1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2012 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#ifndef __cmtkMathUtil_h_included_
#define __cmtkMathUtil_h_included_
#include <cmtkconfig.h>
#include <Base/cmtkUnits.h>
#include <Base/cmtkMatrix.h>
#ifdef HAVE_STDINT_H
# include <stdint.h>
#else
# ifdef _MSC_VER
typedef unsigned int uint32_t;
# endif // _MSC_VER
#endif
#include <algorithm>
#include <cfloat>
#include <math.h>
#include <stdlib.h>
#ifdef HAVE_IEEEFP_H
# include <ieeefp.h>
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifdef _MSC_VER
/* Some useful constants taken from SGI's math.h */
#define M_E 2.7182818284590452354
#define M_LOG2E 1.4426950408889634074
#define M_LOG10E 0.43429448190325182765
#define M_LN2 0.69314718055994530942
#define M_LN10 2.30258509299404568402
#define M_PI_2 1.57079632679489661923
#define M_PI_4 0.78539816339744830962
#define M_1_PI 0.31830988618379067154
#define M_2_PI 0.63661977236758134308
#define M_2_SQRTPI 1.12837916709551257390
#define M_SQRT2 1.41421356237309504880
#define M_SQRT1_2 0.70710678118654752440
#endif
namespace
cmtk
{
/** \addtogroup Base */
//@{
/** General-purpose mathematical functions and function templates.
*/
class MathUtil
{
private:
/// This class.
typedef MathUtil Self;
public:
/// Portable test for "not a number" values.
template<class T>
static bool IsNaN( const T value )
{
return isnan( value );
}
/// Portable test for "finite" values.
template<class T>
static bool IsFinite( const T value )
{
return finite( value ) != 0;
}
/// Unit-safe sin() function.
static double Sin( const Units::Radians& radians )
{
return sin( radians.Value() );
}
/// Unit-safe cos() function.
static double Cos( const Units::Radians& radians )
{
return cos( radians.Value() );
}
/// Unit-safe tan() function.
static double Tan( const Units::Radians& radians )
{
return tan( radians.Value() );
}
/// Unit-safe asin() function.
static const Units::Radians ArcSin( const double value )
{
return Units::Radians( asin( value ) );
}
/// Unit-safe acos() function.
static const Units::Radians ArcCos( const double value )
{
return Units::Radians( acos( value ) );
}
/// Unit-safe atan() function.
static const Units::Radians ArcTan( const double value )
{
return Units::Radians( atan( value ) );
}
/// Unit-safe atan2() function.
static const Units::Radians ArcTan2( const double y, const double x )
{
return Units::Radians( atan2( y, x ) );
}
/// Return square of a float value.
template<class T> static T Square ( const T a) { return a*a; }
/** Return minimum of an array of ordered values.
*/
template<class T> static T Min ( const int nValues, const T* Values )
{
T Result = Values[0];
for ( int idx=1; idx<nValues; ++idx )
Result = std::min( Result, Values[idx] );
return Result;
}
/** Return minimum of an array of ordered values.
*/
template<class T> static T Max ( const int nValues, const T* Values )
{
T Result = Values[0];
for ( int idx=1; idx<nValues; ++idx )
Result = std::max( Result, Values[idx] );
return Result;
}
/// Return length of intersection of two intervals.
template<class T> static T Intersect ( const T aMin, const T aMax, const T bMin, const T bMax )
{
return ( std::min( aMax, bMax ) - std::max( aMin, bMin ) );
}
/// Round float value to the nearest integer.
template<class T> static int Round ( const T a ) { return (int)floor(a+0.5); }
/** Return sign of float value.
*\return -1 if a<0, 1 if a>0, 0 if a==0.
*/
template<class T> static int Sign ( const T a ) { return (a<0)?-1:((a==0)?0:1); }
/** Check if some float value is within a range.
*\return 0 if value is in range, -1 if value is below minumum, 1 if value
* is above maximum.
*/
template<class T> static int CheckRange ( const T value, const T a, const T b )
{
const int sigA = Self::Sign(value-a);
return (sigA == Self::Sign(value-b))?sigA:0;
}
/// Compute p*log(p) for a single value.
template<class T> static double plogp( const T p ) { return (p>0) ? p * log( p ) : 0.0; }
/** Computes average of an array of float values.
*/
template<class T> static
T Mean
( const unsigned int nValues, const T* values );
/** Computes average of a vector of float values.
*/
template<class T> static
T Mean
( const std::vector<T>& values );
/** Computes variance of an array of float values.
*\param nValues Number of values in "values" array.
*\param values The array of values to compute the variance of.
*\param mean Previously calculated mean of the array values.
*\param unbiased If this flag is set (default: unset), then the variance
* will be computed over nValues-1; otherwise over nValues.
*/
template<class T> static
T Variance
( const unsigned int nValues, const T* values, T mean, const bool unbiased = false );
/** Computes variance of a vector of float values.
*\param values Vector of values to compute variance from.
*\param mean Previously computed mean of vector values.
*\param unbiased If this flag is set (default: unset), then the variance
* will be computed over nValues-1; otherwise over nValues.
*/
template<class T> static
T Variance
( const std::vector<T>& values, T mean, const bool unbiased = false );
/** Normalized correlation coefficient between two float vectors.
*/
template<class T> static
T Correlation( const std::vector<T>& x, const std::vector<T>& y );
/// Compute t-statistic from coefficient of correlation.
static double TStatFromCorrelation( const double r /*!< Coefficient of correlation as computed by MathUtil::Correlation function.*/,
const size_t df /*!< Number of degrees of freedom*/ );
/// Compute probability from T-statistic.
static double ProbabilityFromTStat( const double t /*!< T-statistic as returned for example from MathUtil::TStatFromCorrelation function.*/,
const size_t df /*!< Number of degrees of freedom.*/ );
/** Performs two-tailed unpaired t-test on two distributions.
*/
template<class T> static
T TTest ( const std::vector<T>& valuesX, const std::vector<T>& valuesY, T& t );
/** Performs two-tailed unpaired t-test on two distributions.
* Also return average value for each distribution.
*/
template<class T> static
T TTest ( const std::vector<T>& valuesX, const std::vector<T>& valuesY, T& t, T& avgX, T& avgY );
/** Performs two-tailed paired t-test on two distributions.
* Also return average value for each distribution.
*/
template<class T> static
T PairedTTest ( const std::vector<T>& valuesX, const std::vector<T>& valuesY, T& t, T& avgX, T& avgY );
/** Performs one-sample t-test on distribution to test for zero mean.
* Also return average value for each distribution.
*/
template<class T> static
T TTest ( const std::vector<T>& valuesX, T& t, T& avgX );
/// Beta-i function.
static double Betai( const double a, const double b, const double x );
/// Beta-Cf function.
static double BetaCf( const double a, const double b, const double x );
/// GammaLn function.
static double GammaLn( const double xx );
/// Singular Value Decomposition
static void SVD( Matrix2D<double>& U, std::vector<double>& W, Matrix2D<double>& V );
/// Linear Regression using SVD results
static void
SVDLinearRegression( const Matrix2D<double>& U, const std::vector<double>& W, const Matrix2D<double>& V, const std::vector<double>& b, std::vector<double>& lm_params );
/// Function that compares two floats; to be used in qsort().
static inline int CompareFloat( const void *a, const void *b )
{
const float* A = static_cast<const float*>( a );
const float* B = static_cast<const float*>( b );
if ( *A > *B ) return +1;
if ( *A < *B ) return -11;
return 0;
}
/// Function that compares two doubles; to be used in qsort().
static inline int CompareDouble( const void *a, const void *b )
{
const double A = *(static_cast<const double*>( a ));
const double B = *(static_cast<const double*>( b ));
if ( A > B ) return +1;
if ( A < B ) return -1;
return 0;
}
/** Generate normally distributed random numbers.
* This function uses the Box-Muller method to transform a pair of uniformly
* distributed random numbers into a pair of normally (ie., Gaussian)
* distributed random numbers. One of the two generated numbers is returned
* while the other is stored so that, when this function is called the next
* time, the previously computed value can be returned without further
* computational expense.
*\param sigma Standard deviation of the resulting distribution.
*/
static inline double NormalRandom( const double sigma )
{
static bool secondNumberReady = false;
static double secondNumber = 0;
if ( secondNumberReady )
{
secondNumberReady = false;
return secondNumber;
}
double x1, x2, w;
do
{
x1 = 2.0 * (random()&0xffffff)/0x1000000 - 1.0;
x2 = 2.0 * (random()&0xffffff)/0x1000000 - 1.0;
w = x1 * x1 + x2 * x2;
} while ( w >= 1.0 );
w = sqrt( (-2.0 * log( w ) ) / w );
secondNumber = x1 * w * sigma;
return x2 * w * sigma;
}
/** Generate normally distributed random numbers with explicit seed.
*\param sigma Standard deviation of the resulting distribution.
*\param seed Random seed given to srandom() function.
*/
static inline double NormalRandom( const double sigma, const unsigned int seed )
{
srandom( seed );
return NormalRandom( sigma );
}
/** Uniform random number generator.
*\return A random number from a uniform distribution over the interval [0,1).
*/
static double UniformRandom();
/// Determinant of an n x n square matrix.
template<class T> static T CholeskyDeterminant( const Matrix2D<T>& matrix, int n);
};
//@}
} // namespace cmtk
#include "cmtkMathUtil_Statistics.txx"
#endif // #ifndef __cmtkMathUtil_h_included_
|