1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
/*
//
// Copyright 1997-2011 Torsten Rohlfing
//
// Copyright 2004-2012, 2014 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include "cmtkVolumeFromFile.h"
#include <System/cmtkConsole.h>
#include <System/cmtkCompressedStream.h>
#include <IO/cmtkVolumeIO.h>
#include <IO/cmtkAnalyze.h>
#include <IO/cmtkFileHeader.h>
#include <Base/cmtkUniformVolume.h>
#include <Base/cmtkAnatomicalOrientation.h>
#include "nifti1.h"
#include "nifti1_io_math.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#ifdef HAVE_ZLIB
# include <zlib.h>
#endif
#ifdef HAVE_SYS_STAT_H
# include <sys/stat.h>
#endif
namespace
cmtk
{
/** \addtogroup IO */
//@{
/// Helper function - make qform in NIFTI header from affine matrix
void
__matrixToNiftiQform( nifti_1_header& header, const AffineXform::MatrixType matrix )
{
// transpose and put into nifti_io's mat44 struct
mat44 R;
for ( int j = 0; j < 4; ++j )
{
for ( int i = 0; i < 4; ++i )
{
R.m[i][j] = matrix[j][i];
}
}
// compute quaternion representation
float qb, qc, qd, qx, qy, qz, dx, dy, dz, qfac;
nifti_mat44_to_quatern( R, &qb, &qc, &qd, &qx, &qy, &qz, &dx, &dy, &dz, &qfac ) ;
// set header fields
header.pixdim[0] = qfac;
header.quatern_b = qb;
header.quatern_c = qc;
header.quatern_d = qd;
header.qoffset_x = qx;
header.qoffset_y = qy;
header.qoffset_z = qz;
}
/**\note If the imported NIFTI file contains a qform and/or sform, and the resulting image object is later written back to a new NIFTI file (via VolumeFromFile::WriteNifti), then these transformations will be stored in the output file's qform and sform fields,
* respectively.
* \note If the header contains only a qform, then the qform will be used to initialize cmtk::UniformVolume::m_IndexToPhysicalMatrix, which determines the anatomy-based gross alignment of the image, regardless of qform_code
* \note If the header contains only an sform, then the sform will be used instead, regardless of sform_code.
* \note If the header contains both sform and qform, then the transformation is used whose code is NIFTI_XFORM_SCANNER_ANAT. If both sform_code and qform_code are NIFTI_XFORM_SCANNER_ANAT, then qform is used.
* \note If the header contains neither a qform or an sform, then it is assumed that the image is oriented "RAS", i.e., fastest-moving array index from Left to Right, second fastest from Posterior to Anterior, and third fastest from Inferior to Superior.
*\warning In keeping with the nifti1.h documentation, it is assumed that qform_code and sform_code will always be non-negative. If this assumption is violated, qform and sform will be switched in the output file (as written by VolumeFromFile::WriteNifti), or
* one of them may be missing.
*/
const UniformVolume::SmartPtr
VolumeFromFile::ReadNifti( const std::string& pathHdr, const bool detached, const bool readData )
{
CompressedStream hdrStream( pathHdr );
if ( !hdrStream.IsValid() )
{
StdErr << "ERROR: could not open Nifti header file " << pathHdr << "\n";
return UniformVolume::SmartPtr( NULL );
}
nifti_1_header buffer;
if ( sizeof(buffer) != hdrStream.Read( &buffer, 1, sizeof(buffer) ) )
{
StdErr << "ERROR: could not read " << sizeof( buffer ) << " bytes from header file " << pathHdr << "\n";
return UniformVolume::SmartPtr( NULL );
}
hdrStream.Close();
// determine if we need to byte-swap
const int dim0 = buffer.dim[0];
const bool byteSwap = ((dim0>0) && (dim0<8)) ? false : true;
#ifdef WORDS_BIGENDIAN
FileHeader header( &buffer, !byteSwap );
#else
FileHeader header( &buffer, byteSwap );
#endif
short ndims = header.GetField<short>( 40 );
if ( ndims < 3 )
{
StdErr << "ERROR: image dimension " << ndims << " is smaller than 3 in file " << pathHdr << "\n";
return UniformVolume::SmartPtr( NULL );
}
const DataGrid::IndexType::ValueType dims[3] = { header.GetField<short>( 42 ), header.GetField<short>( 44 ), header.GetField<short>( 46 ) };
const int dims3 = header.GetField<short>( 48 );
if ( (ndims > 3) && (dims3 > 1) )
{
StdErr << "WARNING: dimension " << ndims << " is greater than 3 in file " << pathHdr << "\n";
}
float pixelDim[3];
header.GetArray( pixelDim, 80, 3 );
UniformVolume::SmartPtr volume( new UniformVolume( DataGrid::IndexType::FromPointer( dims ), fabs( pixelDim[0] ), fabs( pixelDim[1] ), fabs( pixelDim[2] ) ) );
// Nifti is in RAS space.
const char *const niftiSpace = "RAS";
volume->SetMetaInfo( META_SPACE, niftiSpace );
volume->SetMetaInfo( META_SPACE_ORIGINAL, niftiSpace );
const char xyzt_units = header.GetField<char>( offsetof( struct nifti_1_header, xyzt_units ) );
if ( xyzt_units & NIFTI_UNITS_MM )
volume->SetMetaInfo( META_SPACE_UNITS_STRING, "mm" );
else if ( xyzt_units & NIFTI_UNITS_MICRON )
volume->SetMetaInfo( META_SPACE_UNITS_STRING, "micron" );
else if ( xyzt_units & NIFTI_UNITS_METER )
volume->SetMetaInfo( META_SPACE_UNITS_STRING, "m" );
const short qform_code = header.GetField<short>( offsetof(nifti_1_header,qform_code) );
const short sform_code = header.GetField<short>( offsetof(nifti_1_header,sform_code) );
if ( sform_code > NIFTI_XFORM_UNKNOWN )
{
float srow_x[4], srow_y[4], srow_z[4];
header.GetArray( srow_x, offsetof(nifti_1_header,srow_x), 4 );
header.GetArray( srow_y, offsetof(nifti_1_header,srow_y), 4 );
header.GetArray( srow_z, offsetof(nifti_1_header,srow_z), 4 );
const Types::Coordinate directions[4][4] =
{
{ srow_x[0], srow_y[0], srow_z[0], 0 },
{ srow_x[1], srow_y[1], srow_z[1], 0 },
{ srow_x[2], srow_y[2], srow_z[2], 0 },
{ srow_x[3], srow_y[3], srow_z[3], 1 }
};
Matrix4x4<Types::Coordinate> m4( directions );
if ( (sform_code == NIFTI_XFORM_SCANNER_ANAT) || (qform_code == NIFTI_XFORM_UNKNOWN) )
volume->m_IndexToPhysicalMatrix = m4;
// NIFTI says, sform_code must be > 0, so should be safe to use "abs" and make negative to distinguish from qform (below)
volume->m_AlternativeIndexToPhysicalMatrices[-abs(sform_code)] = m4;
}
if ( qform_code > NIFTI_XFORM_UNKNOWN )
{
const float qb = header.GetField<float>( offsetof(nifti_1_header,quatern_b) );
const float qc = header.GetField<float>( offsetof(nifti_1_header,quatern_c) );
const float qd = header.GetField<float>( offsetof(nifti_1_header,quatern_d) );
const float qx = header.GetField<float>( offsetof(nifti_1_header,qoffset_x) );
const float qy = header.GetField<float>( offsetof(nifti_1_header,qoffset_y) );
const float qz = header.GetField<float>( offsetof(nifti_1_header,qoffset_z) );
const double qfac = (header.GetField<float>( offsetof(nifti_1_header,pixdim) ) >= 0) ? 1.0f : -1.0f;
const mat44 m44 = nifti_quatern_to_mat44( qb, qc, qd, qx, qy, qz, pixelDim[0], pixelDim[1], pixelDim[2], qfac );
Matrix4x4<Types::Coordinate> m4;
for ( int j = 0; j < 4; ++j )
{
for ( int i = 0; i < 4; ++i )
{
m4[i][j] = m44.m[j][i];
}
}
// qform overrides sform if both exist
if ( (qform_code == NIFTI_XFORM_SCANNER_ANAT) || (sform_code != NIFTI_XFORM_SCANNER_ANAT) )
volume->m_IndexToPhysicalMatrix = m4;
// NIFTI says, qform_code must be > 0, so should be safe to use "abs"
volume->m_AlternativeIndexToPhysicalMatrices[abs(qform_code)] = m4;
}
char orientationImage[4];
AnatomicalOrientation::GetOrientationFromDirections( orientationImage, volume->m_IndexToPhysicalMatrix, niftiSpace );
volume->SetMetaInfo( META_IMAGE_ORIENTATION, orientationImage );
volume->SetMetaInfo( META_IMAGE_ORIENTATION_ORIGINAL, orientationImage );
if ( header.GetField<char>( 148 ) )
{
char desc[81];
desc[80] = 0;
volume->SetMetaInfo( META_IMAGE_DESCRIPTION, std::string( header.GetFieldString( 148, desc, 80 ) ) );
}
// don't read data, we're done here.
if ( ! readData )
return volume;
ScalarDataType dtype;
switch ( header.GetField<short>( 70 ) )
{
case DT_NONE:
case DT_BINARY:
case DT_COMPLEX:
case DT_COMPLEX128:
case DT_COMPLEX256:
case DT_INT64:
case DT_UINT64:
case DT_FLOAT128:
case DT_RGB:
case DT_ALL:
default:
StdErr << "ERROR: unsupported data type " << header.GetField<short>( 70 ) << " in Nifti file " << pathHdr << "\n";
return volume;
case DT_UNSIGNED_CHAR:
dtype = TYPE_BYTE;
break;
case DT_INT8:
dtype = TYPE_CHAR;
break;
case DT_SIGNED_SHORT:
dtype = TYPE_SHORT;
break;
case DT_SIGNED_INT:
dtype = TYPE_INT;
break;
case DT_FLOAT:
dtype = TYPE_FLOAT;
break;
case DT_DOUBLE:
dtype = TYPE_DOUBLE;
break;
case DT_UINT16:
dtype = TYPE_USHORT;
break;
case DT_UINT32:
dtype = TYPE_UINT;
break;
}
size_t offset = static_cast<size_t>( header.GetField<float>( 108 ) );
std::string pathImg = pathHdr;
if ( detached )
{
const size_t period = pathImg.rfind( ".hdr" );
if ( period != std::string::npos )
pathImg.replace( period, 4, ".img" );
offset = 0;
}
CompressedStream stream( pathImg );
if ( stream.IsValid() )
{
stream.Seek( offset, SEEK_CUR );
TypedArray::SmartPtr data( TypedArray::Create( dtype, volume->GetNumberOfPixels() ) );
if ( data->GetDataSize() == stream.Read( data->GetDataPtr(), data->GetItemSize(), data->GetDataSize() ) )
{
if ( byteSwap )
data->ChangeEndianness();
volume->SetData( data );
}
else
{
StdErr << "ERROR: could not read " << data->GetDataSize() << " pixels from Nifti image file " << pathImg << "\n";
}
}
else
{
StdErr << "ERROR: could not open Nifti image file " << pathImg << "\n";
}
// if we read volume data (as opposed to grid geometry only) then check intent_code and set DataClass accordingly.
if ( volume->GetData() )
{
const short intent_code = header.GetField<short>( 68 );
switch ( intent_code )
{
case NIFTI_INTENT_LABEL:
case NIFTI_INTENT_NEURONAME:
volume->GetData()->SetDataClass( DATACLASS_LABEL );
break;
default:
volume->GetData()->SetDataClass( DATACLASS_GREY );
break;
}
}
return volume;
}
void
VolumeFromFile::WriteNifti
( const std::string& path, const UniformVolume& volume )
{
bool detachedHeader = false;
bool forceCompressed = false;
std::string pathImg( path );
// first, look for .gz
size_t suffixPosGz = pathImg.rfind( std::string( ".gz" ) );
if ( suffixPosGz != std::string::npos )
{
// found: set force compression flag and remove .gz from path
forceCompressed = true;
pathImg = pathImg.substr( 0, suffixPosGz );
}
std::string pathHdr( pathImg );
size_t suffixPos = pathHdr.rfind( ".img" );
if ( suffixPos != std::string::npos )
{
detachedHeader = true;
pathHdr.replace( suffixPos, 4, ".hdr" );
}
UniformVolume::SmartPtr writeVolume( volume.Clone() );
writeVolume->ChangeCoordinateSpace( "RAS" );
const TypedArray* data = writeVolume->GetData();
if ( ! data ) return;
nifti_1_header header;
memset( &header, 0, sizeof( header ) );
header.sizeof_hdr = 348; // header size
header.dim_info = 0;
// ndims
header.dim[0] = 3;
// dimensions
header.dim[1] = writeVolume->GetDims()[AXIS_X];
header.dim[2] = writeVolume->GetDims()[AXIS_Y];
header.dim[3] = writeVolume->GetDims()[AXIS_Z];
header.dim[4] = 1;
header.dim[5] = 1;
header.dim[6] = 1;
header.dim[7] = 1;
header.pixdim[0] = 1.0;
header.pixdim[1] = static_cast<float>( writeVolume->m_Delta[AXIS_X] );
header.pixdim[2] = static_cast<float>( writeVolume->m_Delta[AXIS_Y] );
header.pixdim[3] = static_cast<float>( writeVolume->m_Delta[AXIS_Z] );
header.pixdim[4] = 0.0;
header.pixdim[5] = 0.0;
const std::string spaceUnits = writeVolume->GetMetaInfo( META_SPACE_UNITS_STRING );
if ( spaceUnits == "mm" )
header.xyzt_units = NIFTI_UNITS_MM;
else if ( (spaceUnits == "micron") || (spaceUnits == "um") )
header.xyzt_units = NIFTI_UNITS_MICRON;
else if ( (spaceUnits == "m") || (spaceUnits == "meter") )
header.xyzt_units = NIFTI_UNITS_METER;
for ( std::map<int,cmtk::AffineXform::MatrixType>::const_iterator it = volume.m_AlternativeIndexToPhysicalMatrices.begin(); it != volume.m_AlternativeIndexToPhysicalMatrices.end(); ++it )
{
const AffineXform::MatrixType m4 = it->second;
// this came from a qform
if ( it->first > 0 )
{
header.qform_code = it->first;
__matrixToNiftiQform( header, it->second );
}
// this came from an sform
if ( it->first < 0 )
{
header.sform_code = abs( it->first );
for ( int i = 0; i < 4; ++i )
{
header.srow_x[i] = static_cast<float>( m4[i][0] );
header.srow_y[i] = static_cast<float>( m4[i][1] );
header.srow_z[i] = static_cast<float>( m4[i][2] );
}
}
}
// fallback - we want at least a generic qform to be set to the volume's index-to-physical matrix
if ( ! (header.qform_code || header.sform_code) )
{
#ifdef IGNORE
// This piece of code, when replacing the next two lines (qform stuff) would make CMTK entirely backward-compatible (release 2.3 and earlier), but non-NIFTI-compliant.
const AffineXform::MatrixType m4 = volume.m_IndexToPhysicalMatrix;
header.sform_code = NIFTI_XFORM_SCANNER_ANAT;
for ( int i = 0; i < 4; ++i )
{
header.srow_x[i] = static_cast<float>( m4[i][0] );
header.srow_y[i] = static_cast<float>( m4[i][1] );
header.srow_z[i] = static_cast<float>( m4[i][2] );
}
#else
header.qform_code = NIFTI_XFORM_SCANNER_ANAT;
__matrixToNiftiQform( header, volume.m_IndexToPhysicalMatrix );
#endif
}
switch ( data->GetType() )
{
default:
header.datatype = DT_UNKNOWN;
header.bitpix = 0;
break;
case TYPE_BYTE:
header.datatype = DT_UNSIGNED_CHAR;
header.bitpix = 8 * sizeof(byte);
break;
case TYPE_CHAR:
header.datatype = DT_INT8;
header.bitpix = 8 * sizeof(char);
break;
case TYPE_SHORT:
header.datatype = DT_INT16;
header.bitpix = 8 * sizeof(short);
break;
case TYPE_USHORT:
header.datatype = DT_UINT16;
header.bitpix = 8 * sizeof(unsigned short);
break;
case TYPE_INT:
header.datatype = DT_INT32;
header.bitpix = 8 * sizeof(int);
break;
case TYPE_UINT:
header.datatype = DT_UINT32;
header.bitpix = 8 * sizeof(unsigned int);
break;
case TYPE_FLOAT:
header.datatype = DT_FLOAT;
header.bitpix = 8 * sizeof(float);
break;
case TYPE_DOUBLE:
header.datatype = DT_DOUBLE;
header.bitpix = 8 * sizeof(double);
break;
}
if ( data->GetDataClass() == DATACLASS_LABEL )
header.intent_code = NIFTI_INTENT_LABEL;
else
header.intent_code = 0;
// determine data range;
const Types::DataItemRange dataRange = data->GetRange();
header.cal_max = static_cast<float>( dataRange.m_UpperBound );
header.cal_min = static_cast<float>( dataRange.m_LowerBound );
if ( volume.MetaKeyExists( META_IMAGE_DESCRIPTION ) )
{
memset( header.descrip, 0, sizeof( header.descrip ) );
strncpy( header.descrip, volume.GetMetaInfo( META_IMAGE_DESCRIPTION ).c_str(), sizeof( header.descrip )-1 );
}
// see if we have the Phase Encode Direction from DICOM - set axis information in header if we do
if ( volume.MetaKeyExists( META_IMAGE_SLICE_PEDIRECTION ) )
{
const std::string peDirection = volume.GetMetaInfo( META_IMAGE_SLICE_PEDIRECTION );
if ( peDirection == "COL" )
header.dim_info = FPS_INTO_DIM_INFO( 1, 2, 3 );
else
header.dim_info = FPS_INTO_DIM_INFO( 2, 1, 3 );
}
if ( volume.MetaKeyExists( META_IMAGE_SLICEORDER ) )
{
// here we assume that this is a volume straight out of the DICOM stacker, which keeps slices along dim[3]
if ( header.dim_info == 0 ) // see if we previously set dim_info based on PE direction
header.dim_info = FPS_INTO_DIM_INFO( 0, 0, 3 ); // if not, we need to set at least the slice direction
const std::string sliceOrder = volume.GetMetaInfo( META_IMAGE_SLICEORDER );
if ( sliceOrder == META_IMAGE_SLICEORDER_SI )
header.slice_code = NIFTI_SLICE_SEQ_INC;
else if ( sliceOrder == META_IMAGE_SLICEORDER_SD )
header.slice_code = NIFTI_SLICE_SEQ_DEC;
else if ( sliceOrder == META_IMAGE_SLICEORDER_AI )
header.slice_code = NIFTI_SLICE_ALT_INC;
else if ( sliceOrder == META_IMAGE_SLICEORDER_AD )
header.slice_code = NIFTI_SLICE_ALT_DEC;
else if ( sliceOrder == META_IMAGE_SLICEORDER_AI2 )
header.slice_code = NIFTI_SLICE_ALT_INC2;
else if ( sliceOrder == META_IMAGE_SLICEORDER_AD2 )
header.slice_code = NIFTI_SLICE_ALT_DEC2;
header.slice_start = 0;
header.slice_end = header.dim[3]-1;
header.slice_duration = atof( volume.GetMetaInfo( META_IMAGE_SLICEDURATION ).c_str() ) / 1000; // convert from msec to s for AFNI
header.xyzt_units |= NIFTI_UNITS_SEC;
}
#ifdef _MSC_VER
const char *const modestr = "wb";
#else
const char *const modestr = "w";
#endif
if ( detachedHeader )
{
memcpy( &header.magic, "ni1\x00", 4 );
header.vox_offset = 0;
FILE *hdrFile = fopen( pathHdr.c_str(), modestr );
if ( hdrFile )
{
fwrite( &header, 1, sizeof( header ), hdrFile );
const int extension = 0;
fwrite( &extension, 1, 4, hdrFile );
fclose( hdrFile );
}
else
{
StdErr << "ERROR: NIFTI header file '" << pathHdr << "' could not be opened for writing!\n";
}
}
else
{
memcpy( &header.magic, "n+1\x00", 4 );
header.vox_offset = 352;
}
if ( VolumeIO::GetWriteCompressed() || forceCompressed )
{
struct stat buf;
if ( ! stat( pathImg.c_str(), &buf ) )
{
StdErr << "WARNING: NIFTI file '" << path << "' will be written compressed, but uncompressed file exists!\n";
}
gzFile imgFile = gzopen( (pathImg+".gz").c_str(), modestr );
if ( imgFile )
{
if ( ! detachedHeader )
{
gzwrite( imgFile, &header, sizeof( header ) );
const int extension = 0;
gzwrite( imgFile, &extension, 4 );
}
const size_t dataSize = data->GetItemSize() * data->GetDataSize();
if ( dataSize != CompressedStream::Zlib::StaticSafeWrite( imgFile, data->GetDataPtr(), dataSize ) )
{
StdErr << "WARNING: gzwrite() returned error when writing to " << pathImg << "\n";
}
gzclose( imgFile );
}
else
{
StdErr << "ERROR: could not open file '" << pathImg << ".gz' for writing\n";
}
}
else
{
FILE *imgFile = fopen( pathImg.c_str(), modestr );
if ( imgFile )
{
if ( ! detachedHeader )
{
fwrite( &header, 1, sizeof( header ), imgFile );
const int extension = 0;
fwrite( &extension, 1, 4, imgFile );
}
fwrite( data->GetDataPtr(), data->GetItemSize(), data->GetDataSize(), imgFile );
fclose( imgFile );
}
else
{
StdErr << "ERROR: could not open file '" << pathImg << "' for writing\n";
}
}
}
} // namespace cmtk
|