namespace
cmtk
{

/// Copy and submatrix constructor.
template<size_t NDIM,class TSCALAR>
template<size_t N2,class T2> 
FixedSquareMatrix<NDIM,TSCALAR>::FixedSquareMatrix( const FixedSquareMatrix<N2,T2>& other, const size_t iOfs, const size_t jOfs )
{
  assert( NDIM+iOfs <= N2 );
  assert( NDIM+jOfs <= N2 );
  for ( size_t j = 0; j < Self::Dimension; ++j )
    {
    for ( size_t i = 0; i < Self::Dimension; ++i )
      {
      this->m_Matrix[i][j] = other[i+iOfs][j+jOfs];
      }
    }
}

template<size_t NDIM,class TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>::FixedSquareMatrix( const typename Self::ScalarType& value )
{
  for ( size_t i = 0; i < Self::Dimension; ++i )
    for ( size_t j = 0; j < Self::Dimension; ++j )
      this->m_Matrix[i][j] = value;
}

template<size_t NDIM,class TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>&
FixedSquareMatrix<NDIM,TSCALAR>::Set( const typename Self::ScalarType *const values )
{
  memcpy( this->m_Matrix, values, sizeof( this->m_Matrix ) );
  return *this;
}

template<size_t NDIM,class TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>&
FixedSquareMatrix<NDIM,TSCALAR>::Fill( const typename Self::ScalarType& value )
{
  for ( size_t i = 0; i < Self::Dimension; ++i )
    for ( size_t j = 0; j < Self::Dimension; ++j )
      this->m_Matrix[i][j] = value;
  return *this;
}

template<size_t NDIM,class TSCALAR>
const FixedSquareMatrix<NDIM,TSCALAR>&
FixedSquareMatrix<NDIM,TSCALAR>::Identity() 
{
  static Self identity;

  static bool initialized = false;
  if ( ! initialized )
    {
    for ( size_t i = 0; i < Self::Dimension; ++i )
      for ( size_t j = 0; j < Self::Dimension; ++j )
	identity[i][j] = DataTypeTraits<TSCALAR>::Zero();
    
    for ( size_t i = 0; i < Self::Dimension; ++i )
      identity[i][i] = DataTypeTraits<TSCALAR>::One();
    initialized = true;
    }

  return identity;
}

template<size_t NDIM,class TSCALAR>
const FixedSquareMatrix<NDIM,TSCALAR>&
FixedSquareMatrix<NDIM,TSCALAR>::Zero()
{
  static Self zero;

  static bool initialized = false;
  if ( ! initialized )
    {
    for ( size_t i = 0; i < Self::Dimension; ++i )
      for ( size_t j = 0; j < Self::Dimension; ++j )
	zero[i][j] = DataTypeTraits<TSCALAR>::Zero();
    initialized = true;
    }
  
  return zero;
}

template<size_t NDIM,class TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>::GetTranspose() const
{
  Self transpose;
  for ( size_t i = 0; i < Self::Dimension; ++i ) 
    {
    for ( size_t j = 0; j < Self::Dimension; ++j )
      transpose[i][j] = this->m_Matrix[j][i];
}
  return transpose;
}
  
template<size_t NDIM,class TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>::GetInverse() const
{
  Self inverse = Self::Identity();

  typename Self::ScalarType matrix[NDIM][NDIM];
  memcpy( matrix, this->m_Matrix, sizeof( matrix ) );
  
  for ( size_t eliminate = 0; eliminate < Self::Dimension; ++eliminate ) 
    {
    size_t pivIdx = eliminate;
    typename Self::ScalarType pivAbs = fabs( matrix[eliminate][eliminate] );
    
    for ( size_t row = eliminate+1; row < Self::Dimension; ++row ) 
      {
      const typename Self::ScalarType nextAbs = fabs( matrix[row][eliminate] );
      if (nextAbs > pivAbs ) 
	{
	pivIdx = row;
	pivAbs = nextAbs;
	}
      }

    if ( pivAbs == 0 )
      throw typename Self::SingularMatrixException();
    
    if ( eliminate != pivIdx )
      {
      for ( size_t col = 0; col < Self::Dimension; ++col )
	{
	std::swap( matrix[eliminate][col], matrix[pivIdx][col] );
	std::swap( inverse[eliminate][col], inverse[pivIdx][col] );
	}
      }
    
    for ( size_t col = 0; col < Self::Dimension; ++col ) 
      {
      if ( col > eliminate )
	matrix[eliminate][col] /= matrix[eliminate][eliminate];
      inverse[eliminate][col] /= matrix[eliminate][eliminate];
      }
    matrix[eliminate][eliminate] = DataTypeTraits<TSCALAR>::One();
    
    for ( size_t row = 0; row < Self::Dimension; ++row ) 
      {
      if (row != eliminate ) 
	{
	for ( size_t col = 0; col < Self::Dimension; ++col ) 
	  {
	  if ( col > eliminate ) 
	    matrix[row][col] -= matrix[row][eliminate] * matrix[eliminate][col];
	  inverse[row][col] -= matrix[row][eliminate] * inverse[eliminate][col];
	  }
	matrix[row][eliminate] = DataTypeTraits<TSCALAR>::Zero();
	}
      }
    }

  return inverse;
}

template<size_t NDIM,class T> 
FixedSquareMatrix<NDIM,T>
operator+( const FixedSquareMatrix<NDIM,T>& A, const FixedSquareMatrix<NDIM,T>& B )
{
  FixedSquareMatrix<NDIM,T> M;
  for ( size_t i = 0; i<NDIM; ++i ) 
    {
    for ( size_t j = 1; j<NDIM; ++j ) 
      {
      M[j][i] = A[j][i] + B[j][i];
      }
    }
  return M;
}

template<size_t NDIM,class TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>& 
FixedSquareMatrix<NDIM,TSCALAR>::operator+=( const Self& other )
{
  return (*this = ((*this) + other));
}

template<size_t NDIM,class T> 
FixedSquareMatrix<NDIM,T>
operator-( const FixedSquareMatrix<NDIM,T>& A, const FixedSquareMatrix<NDIM,T>& B )
{
  FixedSquareMatrix<NDIM,T> M;
  for ( size_t i = 0; i<NDIM; ++i ) 
    {
    for ( size_t j = 1; j<NDIM; ++j ) 
      {
      M[j][i] = A[j][i] - B[j][i];
      }
    }
  return M;
}

template<size_t NDIM,class TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>& 
FixedSquareMatrix<NDIM,TSCALAR>::operator-=( const Self& other )
{
  return (*this = ((*this) - other));
}

template<size_t NDIM,class TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>& 
FixedSquareMatrix<NDIM,TSCALAR>::operator*=( const typename Self::ScalarType& scalar )
{
  for ( size_t j=0; j < Self::Dimension; ++j ) 
    {
    for ( size_t i=0; i < Self::Dimension; ++i ) 
      {
      this->m_Matrix[i][j] *= scalar;
      }
    }
  return *this;
}

template<size_t NDIM,class TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>& 
FixedSquareMatrix<NDIM,TSCALAR>::operator*=( const Self& other )
{
  return (*this = ((*this) * other));
}

template<size_t NDIM,class TSCALAR>
const FixedSquareMatrix<NDIM,TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>::operator*
( const Self& other ) const
{
  Self result;

  for ( size_t j=0; j < Self::Dimension; ++j ) 
    {
    for ( size_t i=0; i < Self::Dimension; ++i ) 
      {
      result[i][j] = this->m_Matrix[i][0] * other.m_Matrix[0][j];
      for ( size_t k=1; k < Self::Dimension; ++k )
	result[i][j] += this->m_Matrix[i][k] * other.m_Matrix[k][j];
      }
    }
  
  return result;
}

template<size_t NDIM,class TSCALAR>
FixedSquareMatrix<NDIM,TSCALAR>& 
FixedSquareMatrix<NDIM,TSCALAR>::operator=( const Self& other )
{
  memcpy( this->m_Matrix, other.m_Matrix, sizeof( this->m_Matrix ) );
  return *this;
}

template<size_t NDIM,class TSCALAR>
TSCALAR
FixedSquareMatrix<NDIM,TSCALAR>::FrobeniusNorm() const
{
  typename Self::ScalarType norm = DataTypeTraits<TSCALAR>::Zero();
  for ( size_t i = 0; i < Self::Dimension; ++i ) 
    {
    for ( size_t j = 0; j < Self::Dimension; ++j )
      norm += MathUtil::Square( this->m_Matrix[i][j] );
    }
  return sqrt( norm );
}

} // namespace cmtk