1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2012 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include "cmtkGeneralLinearModel.h"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#ifdef HAVE_IEEEFP_H
# include <ieeefp.h>
#endif
#include <System/cmtkProgress.h>
#include <Base/cmtkMathUtil.h>
namespace
cmtk
{
/** \addtogroup Base */
//@{
#define TOL 1.0e-5
GeneralLinearModel::GeneralLinearModel
( const size_t nParameters, const size_t nData, const double* designMatrix ) :
NParameters( nParameters ),
NData( nData ),
DesignMatrix( nData, nParameters, designMatrix ),
Up( nParameters ),
Vp( nParameters ),
Wp( nParameters ),
VariableMean( nParameters ),
VariableSD( nParameters )
{
this->LeastSquares();
}
void
GeneralLinearModel::LeastSquares()
{
U = new Matrix2D<double>( NData, NParameters );
V = new Matrix2D<double>( NParameters, NParameters );
W = new std::vector<double>( NParameters );
double wmax, thresh;
std::vector<double> data( this->NData );
for ( size_t j=0; j < NParameters; ++j )
{
// set up data vector for parameter 'j'
for ( size_t i=0; i < this->NData; ++i )
{
data[i] = DesignMatrix[i][j];
(*U)[i][j] = DesignMatrix[i][j];
}
// compute variance
this->VariableMean[j] = MathUtil::Mean<double>( data );
this->VariableSD[j] = MathUtil::Variance<double>( data, this->VariableMean[j] );
// convert variance to standard deviation
this->VariableSD[j] = sqrt( this->VariableSD[j] );
}
// perform SVD of design matrix
MathUtil::SVD( *(this->U), *(this->W), *(this->V) );
// prepare partial regressions, each with one of the parameters omitted
for ( size_t p=0; p < this->NParameters; ++p)
{
Up[p] = new Matrix2D<double>( NData, NParameters-1 );
Vp[p] = new Matrix2D<double>( NParameters-1, NParameters-1 );
Wp[p] = new std::vector<double>( NParameters-1 );
// create partial design matrix, omitting parameter 'p'
for ( size_t i=0; i < this->NData; ++i )
{
size_t jj = 0;
for ( size_t j=0; j < this->NParameters; ++j )
{
if ( j != p )
{
(*(this->Up[p]))[i][jj] = DesignMatrix[i][j];
++jj;
}
}
}
MathUtil::SVD( *(this->Up[p]), *(this->Wp[p]), *(this->Vp[p]) );
}
wmax=0.0;
for ( size_t j=0;j<NParameters;j++)
if ((*W)[j] > wmax) wmax=(*W)[j];
thresh=TOL*wmax;
for ( size_t j=0;j<NParameters;j++)
if ((*W)[j] < thresh) (*W)[j]=0.0;
}
Matrix2D<double>*
GeneralLinearModel::GetCorrelationMatrix() const
{
Matrix2D<double>* CC = new Matrix2D<double>( this->NParameters, this->NParameters );
std::vector<double> pi( this->NData );
std::vector<double> pj( this->NData );
for ( size_t i = 0; i < this->NParameters; ++i )
{
for ( size_t n = 0; n < this->NData; ++n )
{
pi[n] = this->DesignMatrix[n][i];
}
for ( size_t j = 0; j < this->NParameters; ++j )
{
if ( i <= j )
{
for ( size_t n = 0; n < this->NData; ++n )
{
pj[n] = this->DesignMatrix[n][j];
}
(*CC)[i][j] = MathUtil::Correlation( pi, pj );
}
else
{
(*CC)[i][j] = (*CC)[j][i];
}
}
}
return CC;
}
GeneralLinearModel::~GeneralLinearModel()
{
for ( size_t p=0; p < this->NParameters; ++p)
{
delete this->Wp[p];
delete this->Vp[p];
delete this->Up[p];
}
delete this->W;
delete this->V;
delete this->U;
}
void
GeneralLinearModel::InitResults( const size_t nPixels )
{
Model.clear();
TStat.clear();
for (size_t p = 0; (p<this->NParameters); ++p )
{
TypedArray::SmartPtr nextModel( TypedArray::Create( TYPE_FLOAT, nPixels ) );
Model.push_back( nextModel );
TypedArray::SmartPtr nextTStat( TypedArray::Create( TYPE_FLOAT, nPixels ) );
TStat.push_back( nextTStat );
}
FStat = TypedArray::SmartPtr( TypedArray::Create( TYPE_FLOAT, nPixels ) );
}
void
GeneralLinearModel::FitModel
( std::vector<TypedArray::SmartPtr>& y, const bool normalizeParameters )
{
assert( y.size() == this->NData );
const size_t nPixels = y[0]->GetDataSize();
this->InitResults( nPixels );
std::vector<double> lm_params( this->NParameters );
std::vector<double> b( this->NData );
std::vector<double> valueYhat( this->NData );
// number of degrees of freedom for t-statistics
// note: we omit "-1" because the constant in our model is either suppressed or an explicit parameter
const int df = this->NData - this->NParameters;
const size_t pixelUpdateIncrement = 10000;
Progress::Begin( 0, nPixels, pixelUpdateIncrement, "Linear model fitting" );
for ( size_t n = 0; n < nPixels; ++n )
{
if ( ! (n % pixelUpdateIncrement) )
if ( Progress::SetProgress( n ) != Progress::OK ) break;
bool missing = false;
Types::DataItem value;
for (size_t i = 0; (i<this->NData) && !missing; i++)
if ( y[i]->Get( value, n ) && finite( value ) )
b[i] = value;
else
missing = true;
if ( missing )
{
for (size_t p = 0; (p<this->NParameters); ++p )
{
this->Model[p]->SetPaddingAt( n );
this->TStat[p]->SetPaddingAt( n );
}
}
else
{
// use SVD of design matrix to compute model parameters lm_params[] from data b[]
MathUtil::SVDLinearRegression( *(this->U), *(this->W), *(this->V), b, lm_params );
// compute variance of data
double varY, avgY;
avgY = MathUtil::Mean<double>( this->NData, &b[0] );
varY = MathUtil::Variance<double>( this->NData, &b[0], avgY );
// copy model parameters into output
for (size_t p = 0; (p<this->NParameters); ++p )
{
value = lm_params[p];
if ( normalizeParameters )
// Cohen & Cohen, Eq. (3.5.2)
// Model[p]->Set( lm_params[p] * this->GetNormFactor( p ) / sqrt( varY ), n );
value *= this->GetNormFactor( p );
if ( finite( value ) )
this->Model[p]->Set( value, n );
else
this->Model[p]->SetPaddingAt( n );
}
// compute variance of approximated data using entire model
double varYhat, avgYhat;
for (size_t i = 0; i<this->NData; i++)
{
valueYhat[i] = 0.0;
for (size_t pi = 0; (pi<this->NParameters); ++pi )
valueYhat[i] += lm_params[pi] * this->DesignMatrix[i][pi];
}
avgYhat = MathUtil::Mean<double>( this->NData, &valueYhat[0] );
varYhat = MathUtil::Variance<double>( this->NData, &valueYhat[0], avgYhat );
// compute multiple R square
const double R2 = varYhat / varY;
this->FStat->Set( (R2*df) / ((1-R2)*this->NParameters), n );
std::vector<double> lm_params_P( this->NParameters-1 );
std::vector<double> valueYhatp( this->NData );
// for each parameter, evaluate R^2_i for model without parameter Xi
for (size_t p = 0; p < this->NParameters; ++p )
{
// use SVD of partial design matrix to compute partial regression
MathUtil::SVDLinearRegression( *(this->Up[p]), *(this->Wp[p]), *(this->Vp[p]), b, lm_params_P );
// compute variance of data
for (size_t i = 0; i < this->NData; i++)
{
valueYhatp[i] = 0.0;
size_t pip = 0;
for (size_t pi = 0; pi < this->NParameters; ++pi )
{
if ( p != pi )
{
valueYhatp[i] += lm_params_P[pip] * this->DesignMatrix[i][pi];
++pip;
}
}
double varYhatp, avgYhatp;
avgYhatp = MathUtil::Mean<double>( valueYhatp );
varYhatp = MathUtil::Variance<double>( valueYhatp, avgYhatp );
// copmpute R^2_p
const double R2p = varYhatp / varY;
// assert( (R2p >= 0) && (R2p < 1) );
// compute sr_p^2 from R^2 and R^2_p
const double srp = sqrt( R2 - R2p );
// assert( (sr2p >= 0) && (sr2p <= 1 ) );
// compute T-statistics
double tStat = static_cast<double>( srp * sqrt( df / (1.0-R2) ) );
// export T-statistics (set to zero if NAN)
if ( ! MathUtil::IsFinite( tStat ) )
tStat = 0;
this->TStat[p]->Set( tStat, n );
}
}
}
}
Progress::Done();
}
} // namespace cmtk
|