1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2013 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include <Base/cmtkMathUtil.h>
#include <Base/cmtkMatrix.h>
#include <System/cmtkConsole.h>
#include "Numerics/sevd.h"
#include "Numerics/spddet.h"
#include "Numerics/svd.h"
#include <math.h>
#include <algorithm>
#include <vector>
namespace
cmtk
{
void
MathUtil::SVD( Matrix2D<double>& U, std::vector<double>& W, Matrix2D<double>& V )
{
const size_t m = U.NumberOfRows();
const size_t n = U.NumberOfColumns();
W.resize( n );
V.Resize( n, n );
ap::real_2d_array apA;
apA.setbounds(0, m-1, 0, n-1);
for (size_t j = 0; j < n; j++)
for (size_t i = 0; i < m; i++)
apA(i,j) = U[i][j];
ap::real_1d_array w;
ap::real_2d_array u;
ap::real_2d_array vt;
rmatrixsvd( apA, m, n,
true /* U needed */,
true /* V needed */,
2 /*max-level memory usage */,
w, u, vt);
/* Put u in U */
for (size_t j = 0; j < n; j++)
for (size_t i = 0; i < m; i++)
U[i][j] = u(i,j);
/* Put w in W */
for (size_t i = 0; i < n; i++)
W[i] = w(i);
/* Un-transpose vt and put it in V */
for (size_t j = 0; j < n; j++)
for (size_t i = 0; i < n; i++)
V[i][j] = vt(j,i);
}
/** TODO: move this someplace more logical than the linear-algebra module
*/
void
MathUtil::SVDLinearRegression( const Matrix2D<double>& U, const std::vector<double>& W, const Matrix2D<double>& V, const std::vector<double>& b, std::vector<double>& lm_params )
{
const size_t m = U.NumberOfRows();
const size_t n = U.NumberOfColumns();
lm_params.resize( n );
// From alglib linear regression:
// Take the inverses of the singular values, setting the inverse
// to 0 if the sv is close to 0 (tolerance controlled by epstol)
double epstol = 1000;
ap::real_1d_array svi;
svi.setbounds( 0, n-1 );
for( size_t i = 0; i < n; i++ )
if( W[i] > epstol*ap::machineepsilon * W[0] )
svi(i) = 1 / W[i];
else
svi(i) = 0;
// Calculate linear model parameters following Heath, Ch. 3.6
// (Scientific Computing: An Introductory Survey, 2nd Ed., 2002)
for ( size_t i = 0; i < n; i++ )
lm_params[i] = 0.0;
for ( size_t i = 0; i < n; i++ )
{
double ut_times_b = 0.0;
for ( size_t j = 0; j < m; j++ )
ut_times_b += U[j][i] * b[j];
ut_times_b *= svi(i);
for ( size_t j = 0; j < n; j++ )
lm_params[j] += ut_times_b * V[j][i];
}
}
/////////////////////////////////////////////////////////////////////
// HELPERS
/////////////////////////////////////////////////////////////////////
template<class T>
T
MathUtil::CholeskyDeterminant
(const Matrix2D<T>& matrix, int n)
{
ap::real_2d_array apMatrix;
apMatrix.setbounds(0, n-1, 0, n-1);
for (int j = 0; j < n; j++)
for (int i = 0; i < n; i++)
apMatrix(i,j) = (double)(1.0 * matrix[i][j]);
spdmatrixcholesky( apMatrix, n, false );
T determinant = (T) spdmatrixcholeskydet( apMatrix, n );
return determinant;
}
template double MathUtil::CholeskyDeterminant<double>(const Matrix2D<double>& matrix, int n);
template float MathUtil::CholeskyDeterminant<float>(const Matrix2D<float>& matrix, int n);
} // namespace cmtk
|