1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
/*
//
// Copyright 1997-2010 Torsten Rohlfing
//
// Copyright 2004-2013 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#ifndef __cmtkTypedArray_h_included_
#define __cmtkTypedArray_h_included_
#include <cmtkconfig.h>
#include <Base/cmtkMacros.h>
#include <Base/cmtkTypes.h>
#include <Base/cmtkMathUtil.h>
#include <Base/cmtkDataTypeTraits.h>
#include <Base/cmtkHistogram.h>
#include <Base/cmtkTypedArrayFunction.h>
#include <System/cmtkSmartPtr.h>
#include <System/cmtkSmartConstPtr.h>
#include <System/cmtkException.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include <memory.h>
#include <vector>
#ifdef DEBUG
#define CheckBounds(index,bound) \
if (!(index<bound)) throw( Exception( "Index is outside bounds", this ) );
#else
#define CheckBounds(index,bound)
#endif
namespace
cmtk
{
/** \addtogroup Base */
//@{
/** Generic Variable-Typed Data Array.
* This class delivers the common interface of all variable-typed data arrays.
*\author Torsten Rohlfing
*/
class TypedArray
{
/// Parameter defining the primitive data class.
cmtkGetSetMacro(DataClass,DataClass);
public:
/// This class.
typedef TypedArray Self;
/// Smart pointer.
typedef SmartPointer<Self> SmartPtr;
/// Smart pointer to const.
typedef SmartConstPointer<Self> SmartConstPtr;
/** Create typed data array from existing array of values.
*\param dtype Type specifier.
*\param data Pointer to the existing data array.
*\param size Number of data items in the array.
* array's memory if and only if this flag is true.
*\param paddingFlag If this flag is not zero, padding data exists in the array.
*\param paddingData Value used for padding data.
*\param deallocator Pointer to a deallocator object that should be used to free the given data block (or NULL if memory is handled by another object)
*\return A pointer to a new typed array object, or NULL if an error
* occurred.
*/
static Self::SmartPtr Create
( const ScalarDataType dtype, void *const data, const size_t size, const bool paddingFlag = false, const void* paddingData = NULL, const Memory::DeallocatorFunctionPointer deallocator = NULL );
/** Create typed data array, allocating new memory for the items array.
*\param dtype Type specifier.
*\param size Number of items in the array to be allocated. Memory will be
* freed when the created object is destroyed. The values in the array are
* not initialized.
*\return A pointer to a new typed array object, or NULL if an error
* occurred.
*/
static Self::SmartPtr Create( const ScalarDataType dtype, const size_t size );
/** Get an item from the specified index in the data array.
* If there is no valid data present at the given index, zero is returned
* and the resulting item is zero, too. This can only happen if PaddingFlag
* is not zero.
*/
virtual bool Get ( Types::DataItem&, const size_t ) const = 0;
/// Return data or a given default value if no data exists there.
virtual Types::DataItem ValueAt ( const size_t idx, const Types::DataItem defaultValue = 0.0 ) const = 0;
/** Get a sequence of items from the array.
*\param values This must point to an allocated array of at least as many
* Types::DataItem objects as given in the "length" parameter.
*\param index The index of the item to retrieve. Valid values are in the
* range [0..Datasize()-1].
*\param length Number of consecutive values to get.
*/
virtual void GetSequence ( Types::DataItem *const values, const size_t index, const size_t length ) const = 0;
/// Sets the specified array element.
virtual void Set ( const Types::DataItem, const size_t ) = 0;
/// Return type of stored data.
virtual ScalarDataType GetType () const = 0;
/// Return the number of bytes per stored item.
virtual size_t GetItemSize () const = 0;
/** Get the adress of the real value used for no data present.
*/
virtual void* GetPaddingPtr () const = 0;
/// Get the transfer representation of the value used for no data present.
virtual Types::DataItem GetPaddingValue () const = 0;
/// Test if there is NULL data at a particular location.
virtual bool PaddingDataAt ( const size_t index ) const = 0;
/** Get complete aray of data values.
* The calling routine is responsible for de-allocating the returned array
* by calling 'free' after use.
*/
virtual Types::DataItem* GetData () const = 0;
/** Set all data from an Types::DataItem array.
* This function sets all values stored in the present array from a memory
* region with Types::DataItem values.
*\param data Pointer to an array of Types::DataItem values.
* Control over the source array is not taken by this object. If it is on the heap,
* then the calling routine remains responsible for de-allocating the array afterwards.
*/
virtual void SetData( Types::DataItem *const data ) = 0;
/** Convert to typed array of any given template type.
*/
virtual Self::SmartPtr Convert( const ScalarDataType dtype ) const = 0;
/** Convert a sub-array to any given primitive data type.
*\return Newly allocated memory of given type. Caller is responsible for freeing this memory with a call to
* Memory::ArrayC::Delete().
*/
virtual void* ConvertSubArray( const ScalarDataType dtype, const size_t fromIdx, const size_t len ) const = 0;
/** Convert a sub-array to given primitive data type into existing array.
*\return Pointer "destination".
*/
virtual void* ConvertSubArray( void *const destination, const ScalarDataType dtype, const size_t fromIdx, const size_t len ) const = 0;
/** Convert the array to any given data type.
* This function uses ConvertSubArray to convert the complete array.
*\return Newly allocated memory of given type. Caller is responsible for freeing this memory with a call to
* Memory::ArrayC::Delete().
*\see ConvertSubArray
*/
virtual void* ConvertArray ( const ScalarDataType dtype ) const
{
return this->ConvertSubArray( dtype, 0, DataSize );
}
/** Clear entire array.
* This method is implemented by derived template classes for better
* efficiency.
*\param usePaddingData If this flag is set, then the array will be filled with
* the PaddingData value, if one exists. Otherwise, the array will be filled
* with the respective data type's zero value.
*/
virtual void ClearArray ( const bool usePaddingData = false ) = 0;
/** Change endianness of data.
*/
virtual void ChangeEndianness() = 0;
/** Scale values in the array.
* A call to this member function will perform an in-place rescaling of the
* values in the array.
*\param scale The original data value is multiplied by the parameter first.
*\param offset This value is added to the original data value after
* multiplying it by the scale parameter.
*/
virtual void Rescale( const Types::DataItem scale = 1, const Types::DataItem offset = 0 ) = 0;
/** Scale and shift values in the array.
*/
virtual void RescaleAndShift( const Types::DataItem scale = 1, const Types::DataItem offset = 0, const size_t shiftBits = 0 ) = 0;
/** Scale values in the array to a given target range.
*/
virtual void RescaleToRange( const Types::DataItemRange& toRange );
/** Apply gamma correction.
*\param gamma The gamma correction coefficient.
*/
virtual void GammaCorrection( const Types::DataItem gamma ) = 0;
/// Function pointer type: double to double.
typedef double (*FunctionTypeDouble)(const double);
/// Function pointer type: float to float.
typedef float (*FunctionTypeFloat)(const float);
/** Apply real function to data. */
virtual void ApplyFunction( Self::FunctionTypeFloat f )
{
this->ApplyFunctionFloat( f );
}
/** Apply real function to data. */
virtual void ApplyFunction( Self::FunctionTypeDouble f )
{
this->ApplyFunctionDouble( f );
}
/** Apply real function to data.
*/
virtual void ApplyFunctionFloat( Self::FunctionTypeFloat f ) = 0;
/** Apply real function to data.
*/
virtual void ApplyFunctionDouble( Self::FunctionTypeDouble f ) = 0;
/// Convert all values to absolute values.
virtual void MakeAbsolute() = 0;
/** Scale values in the array with truncation boundaries.
* A call to this member function will perform an in-place rescaling of the
* values in the array with value range truncation. Truncation takes place
* after the scaling itself, i.e., the truncation boundaries refer to the
* already scaled values.
*\param scale The original data value is multiplied by the parameter first.
*\param offset This value is added to the original data value after
* multiplying it by the scale parameter.
*\param truncLo Lower truncation boundary. Scaled items below this
* threshold will be set to equal its value.
*\param truncHi Upper truncation boundary. Scaled items above this
* threshold will be set to equal its value.
*/
virtual void Rescale( const Types::DataItem scale, const Types::DataItem offset, const Types::DataItem truncLo, const Types::DataItem truncHi = CMTK_ITEM_MAX ) = 0;
/** Threshold data.
* All values above upper threshold are set to upper thrershold. All values
* below lower threshold are set to lower threshold.
*/
virtual void Threshold( const Types::DataItemRange& range ) = 0;
/** Threshold data.
* All values outside the threshold range are set to the Padding (padding)
* value.
*/
virtual void ThresholdToPadding( const Types::DataItemRange& range ) = 0;
/** Prune histogram to trim noise.
* This function trims values on the upper and lower end of the value range by
* thresholding in such a way that the trimmed number of samples on either side
* amounts to the relative fraction of samples based on a target histogram bin
* count.
*/
virtual void PruneHistogram( const bool pruneHi, const bool pruneLo, const size_t numberOfBinsTarget, const size_t numberOfBinsInternal = 1024 );
/** Binarize array values with given threshold.
* All values greater than threshold (default: zero) are set to one, all
* values smaller or equal are set to zero.
*/
virtual void Binarize( const Types::DataItem threshold = 0 ) = 0;
/** Clone an existing TypedArray.
* Memory is allocated and the source array copied item by item. Data is
* read by the source object's Get method and stored by the destination
* object's Set method.
*/
Self::SmartPtr Clone() const
{
return Self::SmartPtr( this->CloneVirtual() );
}
/// Default constructor.
TypedArray () : m_DataClass( DATACLASS_GREY ), m_DataType( TYPE_NONE ), m_Deallocator( NULL ), DataSize( 0 ), PaddingFlag( false ) {}
/** Destructor.
* Just has to be declared virtual.
*/
virtual ~TypedArray () {}
/** Free data pointer.
* Derived classes may have to overload this method to take care of other
* memory management libraries.
*/
virtual void FreeData() = 0;
/** Release pointer to data array.
* The pointer must remain valid until object is destructed itself.
*/
void ReleaseDataPointer ()
{
this->m_Deallocator = NULL;
}
/** Return the number of array elements.
*\return The number of array elements
*/
size_t GetDataSize () const { return DataSize; }
/** Return the array size in bytes.
*/
size_t GetDataSizeBytes () const
{
return this->GetItemSize() * DataSize;
}
/** Return address of the data array.
*\return A pointer to the real data array.
*/
virtual void* GetDataPtr( const size_t offset = 0) = 0;
/** Return address of the data array.
*\return A pointer to the real data array.
*/
virtual const void* GetDataPtr( const size_t offset = 0) const = 0;
/** Get part of the stored array.
*\return A pointer to the buffer given is returned.
*/
virtual Types::DataItem* GetSubArray( Types::DataItem *const, const size_t, const size_t, const Types::DataItem = 0 ) const = 0;
/** Allocate memory and get part of the stored array.
*\return A pointer to the newly allocated buffer is returned.
*/
virtual Types::DataItem* GetSubArray( const size_t, const size_t, const Types::DataItem = 0 ) const = 0;
/** Return the flag for padding data.
*\return If return value is zero, all data stored in the array is valid.
* A non-zero value indicates, that there are locations with no data present.
*/
bool GetPaddingFlag () const { return PaddingFlag; }
/// Clear padding flag. This effectively turns padded pixels into actual data.
void ClearPaddingFlag()
{
this->PaddingFlag = false;
}
/// Set the specified array element to no data present.
virtual void SetPaddingAt ( const size_t ) = 0;
/// Select the value to mark non-existent data.
virtual void SetPaddingValue ( const Types::DataItem paddingData ) = 0;
/// Select the value to mark non-existent data.
virtual void SetPaddingPtr ( const void* paddingData ) = 0;
/// Replace Padding data (padding) with given value.
virtual void ReplacePaddingData ( const Types::DataItem value = 0 ) = 0;
/// Check for padding data at given location.
virtual bool IsPaddingAt( const size_t index ) const = 0;
/// Check for padding data or zero at given location.
virtual bool IsPaddingOrZeroAt( const size_t index ) const = 0;
/// Calculate and return minimum and maximum data value.
virtual const Types::DataItemRange GetRange() const = 0;
/// Calculate entropy of distribution of values in this array.
virtual double GetEntropy( const bool fractional = CMTK_HISTOGRAM_DISCRETE, const int numberOfBins = 128 ) const = 0;
/** Calculate entropy of values in this array using existing histogram.
* By using an already existing histogram, this function ensures that the
* same numbers and sizes of bins are used for repeated calls of this
* function, even when the actual data in this array has changed. On the
* other hand, there is of course a risk that the data may have changed in
* such a way that the old histogram arrangement does not fit it anymore.
*
* In the process of entropy computation, the histogram is also filled with
* the data from this array. It is therefore available for subsequent
* operations after returning from this function.
*/
virtual double GetEntropy( Histogram<unsigned int>& histogram ) const = 0;
/** Calculate entropy of values in this array using existing histogram.
*\see TypedArray::GetEntropy
*/
virtual double GetEntropy( Histogram<double>& histogram, const bool fractional = CMTK_HISTOGRAM_DISCRETE ) const = 0;
/** Calculate entropy of values in this array using existing histogram and kernel for Parzen windowing.
*\see TypedArray::GetEntropy
*/
virtual double GetEntropy( Histogram<double>& histogram, const double* kernel, const size_t kernelRadius ) const = 0;
/** Calculate statistics.
* Results will be both zero if there is not data in the array.
*\return The number of valid (i.e., non-padding) values that constitute the
* given results.
*/
virtual size_t GetStatistics ( Types::DataItem& mean, Types::DataItem& variance ) const = 0;
/** Compute approximate percentile value from histogram.
*/
virtual Types::DataItem GetPercentile( const Types::DataItem percentile /*!< The percentile to be computed. Value must be between 0 and 1.*/,
const size_t nBins = 256 /*!< Number of histogram bins for percentile estimation.*/ ) const;
/** Compute list of approximate percentile values from histogram.
* This function calls GetPercentile for each value in the given input vector and puts
* all resulting values into the output vector in the same order. The main advantage of
* using this function is that it is more efficient as a single histogram is created to
* compute all percentiles.
*/
virtual std::vector<Types::DataItem> GetPercentileList( const std::vector<Types::DataItem>& percentileList /*!< The list of percentiles to be computed. Each value must be between 0 and 1.*/,
const size_t nBins = 256 /*!< Number of histogram bins for percentile estimation.*/ ) const;
/** Get data histogram.
*\return A histogram object filled with the relative frequencies of values
* in this array.
*/
virtual Histogram<unsigned int>::SmartPtr GetHistogram( const unsigned int numberOfBins /*!< Number of histogram bins */,
const bool centeredBins = false /*!< Flag for bins centered around the samples*/ ) const = 0;
/** Set data block to constant value.
*/
virtual void BlockSet( const Types::DataItem value, const size_t fromOffset, const size_t toOffset ) = 0;
/** Fill entire array with one value.
*/
virtual void Fill( const Types::DataItem value )
{
this->BlockSet( value, 0, this->GetDataSize() );
}
/** Copy data block to other array.
* This is really just a convenience wrapper for ConvertSubArray().
*/
virtual void BlockCopy( Self& target, const size_t toOffset, const size_t fromOffset, const size_t blockLength ) const
{
this->ConvertSubArray( target.GetDataPtr( toOffset ), target.GetType(), fromOffset, blockLength );
}
/// Exception class for array size mismatched.
class SizeMismatchException : public Exception {};
/** Copy other array.
* This is a convenience wrapper for ConvertSubArray().
*/
virtual void Copy( const Self& other )
{
if ( this->GetDataSize() != other.GetDataSize() )
{
throw SizeMismatchException();
}
other.ConvertSubArray( this->GetDataPtr(), this->GetType(), 0, this->GetDataSize() );
}
/** Exchange two data blocks.
* Internally, the data is copied in chunks of up to 2KB (currently), using
* an 'automatic' intermediate buffer of that size.
*/
virtual void BlockSwap( const size_t fromOffset, const size_t toOffset, const size_t blockLength );
/** Revert order of items in a given range.
*\attention This implementation only works for item sizes up to 16 bytes
* (128 bits); above that, the internal buffer size needs to be increased.
*/
virtual void BlockReverse( const size_t fromOffset, const size_t blockLength );
/** Apply function class to the values of this array.
*/
virtual void ApplyFunctionObject( const TypedArrayFunction& f ) = 0;
protected:
/** Scalar data type ID.
* This field is not yet actually used anywhere. It merely serves a debugging
* purpose since it allows easy identification of the type of this array from
* inspecting its data.
*/
ScalarDataType m_DataType;
/// Deallocator function: if not NULL, this is a pointer to the function called to free the data array.
Memory::DeallocatorFunctionPointer m_Deallocator;
/// The size of the data array, i.e. the number of items allocated.
size_t DataSize;
/** If true, PaddingFlag indicates there are items with no data present.
*/
bool PaddingFlag;
/// Allocate array for the given number of elements.
virtual void Alloc ( const size_t datasize ) = 0;
/// Virtual clone function: only to be calle by Clone().
virtual Self* CloneVirtual() const = 0;
};
//@}
} // namespace cmtk
#endif // #ifndef __cmtkTypedArray_h_included_
|