1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
|
/*
//
// Copyright 2004-2014 SRI International
//
// Copyright 1997-2009 Torsten Rohlfing
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 4497 $
//
// $LastChangedDate: 2012-08-24 13:46:21 -0700 (Fri, 24 Aug 2012) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include "cmtkImageStackDICOM.h"
#include <System/cmtkConsole.h>
#include <System/cmtkDebugOutput.h>
#include <System/cmtkCoverity.h>
#include <IO/cmtkStudy.h>
#include <IO/cmtkStudyImageSet.h>
#include <IO/cmtkVolumeFromStudy.h>
#include <IO/cmtkVolumeFromFile.h>
#include <IO/cmtkVolumeIO.h>
#include <algorithm>
#include <sstream>
namespace
cmtk
{
bool
ImageStackDICOM::Match ( const ImageFileDICOM& newImage, const Types::Coordinate numericalTolerance, const bool disableCheckOrientation, const bool ignoreAcquisitionNumber ) const
{
if ( this->empty() )
return true; // first image always matches
ImageFileDICOM::SmartConstPtr check = this->front();
if ( check )
{
if ( !check->Match( newImage, numericalTolerance, disableCheckOrientation, ignoreAcquisitionNumber ) )
return 0;
for ( const_iterator it = this->begin(); it != this->end(); ++it )
{
// if we already have an image in same location in this study,
// then bump to next study
if ( (*it)->GetTagValue( DCM_ImagePositionPatient ) == newImage.GetTagValue( DCM_ImagePositionPatient ) )
return 0;
}
return true;
}
else
return false;
}
void
ImageStackDICOM::AddImageFile ( ImageFileDICOM::SmartConstPtr& newImage )
{
iterator it = begin();
for ( ; it != end(); ++it )
if ( newImage->m_InstanceNumber < (*it)->m_InstanceNumber ) break;
insert( it, newImage );
}
std::vector<double>
ImageStackDICOM::AssembleSliceTimes() const
{
std::vector<double> sliceTimes;
for ( const_iterator it = this->begin(); it != this->end(); ++it )
{
// add this file's slice times to stack slice time vector - this should be safe even if file slice time vector is empty
sliceTimes.insert( sliceTimes.end(), (*it)->m_SliceTimes.begin(), (*it)->m_SliceTimes.end() );
}
return sliceTimes;
}
const char *
ImageStackDICOM::WhitespaceWriteMiniXML( mxml_node_t* node, int where)
{
const char* name = node->value.element.name;
typedef struct _wsLookupType
{
/// XML element name.
const char* name;
/// Table of whitespace sequences.
const char* ws[4];
} wsLookupType;
static const wsLookupType wsLookup[] =
{
{ "dicom:Manufacturer", { "\t", NULL, NULL, "\n" } },
{ "dicom:ManufacturerModel", { "\t", NULL, NULL, "\n" } },
{ "dicom:DeviceSerialNumber", { "\t", NULL, NULL, "\n" } },
{ "dicom:StationName", { "\t", NULL, NULL, "\n" } },
{ "dicom:RepetitionTime", { "\t", NULL, NULL, "\n" } },
{ "dicom:EchoTime", { "\t", NULL, NULL, "\n" } },
{ "dicom:InversionTime", { "\t", NULL, NULL, "\n" } },
{ "dicom:ImagingFrequency", { "\t", NULL, NULL, "\n" } },
{ "dwellTime", { "\t", NULL, NULL, "\n" } },
{ "phaseEncodeDirection", { "\t", NULL, NULL, "\n" } },
{ "phaseEncodeDirectionSign", { "\t", NULL, NULL, "\n" } },
{ "dicom:SequenceName", { "\t", NULL, NULL, "\n" } },
{ "dicom:GE:PulseSequenceName", { "\t", NULL, NULL, "\n" } },
{ "dicom:GE:PulseSequenceDate", { "\t", NULL, NULL, "\n" } },
{ "dicom:GE:InternalPulseSequenceName", { "\t", NULL, NULL, "\n" } },
{ "dicom:GE:EffectiveEchoSpacing", { "\t", NULL, NULL, "\n" } },
{ "type", { "\t", NULL, NULL, "\n" } },
{ "dwi", { "\t", "\n", "\t", "\n" } },
{ "bValue", { "\t\t", NULL, NULL, "\n" } },
{ "bVector", { "\t\t", NULL, NULL, "\n" } },
{ "bVectorImage", { "\t\t", NULL, NULL, "\n" } },
{ "bVectorStandard", { "\t\t", NULL, NULL, "\n" } },
{ "dcmFileDirectory", { "\t", NULL, NULL, "\n" } },
{ "dicom:StudyInstanceUID", { "\t", NULL, NULL, "\n" } },
{ "dicom:SeriesInstanceUID", { "\t", NULL, NULL, "\n" } },
{ "dicom:FrameOfReferenceUID", { "\t", NULL, NULL, "\n" } },
{ "dicom:ImageOrientationPatient", { "\t", NULL, NULL, "\n" } },
{ "sliceTime", { "\t", NULL, NULL, "\n" } },
{ "image", { "\t", "\n", "\t", "\n" } },
{ "dcmFile", { "\t\t", NULL, NULL, "\n" } },
{ "dicom:AcquisitionTime", { "\t\t", NULL, NULL, "\n" } },
{ "dicom:ImagePositionPatient", { "\t\t", NULL, NULL, "\n" } },
{ "dicom:RescaleIntercept", { "\t\t", NULL, NULL, "\n" } },
{ "dicom:RescaleSlope", { "\t\t", NULL, NULL, "\n" } },
{ NULL, {NULL, NULL, NULL, NULL} }
};
if ( (where >= 0) && (where < 4) )
{
for ( size_t idx = 0; wsLookup[idx].name; ++idx )
{
if ( ! strcmp( name, wsLookup[idx].name ) )
return wsLookup[idx].ws[where];
}
}
switch ( where )
{
case MXML_WS_BEFORE_OPEN:
return NULL;
case MXML_WS_AFTER_OPEN:
return "\n";
case MXML_WS_BEFORE_CLOSE:
return NULL;
case MXML_WS_AFTER_CLOSE:
return "\n";
}
return NULL;
}
// wrap tolower() - on Mac, system function is not compatible with std::transform()
static int cmtkWrapToLower( const int c )
{
return tolower( c );
}
void
ImageStackDICOM::WriteXML( const std::string& fname, const UniformVolume& volume, const bool includeIdentifiers ) const
{
mxmlSetWrapMargin( 120 ); // make enough room for indented bVectorStandard
mxml_node_t *x_root = mxmlNewElement( NULL, "?xml version=\"1.0\" encoding=\"utf-8\"?" );
// convenience pointer to first image in series
const ImageFileDICOM* firstImage = this->front();
if ( includeIdentifiers )
{
mxml_node_t *x_device = mxmlNewElement( x_root, "device" );
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_device, "dicom:Manufacturer" ), 0, firstImage->GetTagValue( DCM_Manufacturer ).c_str() ) );
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_device, "dicom:ManufacturerModel" ), 0, firstImage->GetTagValue( DCM_ManufacturerModelName ).c_str() ) );
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_device, "dicom:StationName" ), 0, firstImage->GetTagValue( DCM_StationName ).c_str() ) );
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_device, "dicom:DeviceSerialNumber" ), 0, firstImage->GetTagValue( DCM_DeviceSerialNumber ).c_str() ) );
}
std::string modality = firstImage->GetTagValue( DCM_Modality );
std::transform( modality.begin(), modality.end(), modality.begin(), cmtkWrapToLower );
mxml_node_t *x_modality = mxmlNewElement( x_root, modality.c_str() );
if ( modality == "mr" )
{
mxml_node_t *x_tr = mxmlNewElement( x_modality, "dicom:RepetitionTime");
mxmlNewReal( x_tr, atof( firstImage->GetTagValue( DCM_RepetitionTime ).c_str() ) );
mxmlElementSetAttr( x_tr, "units", "ms" );
mxml_node_t *x_te = mxmlNewElement( x_modality, "dicom:EchoTime");
mxmlNewReal( x_te, atof( firstImage->GetTagValue( DCM_EchoTime ).c_str() ) );
mxmlElementSetAttr( x_te, "units", "ms" );
mxml_node_t *x_ti = mxmlNewElement( x_modality, "dicom:InversionTime");
mxmlNewReal( x_ti, atof( firstImage->GetTagValue( DCM_InversionTime ).c_str() ) );
mxmlElementSetAttr( x_ti, "units", "ms" );
Coverity::FakeFree( mxmlNewReal( mxmlNewElement( x_modality, "dicom:ImagingFrequency"), atof( firstImage->GetTagValue( DCM_ImagingFrequency ).c_str() ) ) );
if ( firstImage->m_DwellTime > 0 )
{
mxml_node_t *x_dwell_time = mxmlNewElement( x_modality, "dwellTime");
mxmlNewReal( x_dwell_time, firstImage->m_DwellTime );
mxmlElementSetAttr( x_dwell_time, "units", "s" );
}
const std::string phaseEncodeDirection = firstImage->GetTagValue( DCM_InPlanePhaseEncodingDirection );
if ( phaseEncodeDirection != "" )
{
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_modality, "phaseEncodeDirection"), 0, phaseEncodeDirection.c_str() ) );
}
if ( firstImage->m_PhaseEncodeDirectionSign != "" )
{
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_modality, "phaseEncodeDirectionSign"), 0, firstImage->m_PhaseEncodeDirectionSign.c_str() ) );
}
if ( firstImage->GetTagValue( DCM_GE_EffectiveEchoSpacing ) != "" )
{
Coverity::FakeFree( mxmlNewReal( mxmlNewElement( x_modality, "dicom:GE:EffectiveEchoSpacing"), atof( firstImage->GetTagValue( DCM_GE_EffectiveEchoSpacing ).c_str() ) ) );
}
if ( firstImage->GetTagValue( DCM_SequenceName ) != "" && includeIdentifiers )
{
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_modality, "dicom:SequenceName"), 0, firstImage->GetTagValue( DCM_SequenceName ).c_str() ) );
}
if ( firstImage->GetTagValue( DCM_GE_PulseSequenceName ) != "" && includeIdentifiers )
{
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_modality, "dicom:GE:PulseSequenceName"), 0, firstImage->GetTagValue( DCM_GE_PulseSequenceName ).c_str() ) );
}
if ( firstImage->GetTagValue( DCM_GE_PulseSequenceDate ) != "" && includeIdentifiers )
{
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_modality, "dicom:GE:PulseSequenceDate"), 0, firstImage->GetTagValue( DCM_GE_PulseSequenceDate ).c_str() ) );
}
if ( firstImage->GetTagValue( DCM_GE_InternalPulseSequenceName ) != "" && includeIdentifiers )
{
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_modality, "dicom:GE:InternalPulseSequenceName"), 0, firstImage->GetTagValue( DCM_GE_InternalPulseSequenceName ).c_str() ) );
}
if ( firstImage->m_RawDataType != "unknown" )
{
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_modality, "type"), 0, firstImage->m_RawDataType.c_str() ) );
}
if ( firstImage->m_IsDWI )
{
mxml_node_t *x_dwi = mxmlNewElement( x_modality, "dwi" );
Coverity::FakeFree( mxmlNewInteger( mxmlNewElement( x_dwi, "bValue"), firstImage->m_BValue ) );
if ( firstImage->m_HasBVector )
{
mxml_node_t *x_bvec = mxmlNewElement( x_dwi, "bVector");
mxmlElementSetAttr( x_bvec, "coordinateSpace", "LPS" );
for ( size_t idx = 0; idx < 3; ++idx )
{
Coverity::FakeFree( mxmlNewReal( x_bvec, firstImage->m_BVector[idx] ) );
}
// Determine bVector in image LPS coordinate space:
// First, create copy of image grid
UniformVolume::SmartPtr gridLPS = volume.CloneGrid();
// Make sure still in LPS DICOM coordinate space
gridLPS->ChangeCoordinateSpace( "LPS" );
try
{
// Apply inverse of remaining image-to-space matrix to original bVector
const UniformVolume::CoordinateVectorType bVectorImage = firstImage->m_BVector * Matrix3x3<Types::Coordinate>( gridLPS->GetImageToPhysicalMatrix().GetInverse() );
mxml_node_t *x_bvec_image = mxmlNewElement( x_dwi, "bVectorImage");
mxmlElementSetAttr( x_bvec_image, "imageOrientation", gridLPS->GetMetaInfo( META_IMAGE_ORIENTATION ).c_str() );
for ( size_t idx = 0; idx < 3; ++idx )
{
Coverity::FakeFree( mxmlNewReal( x_bvec_image, bVectorImage[idx] ) );
}
}
catch ( const AffineXform::MatrixType::SingularMatrixException& )
{
StdErr << "WARNING: singular image-to-physical matrix; cannot determine b vector orientation in image space (bVectorImage).\n";
}
// Determine bVector in image RAS standard coordinate space:
// First, create copy of image grid
UniformVolume::SmartPtr gridRAS = gridLPS->GetReoriented();
try
{
// Apply inverse of remaining image-to-space matrix to original bVector
const UniformVolume::CoordinateVectorType bVectorStandard = firstImage->m_BVector * Matrix3x3<Types::Coordinate>( gridRAS->GetImageToPhysicalMatrix().GetInverse() );
mxml_node_t *x_bvec_std = mxmlNewElement( x_dwi, "bVectorStandard" );
mxmlElementSetAttr( x_bvec_std, "imageOrientation", gridRAS->GetMetaInfo( META_IMAGE_ORIENTATION ).c_str() );
for ( size_t idx = 0; idx < 3; ++idx )
{
Coverity::FakeFree( mxmlNewReal( x_bvec_std, bVectorStandard[idx] ) );
}
}
catch ( const AffineXform::MatrixType::SingularMatrixException& )
{
StdErr << "WARNING: singular image-to-physical matrix; cannot determine b vector orientation in standard space (bVectorStandard).\n";
}
}
}
}
mxml_node_t *x_stack = mxmlNewElement( x_root, "stack" );
if ( includeIdentifiers )
{
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_stack, "dcmFileDirectory" ), 0, firstImage->m_FileDir.c_str() ) );
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_stack, "dicom:StudyInstanceUID" ), 0, firstImage->GetTagValue( DCM_StudyInstanceUID ).c_str() ) );
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_stack, "dicom:SeriesInstanceUID" ), 0, firstImage->GetTagValue( DCM_SeriesInstanceUID ).c_str() ) );
if ( firstImage->GetTagValue( DCM_FrameOfReferenceUID, "missing" ) != "missing" )
{
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_stack, "dicom:FrameOfReferenceUID" ), 0, firstImage->GetTagValue( DCM_FrameOfReferenceUID ).c_str() ) );
}
}
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_stack, "dicom:ImageOrientationPatient" ), 0, firstImage->GetTagValue( DCM_ImageOrientationPatient ).c_str() ) );
for ( const_iterator it = this->begin(); it != this->end(); ++it )
{
mxml_node_t *x_image = mxmlNewElement( x_stack, "image" );
if ( includeIdentifiers )
{
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_image, "dcmFile" ), 0, (*it)->m_FileName.c_str() ) );
}
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_image, "dicom:AcquisitionTime" ), 0, (*it)->GetTagValue( DCM_AcquisitionTime ).c_str() ) );
Coverity::FakeFree( mxmlNewText( mxmlNewElement( x_image, "dicom:ImagePositionPatient" ), 0, (*it)->GetTagValue( DCM_ImagePositionPatient ).c_str() ) );
if ( (*it)->GetTagValue( DCM_RescaleIntercept, "missing" ) != "missing" )
{
Coverity::FakeFree( mxmlNewReal( mxmlNewElement( x_image, "dicom:RescaleIntercept" ), atof( (*it)->GetTagValue( DCM_RescaleIntercept ).c_str() ) ) );
}
if ( (*it)->GetTagValue( DCM_RescaleSlope, "missing" ) != "missing" )
{
Coverity::FakeFree( mxmlNewReal( mxmlNewElement( x_image, "dicom:RescaleSlope" ), atof( (*it)->GetTagValue( DCM_RescaleSlope ).c_str() ) ) );
}
}
// put slice times into XML (if we have them)
const std::vector<double> stackSliceTimes = this->AssembleSliceTimes();
if ( ! stackSliceTimes.empty() )
{
const double baseTime = *std::min_element( stackSliceTimes.begin(),stackSliceTimes.end() );
for ( size_t stackSlice = 0; stackSlice < stackSliceTimes.size(); ++stackSlice )
{
mxml_node_t *x_slice_time = mxmlNewElement( x_stack, "sliceTime" );
Coverity::FakeFree( mxmlNewReal( x_slice_time, stackSliceTimes[stackSlice]-baseTime ) );
char slice_str[10];
snprintf( slice_str, 9, "%u", static_cast<unsigned int>( stackSlice ) );
mxmlElementSetAttr( x_slice_time, "slice", slice_str );
}
}
FILE *file = fopen( fname.c_str(), "w" );
if ( file )
{
mxmlSaveFile( x_root, file, Self::WhitespaceWriteMiniXML );
fputs( "\n", file ); // end last line
fclose( file );
}
else
{
StdErr << "ERROR: could not open file " << fname << " for writing\n";
}
Coverity::FakeFree( x_modality );
mxmlDelete( x_root );
}
cmtk::UniformVolume::SmartConstPtr
ImageStackDICOM::WriteImage( const std::string& fname, const Self::EmbedInfoEnum embedInfo ) const
{
const ImageFileDICOM *first = this->front();
UniformVolume::SmartPtr volume;
if ( !first->m_IsMultislice )
{
StudyImageSet studyImageSet;
studyImageSet.SetImageFormat( FILEFORMAT_DICOM );
studyImageSet.SetImageDirectory( first->m_FileDir.c_str() );
studyImageSet.SetMultiFile( true );
for ( const_iterator it = this->begin(); it != this->end(); ++it )
{
studyImageSet.push_back( (*it)->m_FileName );
}
volume = VolumeFromStudy::Read( &studyImageSet, this->m_Tolerance );
}
else
{
char fullPath[PATH_MAX];
#ifdef MSC_VER
snprintf( fullPath, sizeof( fullPath ), "%s\\%s", first->m_FileDir.c_str(), first->m_FileName.c_str() );
#else
snprintf( fullPath, sizeof( fullPath ), "%s/%s", first->m_FileDir.c_str(), first->m_FileName.c_str() );
#endif
volume = VolumeFromFile::ReadDICOM( fullPath );
}
if ( volume )
{
switch ( embedInfo )
{
default:
case EMBED_NONE:
break;
case EMBED_STUDYID_STUDYDATE:
volume->SetMetaInfo( META_IMAGE_DESCRIPTION, first->GetTagValue( DCM_StudyID ) + "_" + first->GetTagValue( DCM_StudyDate ) );
break;
case EMBED_PATIENTNAME:
volume->SetMetaInfo( META_IMAGE_DESCRIPTION, first->GetTagValue( DCM_PatientsName ) );
break;
case EMBED_SERIESDESCR:
volume->SetMetaInfo( META_IMAGE_DESCRIPTION, first->GetTagValue( DCM_SeriesDescription ) );
break;
}
// see if we have Phase Encode direction and set metadata (for NIFTI only at this time)
const std::string phaseEncodeDirection = first->GetTagValue( DCM_InPlanePhaseEncodingDirection );
if ( ! phaseEncodeDirection.empty() )
{
volume->SetMetaInfo( META_IMAGE_SLICE_PEDIRECTION, phaseEncodeDirection );
}
// see if we have slice times and set metadata accordingly (relevant for NIFTI only at this time)
const std::vector<double> sliceTimes = this->AssembleSliceTimes();
if ( sliceTimes.size() > 1 ) // need at least 2 slices for meaningful slice order
{
std::vector<double> sliceTimesSorted = sliceTimes;
std::sort( sliceTimesSorted.begin(), sliceTimesSorted.end() );
// This next bit inspired by Xiangru Li's Matlab DICOM-to-NIfTI converter, http://www.mathworks.com/matlabcentral/fileexchange/42997-dicom-to-nifti-converter
double duration = 0;
for ( size_t i = 1; i < sliceTimes.size(); ++i )
{
duration += fabs(sliceTimes[i]-sliceTimes[i-1]);
}
duration /= (sliceTimes.size()-1);
const double difference = (sliceTimesSorted[sliceTimesSorted.size()-1]-sliceTimesSorted[0]) / (sliceTimes.size()-1);
std::string sliceOrder;
if ( fabs( difference - duration ) < 1e-6 )
{
sliceOrder = META_IMAGE_SLICEORDER_SI;
}
else if ( fabs( difference + duration ) < 1e-6 )
{
sliceOrder = META_IMAGE_SLICEORDER_SD;
}
else if ( difference > 0 )
{
if ( sliceTimes[0] < sliceTimes[1] )
{
// EVEN slices acquired first.
sliceOrder = META_IMAGE_SLICEORDER_AI;
}
else
{
// ODD slices acquired first
sliceOrder = META_IMAGE_SLICEORDER_AI2;
}
}
else
{
if ( sliceTimes[sliceTimes.size()-1] < sliceTimes[sliceTimes.size()-2] )
{
// EVEN slices acquired first.
sliceOrder = META_IMAGE_SLICEORDER_AD;
}
else
{
// ODD slices acquired first
sliceOrder = META_IMAGE_SLICEORDER_AD2;
}
}
if ( ! sliceOrder.empty() )
{
volume->SetMetaInfo( META_IMAGE_SLICEORDER, sliceOrder );
std::ostringstream strm;
strm << difference;
volume->SetMetaInfo( META_IMAGE_SLICEDURATION, strm.str() );
}
}
VolumeIO::Write( *volume, fname.c_str() );
DebugOutput( 1 ).GetStream().printf( "\nOutput file:%s\nImage size: %3dx%3dx%3d pixels\nPixel size: %.4fx%.4fx%.4f mm\n\n",
fname.c_str(), volume->m_Dims[0], volume->m_Dims[1], volume->m_Dims[2], volume->m_Delta[0], volume->m_Delta[1], volume->m_Delta[2] );
}
else
{
// No longer need to warn - now warn at lower level
// StdErr << "WARNING: No valid volume was read.\n";
}
DebugOutput( 1 ) << "DICOM Information: \n"
<< " Description: " << first->GetTagValue( DCM_SeriesDescription ) << "\n"
<< " Series: " << first->GetTagValue( DCM_SeriesInstanceUID ) << "\n"
<< " Study: " << first->GetTagValue( DCM_StudyInstanceUID ) << "\n"
<< " Acquisition: " << first->m_AcquisitionNumber << "\n"
<< " TR / TE: " << first->GetTagValue( DCM_RepetitionTime ) << "ms / " << first->GetTagValue( DCM_EchoTime ) << "ms\n"
<< " Position: " << first->GetTagValue( DCM_ImagePositionPatient ) << "\n"
<< " Orientation: " << first->GetTagValue( DCM_ImageOrientationPatient ) << "\n"
<< " Raw Data Type: " << first->m_RawDataType << "\n";
DebugOutput( 1 ) << "\nImage List:\n";
for ( const_iterator it = this->begin(); it != this->end(); ++it )
{
DebugOutput( 1 ) << (*it)->m_FileName << " ";
}
DebugOutput( 1 ) << "\n====================================================\n";
return volume;
}
} // namespace CMTK
|