File: cmtkHistogram.h

package info (click to toggle)
cmtk 3.3.1p2%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,524 kB
  • sloc: cpp: 87,098; ansic: 23,347; sh: 3,896; xml: 1,551; perl: 707; makefile: 334
file content (326 lines) | stat: -rw-r--r-- 11,038 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
//
//  Copyright 1997-2009 Torsten Rohlfing
//
//  Copyright 2004-2012 SRI International
//
//  This file is part of the Computational Morphometry Toolkit.
//
//  http://www.nitrc.org/projects/cmtk/
//
//  The Computational Morphometry Toolkit is free software: you can
//  redistribute it and/or modify it under the terms of the GNU General Public
//  License as published by the Free Software Foundation, either version 3 of
//  the License, or (at your option) any later version.
//
//  The Computational Morphometry Toolkit is distributed in the hope that it
//  will be useful, but WITHOUT ANY WARRANTY; without even the implied
//  warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License along
//  with the Computational Morphometry Toolkit.  If not, see
//  <http://www.gnu.org/licenses/>.
//
//  $Revision: 5436 $
//
//  $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
//  $LastChangedBy: torstenrohlfing $
//
*/

#ifndef __cmtkHistogram_h_included_
#define __cmtkHistogram_h_included_

#include <cmtkconfig.h>

#include <Base/cmtkHistogramBase.h>

#include <System/cmtkSmartPtr.h>
#include <System/cmtkMemory.h>

#include <vector>
#include <algorithm>
#include <cassert>

namespace
cmtk
{

/** \addtogroup Base */
//@{

/** Histogram of a distribution with bins of arbitrary types.
 * This template is the base class for one-dimensional histograms that can
 * hold integer or real-valued bins, depending on the template parameter.
 *\param T Template parameter: the type of the histogram bins. Can be integral,
 * or double in case of fractional bins.
 */
template<class T>
class Histogram : 
  /// Inherit some non-template functions.
  public HistogramBase 
{
public:
  /// This class.
  typedef Histogram<T> Self;

  /// Parent class.
  typedef HistogramBase Superclass;

  /// Smart pointer.
  typedef SmartPointer<Self> SmartPtr;

  /// Bin type.
  typedef T BinType;

  /** Constructor.
   */
  Histogram ( const size_t numBins = 0 ) : m_Bins( numBins ) {}

  /** Destructor.
   */
  virtual ~Histogram () {}

  /// Resize and allocate histogram bins.
  virtual void Resize( const size_t numberOfBins, const bool reset = true )
  {
    this->m_Bins.resize( numberOfBins );

    if ( reset ) 
      this->Reset();
  }

  /// Make an identical copy of this object.
  typename Self::SmartPtr Clone () const
  {
    return typename Self::SmartPtr( this->CloneVirtual() );
  }

  /// Return number of histogram bins.
  virtual size_t GetNumberOfBins() const
  {
    return this->m_Bins.size();
  }

  /** Reset computation.
   * This function has to be called before any other computation made with an
   * object of this class. All bin counters are reset to zero, therefore
   * Reset() must also be called before any new computation performed using an
   * already previously used object.
   */
  void Reset ()
  {
    std::fill( this->m_Bins.begin(), this->m_Bins.end(), static_cast<T>( 0 ) );
  }

  /// Return number of values in a given bin using [] operator.
  const T operator[] ( const size_t index ) const 
  {
    assert( index < this->GetNumberOfBins() );
    return this->m_Bins[index];
  }

  /// Return reference to given bin.
  T& operator[] ( const size_t index ) 
  {
    assert( index < this->GetNumberOfBins() );
    return this->m_Bins[index];
  }
  
  /** Return total number of samples stored in the histogram.
   */
  T SampleCount () const 
  {
    T sampleCount = 0;
    
    for ( size_t i=0; i<this->m_Bins.size(); ++i )
      sampleCount += this->m_Bins[i];
    
    return sampleCount;
  }

  /** Return index of bin with highest value.
   */
  size_t GetMaximumBinIndex () const;

  /** Return maximum number of samples stored in any bin.
   */
  T GetMaximumBinValue () const 
  {
    return this->m_Bins[ this->GetMaximumBinIndex() ];
  }

  /** Compute entropy of distribution.
   * From the bin counts, the entropy of the distribution of values is 
   * estimated.
   */
  double GetEntropy() const;

  /** Get Kullback-Leibler divergence to other histogram. 
   * The second histogram must have the same number of bins, because the function
   * assumes bin-to-bin correspondence between the two distributions.
   *
   *\note Any bin value ranges set in derived classes are ignored here!
   */
  double GetKullbackLeiblerDivergence( const Self& other ) const;
  
  /** Increment the value of a histogram bin by 1.
   * The histogram field to increment is identified directly by its index;
   * no value-rescaling is done internally.
   *\param sample Index of histogram field.
   */
  void Increment ( const size_t sample ) 
  {
    ++this->m_Bins[sample];
  }

  /** Add weighted symmetric kernel to histogram.
   */
  void AddWeightedSymmetricKernel( const size_t bin /*!< Histogram bin index */, const size_t kernelRadius /*!< Kernel radius */, const T* kernel /* Pointer to kernel values */, const T factor = 1 /*!< Kernel multiplication factor */ );
  
  /** Add weighted symmetric kernel to histogram, spreading contriubtions between adjacent bins.
   */
  void AddWeightedSymmetricKernelFractional( const double bin /*!< Histogram bin index */, const size_t kernelRadius /*!< Kernel radius */, const T* kernel /* Pointer to kernel values */, const T factor = 1 /*!< Kernel multiplication factor */ );

  /** Increment the value of a histogram bins by fractions of 1.
   * The histogram field to increment is identified directly by its index;
   * no value-rescaling is done internally. The index for this function can be
   * a fractional value, in which case the entry is linearly distributed among
   * neighbouring bins.
   *\note If the bin type of this template object is an integer type, then
   * only the lower of two candidate bins will be decremented by 1.
   *\param bin Fractional index of histogram bin.
   */
  void IncrementFractional ( const double bin ) 
  {
    const T relative = static_cast<T>( bin - floor(bin) );
    this->m_Bins[static_cast<size_t>(bin)] += (1 - relative);
    if ( bin<(this->GetNumberOfBins()-1) )
      this->m_Bins[static_cast<size_t>(bin+1)] += relative;
  }
  
  /** Increment the value of a histogram bin by a given weight.
   * The histogram field to increment is identified directly by its index;
   * no value-rescaling is done internally.
   *\param sample Index of histogram field.
   *\param weight Weight of the current value, i.e., real value that the given
   * bin is incremented by.
   */
  void Increment ( const size_t sample, const double weight ) 
  {
    this->m_Bins[sample] += static_cast<T>( weight );
  }

  /** Decrement the value of a histogram bin by 1.
   * The histogram field to decrement is identified directly by its index;
   * no value-rescaling is done internally. Make sure that a value has actually
   * been added to this bin before - otherwise, the next entropy computation my
   * give some unexpected results.
   *\param sample Index of histogram field in direction.
   */
  void Decrement ( const size_t sample ) 
  {
    assert( this->m_Bins[sample] >= 1 );
    --this->m_Bins[sample];
  }

  /** Decrement the value of a histogram bins by fractions of 1.
   * The histogram field to increment is identified directly by its index;
   * no value-rescaling is done internally. The index for this function can be
   * a fractional value, in which case the entry is linearly distributed among
   * neighbouring bins.
   *\note If the bin type of this template object is an integer type, then
   * only the lower of two candidate bins will be decremented by 1.
   *\param bin Fractional index of histogram bin.
   */
  void DecrementFractional ( const double bin ) 
  {
    T relative = static_cast<T>( bin - floor(bin) );
    this->m_Bins[static_cast<size_t>(bin)] -= (1 - relative);
    if ( bin<(this->GetNumberOfBins()-1) )
      this->m_Bins[static_cast<size_t>(bin+1)] -= relative;
  }

  /** Decrement the value of a histogram bin by given weight.
   * The histogram field to decrement is identified directly by its index;
   * no value-rescaling is done internally. Make sure that a value has actually
   * been added to this bin before - otherwise, the next entropy computation my
   * give some unexpected results.
   *\param sample Index of histogram field in direction.
   *\param weight Weight of the current value, i.e., real value that the given
   * bin is decremented by.
   */
  void Decrement ( const size_t sample, const double weight ) 
  {
    assert( this->m_Bins[sample] >= weight );
    this->m_Bins[sample] -= static_cast<T>( weight );
  }

  /** Add values from another histogram.
   * Adding is done by corresponding bins. The caller has to make sure that
   * both histograms actually have the same number and arrangement of bins.
   * It is also a good idea to ensure that the data range of these bins is
   * the same in both objects. Both can be guaranteed if one histogram was
   * created from the other by a call to Clone() for example.
   *\param other A pointer to the other histogram. Its bin values are added to
   * this object's bins.
   */
  void AddHistogram ( const Self& other );

  /** Subtract bin values from another histogram.
   * Subtraction is done by corresponding bins. The caller has to make sure 
   * that both histograms actually have the same number of 
   * bins. It is also a good idea to ensure that the data ranges of these bins
   * are the same in both objects. Both can be guaranteed if one histogram was
   * created from the other by a call to Clone() for example.
   *\param other A pointer to the other histogram. Its bin values are
   * subtracted this object's bins.
   */
  void RemoveHistogram ( const Self& other );


  /// Convert this histogram to a cumulative histogram (in place).
  void ConvertToCumulative()
  {
    for ( size_t idx = 1; idx < this->GetNumberOfBins(); ++idx )
      {
      this->m_Bins[idx] += this->m_Bins[idx-1];
      }
  }
  /** Normalize histogram values by their total sum.
   *\param normalizeTo All histogram bins are scaled by a common factor so that
   * their sum matches the value of this parameter.
   */
  void Normalize( const T normalizeTo = 1 );

  /** Normalize histogram values by their maximum.
   *\param normalizeTo All histogram bins are scaled by a common factor so that
   * their maximum matches the value of this parameter.
   */
  void NormalizeMaximum( const T normalizeTo = 1 );

  /** Compute approximate percentile value from histogram.
   */
  Types::DataItem GetPercentile( const Types::DataItem percentile /*!< The percentile to be computed. Value must be between 0 and 1.*/ ) const;

protected:
  /// Make an identical copy of this object including derived class objects
  virtual Self* CloneVirtual() const
  {
    return new Self( *this );
  }

private:
  /// Array bins.
  std::vector<T> m_Bins;
};

//@}

} // namespace cmtk

#include "cmtkHistogram.txx"

#endif // #ifndef __cmtkHistogram_h_included_