1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
/*
//
// Copyright 2009-2011 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include "cmtkImageOperationRegionFilter.h"
void
cmtk::ImageOperationRegionFilter
::NewGeneric( const Self::OperatorEnum op, const char* arg )
{
int radiusX = 1;
int radiusY = 1;
int radiusZ = 1;
const size_t nRadii = sscanf( arg, "%10d,%10d,%10d", &radiusX, &radiusY, &radiusZ );
if ( nRadii == 1 )
{
radiusZ = radiusY = radiusX;
}
else
{
if ( nRadii != 3 )
{
cmtk::StdErr << "ERROR: downsampling radii must either be three integers, x,y,z, or a single integer\n";
exit( 1 );
}
}
ImageOperation::m_ImageOperationList.push_back( SmartPtr( new ImageOperationRegionFilter( op, radiusX, radiusY, radiusZ ) ) );
}
cmtk::UniformVolume::SmartPtr
cmtk::ImageOperationRegionFilter
::Apply( cmtk::UniformVolume::SmartPtr& volume )
{
switch ( this->m_Operator )
{
case MEDIAN:
volume->SetData( DataGridFilter( volume ).GetDataMedianFiltered( this->m_RadiusX, this->m_RadiusY, this->m_RadiusZ ) );
break;
case MEAN:
volume->SetData( DataGridFilter( volume ).RegionMeanFilter( this->m_RadiusX, this->m_RadiusY, this->m_RadiusZ ) );
break;
case FAST_MEAN:
volume->SetData( DataGridFilter( volume ).FastRegionMeanFilter( this->m_RadiusX, this->m_RadiusY, this->m_RadiusZ ) );
break;
case VARIANCE:
volume->SetData( DataGridFilter( volume ).RegionVarianceFilter( this->m_RadiusX, this->m_RadiusY, this->m_RadiusZ ) );
break;
case FAST_VARIANCE:
volume->SetData( DataGridFilter( volume ).FastRegionVarianceFilter( this->m_RadiusX, this->m_RadiusY, this->m_RadiusZ ) );
break;
case THIRD_MOMENT:
volume->SetData( DataGridFilter( volume ).RegionThirdMomentFilter( this->m_RadiusX, this->m_RadiusY, this->m_RadiusZ ) );
break;
case STANDARD_DEVIATION:
volume->SetData( DataGridFilter( volume ).RegionStandardDeviationFilter( this->m_RadiusX, this->m_RadiusY, this->m_RadiusZ ) );
break;
case SMOOTHNESS:
volume->SetData( DataGridFilter( volume ).RegionSmoothnessFilter( this->m_RadiusX, this->m_RadiusY, this->m_RadiusZ ) );
break;
}
return volume;
}
|