1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
|
/*
//
// Copyright 1997-2011 Torsten Rohlfing
//
// Copyright 2004-2013 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#ifndef __cmtkTemplateArray_h_included_
#define __cmtkTemplateArray_h_included_
#include <cmtkconfig.h>
#include <Base/cmtkTypedArray.h>
#include <Base/cmtkTypedArrayFunction.h>
#include <System/cmtkConsole.h>
#include <cmath> // for float abs()
#include <cstdlib> // for int abs()
namespace
cmtk
{
/** \addtogroup Base */
//@{
/** Template for Variable-Typed Data Arrays.
* From this object, various children are derived for the concrete data types
* to be handled.
* @author Torsten Rohlfing
*/
template<class T>
class TemplateArray :
/** Inherit class interface from virtual base class. */
public TypedArray
{
public:
/// This type.
typedef TemplateArray<T> Self;
/// Base class.
typedef TypedArray Superclass;
/// Smart pointer.
typedef SmartPointer<Self> SmartPtr;
/** Data type traits. */
typedef DataTypeTraits<T> TypeTraits;
/// Create array of this type.
static typename Self::SmartPtr Create( const size_t size )
{
return typename Self::SmartPtr( new Self( size ) );
}
/// Return const pointer to actual data.
const T* GetDataPtrConcrete() const { return this->Data; }
/// Return pointer to actual data.
T* GetDataPtrConcrete() { return this->Data; }
/// Set the value to mark non-existent data using template data type.
void SetPaddingValueTemplate ( const T paddingData )
{
this->Padding = paddingData;
this->PaddingFlag = true;
}
/** Constructor.
* A typed array is built from an existing array.
*\param data Pointer to the array of values to be stored.
*\param datasize Number of elements in the data array.
*\param paddingflag Flag that indicates whether there are missing elements in
* the existing data array.
*\param paddingData Value that marks missing elements in the data array if "paddingFlag" is true.
*\param deallocator Pointer to deallocator object, or NULL if deallocation of data block is handled by another object.
*/
TemplateArray ( void *const data, const size_t datasize, const bool paddingflag, const void* paddingData, const Memory::DeallocatorFunctionPointer deallocator = NULL )
{
this->m_Deallocator = deallocator;
m_DataType = TypeTraits::DataTypeID;
Data = static_cast<T*>( data );
DataSize = datasize;
PaddingFlag = paddingflag;
if ( paddingData )
Padding = *((T*)paddingData);
else
Padding = (T) 0;
}
/** Constructor.
* Allocate an array of a given size.
*/
TemplateArray ( const size_t datasize = 0 )
: Padding( 0 )
{
m_DataType = TypeTraits::DataTypeID;
Data = NULL;
this->Alloc( datasize );
}
/** Destructor.
* Free memory by a call to FreeData().
*/
virtual ~TemplateArray ()
{
this->FreeData();
}
/// Set the value to mark non-existent data using interface data type.
virtual void SetPaddingValue ( const Types::DataItem paddingData )
{
this->SetPaddingValueTemplate( TypeTraits::Convert( paddingData ) );
}
/// Set the value to mark non-existent data using interface data type.
virtual void SetPaddingPtr ( const void* paddingData )
{
this->SetPaddingValueTemplate( *((T*) paddingData) );
}
/// Replace Padding data (padding) with given value.
virtual void ReplacePaddingData ( const Types::DataItem value = 0 )
{
if ( PaddingFlag )
{
T v = TypeTraits::Convert( value );
for ( size_t i = 0; i < DataSize; ++i )
if ( Data[i] == Padding )
{
Data[i] = v;
}
}
}
/** Check for NULL data at given index.
* If this array does not have PaddingFlag set, the result is always false.
*/
virtual bool IsPaddingAt( const size_t index ) const
{
return PaddingFlag && (Data[index]==Padding);
}
/** Check for PADDING data or zero value at given index.
*/
virtual bool IsPaddingOrZeroAt( const size_t index ) const
{
return (PaddingFlag && (Data[index]==Padding)) || Data[index] == (T)0;
}
virtual void SetPaddingAt ( const size_t index = 0 )
{
if ( !PaddingFlag )
{
Padding = TypeTraits::ChoosePaddingValue();
PaddingFlag = true;
}
Data[index] = Padding;
}
/// Return id of primitive data type handled by this object.
virtual ScalarDataType GetType () const { return TypeTraits::DataTypeID; }
/// Return size in bytes of the primitive data type handled by this object.
virtual size_t GetItemSize () const { return sizeof(T); }
/// Return pointer to an element in this objects data array.
virtual void* GetDataPtr( const size_t offset = 0 )
{
return Data + offset;
}
/// Return const pointer to an element in this objects data array.
virtual const void* GetDataPtr( const size_t offset = 0 ) const
{
return Data + offset;
}
/// Return pointer to an element in this objects data array.
virtual T* GetDataPtrTemplate( const size_t offset = 0 )
{
return Data + offset;
}
/// Return const pointer to an element in this objects data array.
virtual const T* GetDataPtrTemplate( const size_t offset = 0 ) const
{
return Data + offset;
}
/** Convert and copy continuous sub-array to a given destination.
*\param toPtr A pointer to the location where the data shall be stored.
*\param fromIdx The index of the first copied data item in the array,
* beginning with 0.
*\param len Length, ie. number of values, to copy. The calling function
* must take care that there is enough memory pointed to by toPtr to store
* this many values of the transfer data type.
*\param substPadding Where there is padding data in the copied range, this value
* is put to the output.
*\return The pointer given to this function to store the desired data to.
*/
virtual Types::DataItem* GetSubArray( Types::DataItem *const toPtr, const size_t fromIdx , const size_t len, const Types::DataItem substPadding = 0 ) const
{
int index = fromIdx;
if ( PaddingFlag )
{
for ( size_t i = 0; i<len; ++i, ++index )
{
T value = Data[index];
if (value == Padding)
toPtr[i] = substPadding;
else
toPtr[i] = static_cast<Types::DataItem>( value );
}
}
else
{
for ( size_t i = 0; i<len; ++i, ++index )
toPtr[i] = static_cast<Types::DataItem>( Data[index] );
}
return toPtr;
}
/** Return a sub array of the current instance.
* The data is returned in a newly allocated primitive array of the Types::DataItem
* data exchange type.
*\param fromIdx Copying starts at this index in the array. The range for
* this parameter is [0..Size-1].
*\param len Number of data elements to be copied.
*\param substPadding If this flag is set (default is NO), then during copying
* all elements marked as "non-existent" are replaced by zero.
*\return Pointer to a newly allocated Types::DataItem array. Allocation is done
* using the allocator given as template parameter "M" to this class.
*/
virtual Types::DataItem* GetSubArray( const size_t fromIdx, const size_t len, const Types::DataItem substPadding = 0 ) const
{
Types::DataItem* buffer = Memory::ArrayC::Allocate<Types::DataItem>( len );
return this->GetSubArray( buffer, fromIdx, len, substPadding );
}
/** Convert Types::DataItem to template type.
* This function takes an Types::DataItem value and converts it into a value of the
* type stored in this array.
*\param value The item in Types::DataItem representation.
*\return The value of type T corresponding to the "value" parameter's value.
* Conversion is done using the type converter class given as template
* parameter "C" to this class. Therefore, rounding will occur if necessary.
*/
virtual T ConvertItem ( const Types::DataItem value )
{
return TypeTraits::Convert( value, PaddingFlag, Padding );
}
/** Convert to typed array of any given template type.
*/
virtual TypedArray::SmartPtr Convert( const ScalarDataType dtype ) const;
/** Convert a sub-array to any given primitive data type.
*\todo It would probably be a good idea to preserve PaddingData as much as
* possible during the conversion.
*/
virtual void* ConvertSubArray( const ScalarDataType dtype, const size_t fromIdx, const size_t len ) const;
/** Convert a sub-array to given primitive data type into existing array.
*\return Pointer provided as "destination".
*/
virtual void* ConvertSubArray( void *const destination, const ScalarDataType dtype, const size_t fromIdx, const size_t len )
const;
/** Change endianness of data.
*/
virtual void ChangeEndianness();
/** Scale values in the array.
* A call to this member function will perform an in-place rescaling of the
* values in the array.
*\param scale The original data value is multiplied by the parameter first.
*\param offset This value is added to the original data value after
* multiplying it by the scale parameter.
*/
virtual void Rescale( const Types::DataItem scale = 1, const Types::DataItem offset = 0 )
{
#pragma omp parallel for
for ( int i = 0; i < static_cast<int>( this->DataSize ); ++i )
if ( ! PaddingFlag || (Data[i] != Padding ) )
Data[i] = TypeTraits::Convert( (scale * Data[i]) + offset );
}
/** Scale and shift values in the array.
* Data values are scaled first, then the offsewt is added, and finally the (left) bit shift is applied.
* In fact, to make sure we're not messing up floats, the bit shift is applied as a multiplication.
*/
virtual void RescaleAndShift( const Types::DataItem scale = 1, const Types::DataItem offset = 0, const size_t shiftBits = 0 )
{
const long int shiftMultiplier = (1<<shiftBits);
#pragma omp parallel for
for ( int i = 0; i < static_cast<int>( this->DataSize ); ++i )
if ( ! PaddingFlag || (Data[i] != Padding ) )
Data[i] = TypeTraits::Convert( ((scale * Data[i]) + offset) * shiftMultiplier );
}
/** Scale values in the array with truncation boundaries.
* A call to this member function will perform an in-place rescaling of the
* values in the array with value range truncation. Truncation takes place
* after the scaling itself, i.e., the truncation boundaries refer to the
* already scaled values.
*\param scale The original data value is multiplied by the parameter first.
*\param offset This value is added to the original data value after
* multiplying it by the scale parameter.
*\param truncLo Lower truncation boundary. Scaled items below this
* threshold will be set to equal its value.
*\param truncHi Upper truncation boundary. Scaled items above this
* threshold will be set to equal its value.
*/
virtual void Rescale( const Types::DataItem scale, const Types::DataItem offset, const Types::DataItem truncLo, const Types::DataItem truncHi = CMTK_ITEM_MAX )
{
#pragma omp parallel for
for ( int i = 0; i < static_cast<int>( this->DataSize ); ++i )
if ( ! PaddingFlag || (Data[i] != Padding ) )
{
Data[i] = TypeTraits::Convert( (scale * Data[i]) + offset );
if ( Data[i] < truncLo )
Data[i] = TypeTraits::Convert( truncLo );
else
if ( Data[i] > truncHi )
Data[i] = TypeTraits::Convert( truncHi );
}
}
/** Apply gamma correction.
*\param gamma The gamma correction coefficient.
*/
virtual void GammaCorrection( const Types::DataItem gamma );
/** Apply real function to data.
*/
virtual void ApplyFunctionFloat( typename Self::FunctionTypeFloat f );
/** Apply real function to data.
*/
virtual void ApplyFunctionDouble( typename Self::FunctionTypeDouble f );
/** Threshold data.
* All values above upper threshold are set to upper thrershold. All values
* below lower threshold are set to lower threshold.
*/
virtual void Threshold( const Types::DataItemRange& range )
{
const T lo = TypeTraits::Convert( range.m_LowerBound );
const T hi = TypeTraits::Convert( range.m_UpperBound );
#pragma omp parallel for
for ( int i = 0; i < static_cast<int>( this->DataSize ); ++i )
if ( ! PaddingFlag || (Data[i] != Padding ) )
{
if ( Data[i] < lo )
Data[i] = lo;
else
if ( Data[i] > hi )
Data[i] = hi;
}
}
/** Threshold data.
* All values outside the threshold range are set to the Padding (padding)
* value.
*/
virtual void ThresholdToPadding( const Types::DataItemRange& range )
{
const T lo = TypeTraits::Convert( range.m_LowerBound );
const T hi = TypeTraits::Convert( range.m_UpperBound );
#pragma omp parallel for
for ( int i = 0; i < static_cast<int>( this->DataSize ); ++i )
if ( ! PaddingFlag || (Data[i] != Padding ) )
{
if ( (Data[i] < lo) || (Data[i] > hi) )
Data[i] = this->Padding;
}
}
/** Binarize array values with given threshold.
* All values greater than threshold (default: zero) are set to one, all
* values smaller or equal are set to zero.
*/
virtual void Binarize( const Types::DataItem threshold = 0 )
{
T thresh = TypeTraits::Convert( threshold );
T one = TypeTraits::Convert( 1.0 ), zero = TypeTraits::Convert( 0.0 );
#pragma omp parallel for
for ( int i = 0; i < static_cast<int>( this->DataSize ); ++i )
if ( ! PaddingFlag || (Data[i] != Padding ) )
{
if ( Data[i] > thresh )
Data[i] = one;
else
Data[i] = zero;
}
}
/// Convert all values to absolute values.
virtual void MakeAbsolute()
{
#pragma omp parallel for
for ( int i = 0; i < static_cast<int>( this->DataSize ); ++i )
if ( ! PaddingFlag || (Data[i] != Padding ) )
Data[i] = std::abs( Data[i] );
}
/** Get an item from the array.
*\param value The variable referenced by this parameter is set to the
* data item stored at the given location in the array. If this item is
* marked is "padding data", ie. non-existent, "value" is set to zero.
*\param index The index of the item to retrieve. Valid values are in the
* range [0..Datasize()-1].
*\return A non-zero value is returned if and only if the value stored in
* the array at the given location is marked as valid data.
*/
virtual bool Get ( Types::DataItem& value, const size_t index ) const
{
CheckBounds( index, DataSize );
if (PaddingFlag && (Padding==Data[index]))
{
value = 0;
return false;
}
value = static_cast<Types::DataItem>( Data[index] );
return true;
}
/// Return data or a given default value if no data exists there.
virtual Types::DataItem ValueAt ( const size_t idx, const Types::DataItem defaultValue = 0.0 ) const
{
CheckBounds( idx, this->DataSize );
if (this->PaddingFlag && (this->Padding==this->Data[idx]))
{
return defaultValue;
}
else
{
return static_cast<Types::DataItem>( Data[idx] );
}
}
/** Get a sequence of items from the array.
*\param values This must point to an allocated array of at least as many
* Types::DataItem objects as given in the "length" parameter.
*\param index The index of the item to retrieve. Valid values are in the
* range [0..Datasize()-1].
*\param length Number of consecutive values to get.
*/
virtual void GetSequence ( Types::DataItem *const values, const size_t index, const size_t length ) const
{
CheckBounds( index+length-1, DataSize );
for ( size_t i = 0; i < index+length; ++i )
if (PaddingFlag && (Padding==Data[index]))
values[i] = 0;
else
values[i] = static_cast<Types::DataItem>( Data[index] );
}
/** Set an item in the array.
*\param value The new value for the specified item.
*\param index The index of the item to set. Valid values are in the
* range [0..Datasize()-1].
*\see Convert
*/
virtual void Set ( const Types::DataItem value, const size_t index )
{
CheckBounds( index, DataSize );
Data[index] = this->ConvertItem( value );
}
/** Return padding data value as pointer to native representation.
* This function returns a pointer to the value used by this object for
* marking non-existent data. As the type of this value depends on the
* template parameters of this class, only a void pointer can be returned.
* The caller has to interpret the value stored at that location itself.
*
* If this array does NOT have a padding data value, the data pointed to by the
* result of this function is undefined.
*\return Pointer to the padding value of this object.
*/
virtual void* GetPaddingPtr () const { return (void*)&Padding; }
/** Return padding data value as pointer to native representation.
*/
virtual Types::DataItem GetPaddingValue() const { return static_cast<Types::DataItem>( Padding ); }
/// Test if there is PADDING data at a particular location.
virtual bool PaddingDataAt ( const size_t index ) const
{
return PaddingFlag && (Data[index] == Padding);
}
/** Get the whole array data as an exchange type array.
*\return Pointer to a memory region allocated by Memory::ArrayC::Allocate(). This region is
* filled with all values in the present array as Types::DataItem values. The created
* array is not maintained by this object. The caller has to make sure free()
* is called for it.
*/
virtual Types::DataItem* GetData () const
{
Types::DataItem* Result = Memory::ArrayC::Allocate<Types::DataItem>( DataSize );
if ( Result )
{
for ( size_t idx = 0; idx < DataSize; ++idx )
Result[idx] = (Types::DataItem) Data[idx];
}
return Result;
}
/** Set all data from an Types::DataItem array.
* This function sets all values stored in the present array from a memory
* region with Types::DataItem values.
*\param data Pointer to an array of Types::DataItem values.
* Control over the source array is not taken by this object. If it is on the heap,
* then the calling routine remains responsible for de-allocating the array afterwards.
*/
virtual void SetData ( Types::DataItem *const data )
{
#pragma omp parallel for
for ( int idx = 0; idx < static_cast<int>( this->DataSize ); ++idx )
Data[idx] = this->ConvertItem( data[idx] );
}
/** Clear entire array.
*\param usePaddingData If this flag is set, then the array will be filled with
* the PaddingData value, if one exists. Otherwise, the array will be filled
* with the respective data type's zero value.
*/
virtual void ClearArray ( const bool usePaddingData = false )
{
if ( usePaddingData && PaddingFlag )
{
for ( size_t idx = 0; idx < DataSize; ++idx )
Data[idx] = Padding;
}
else
{
memset( Data, 0, sizeof( *Data ) * this->GetDataSize() );
}
}
/// Calculate minimum and maximum data value.
virtual const Types::DataItemRange GetRange() const;
/// Calculate minimum and maximum data value.
virtual const Types::Range<T> GetRangeTemplate() const;
/// Calculate entropy of distribution of values in this array.
virtual double GetEntropy( const bool fractional = CMTK_HISTOGRAM_DISCRETE, const int numberOfBins = 128 ) const;
virtual double GetEntropy( Histogram<unsigned int>& histogram ) const;
virtual double GetEntropy( Histogram<double>& histogram, const bool fractional = CMTK_HISTOGRAM_DISCRETE ) const;
virtual double GetEntropy( Histogram<double>& histogram, const double* kernel, const size_t kernelRadius ) const;
/** Calculate statistics.
* Results will be both zero if there is not data in the array.
*\return The number of valid (i.e., non-padding) values that constitute the
* given results.
*/
virtual size_t GetStatistics ( Types::DataItem& mean, Types::DataItem& variance ) const;
/** Set data block to constant value.
*/
virtual void BlockSet( const Types::DataItem value, const size_t fromOffset, const size_t toOffset );
/** Get data histogram.
*\return A histogram object filled with the relative frequencies of values
* in this array.
*/
virtual Histogram<unsigned int>::SmartPtr GetHistogram( const unsigned int numberOfBins /*!< Number of histogram bins */,
const bool centeredBins = false /*!< Flag for bins centered around the samples*/ ) const;
virtual void ApplyFunctionObject( const TypedArrayFunction& f );
protected:
/// Clone this object.
virtual Self* CloneVirtual() const
{
Self* clone = new Self( this->DataSize );
memcpy( clone->Data, this->Data, this->DataSize * sizeof( T ) );
clone->Padding = this->Padding;
clone->PaddingFlag = this->PaddingFlag;
clone->m_DataClass = this->m_DataClass;
return clone;
}
private:
/// The acutal data array.
T *Data;
/// Value used for missing data.
T Padding;
/** Allocate data array.
*\param datasize Number of data items to allocate memory for.
*/
virtual void Alloc ( const size_t datasize )
{
DataSize = datasize;
if ( DataSize )
{
if ( Data && this->m_Deallocator )
{
this->m_Deallocator( Data );
}
Data = Memory::ArrayC::Allocate<T>( DataSize );
this->m_Deallocator = &Memory::ArrayC::DeleteWrapper;
if ( Data == NULL )
{
this->DataSize = 0;
}
}
else
{
Data = NULL;
this->m_Deallocator = NULL;
}
}
/** De-allocate data array.
* The array is freed using the same memory handler that allocated it.
* In any case, the current Data pointer is set to NULL.
*/
virtual void FreeData()
{
if ( Data && this->m_Deallocator )
{
this->m_Deallocator( Data );
}
Data = NULL;
}
};
/**\name Shortcut class typedefs for typed arrays. */
//@{
/// Array of (unsigned) byte values.
typedef TemplateArray<byte> ByteArray;
/// Array of (signed) char values.
typedef TemplateArray<char> CharArray;
/// Array of signed short values.
typedef TemplateArray<short> ShortArray;
/// Array of unsigned short values.
typedef TemplateArray<unsigned short> UShortArray;
/// Array of (signed) integer values.
typedef TemplateArray<int> IntArray;
/// Array of (unsigned) integer values.
typedef TemplateArray<int> UIntArray;
/// Array of single-precision float values.
typedef TemplateArray<float> FloatArray;
/// Array of double-precision float values.
typedef TemplateArray<double> DoubleArray;
//@}
//@}
} // namespace cmtk
#include "cmtkTemplateArray.txx"
#include "cmtkTemplateArray_Statistics.txx"
#endif // #ifndef __cmtkTemplateArray_h_included_
|