1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2011 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#ifndef __cmtkFunctional_h_included_
#define __cmtkFunctional_h_included_
#include <cmtkconfig.h>
#include <System/cmtkSmartPtr.h>
#include <System/cmtkConsole.h>
#include <Base/cmtkVector.h>
#include <Base/cmtkTypes.h>
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
namespace
cmtk
{
/** \addtogroup Base */
//@{
/// Class defining a real-valued functional on a multi-dimensional domain.
class Functional
{
public:
/// This class.
typedef Functional Self;
/// Smart pointer to Functional.
typedef SmartPointer<Self> SmartPtr;
/** Functional return type.
* This is the higher resolution type of either data item or spatial coordinate type.
*/
typedef Types::Combined<Types::Coordinate,Types::DataItem>::Type ReturnType;
/// Parameter vector type.
typedef Vector<Types::Coordinate> ParameterVectorType;
/// Functional return type.
typedef Types::Coordinate ParameterType;
/// Set parameter vector.
virtual void SetParamVector ( ParameterVectorType& )
{
StdErr << "ERROR: Functional::SetParamVector() was called but not implemented\n";
exit( 1 );
}
/// Return parameter vector.
virtual void GetParamVector ( ParameterVectorType& )
{
StdErr << "ERROR: Functional::GetParamVector() was called but not implemented\n";
exit( 1 );
}
/// Evaluate functional.
virtual Self::ReturnType Evaluate() { return 0; } // cannot make this abstract because we need to instantiate this for generic initialization
/// Evaluate functional with new parameter vector.
virtual Self::ReturnType EvaluateAt( ParameterVectorType& v )
{
this->SetParamVector( v );
return this->Evaluate();
}
#ifdef CMTK_BUILD_DEMO
/// Create a snapshot (to disk) of current functional result.
virtual void SnapshotAt( ParameterVectorType& ) {}
#endif
/// Evaluate functional and also return its gradient.
virtual Self::ReturnType EvaluateWithGradient( ParameterVectorType& v, ParameterVectorType& g, const Types::Coordinate step = 1 );
/// Return dimension of the parameter vector.
virtual size_t ParamVectorDim() const = 0;
/** Return dimension of the parmater vector's variable part.
* For example, the rotation center of a rigid body transformation is not
* considered variable. Therefore it should not be used for gradient
* computation. By default this function returns the total parameter
* vector length.
*/
virtual size_t VariableParamVectorDim() const
{
return this->ParamVectorDim();
}
/// Virtual destructor.
virtual ~Functional() {};
/** Get stepping for one parameter.
* This function serves to make sure that optimizers optimize all parameters with
* approximately equal impact. If a parameter has smaller impact than another, it should
* return a smaller value here.
*/
virtual Types::Coordinate GetParamStep( const size_t, const Types::Coordinate mmStep = 1 ) const
{
return mmStep;
}
/** Wiggle a little.
* If the functional is not time-invariant, e.g., due to randomization,
* then the optimizer can tell it to re-organize itself for example for
* a repeated search.
*\return If this function returns true, then the functional did indeed
* wiggle a little, i.e., potentially change. If the function returns
* false, then the functional does not support this operation, and the
* optimizer can assume that further evaluations will produce exactly
* the same values as before.
*/
virtual bool Wiggle() { return false; }
};
//@}
} // namespace cmtk
#endif // #ifndef _FUNCTIONAL_H_
|