1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2011, 2013 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
#include "cmtkVolumeFromSlices.h"
#include <System/cmtkProgress.h>
#include <Base/cmtkVolume.h>
#include <Base/cmtkUniformVolume.h>
#include <Base/cmtkAffineXform.h>
#include <Base/cmtkMathUtil.h>
#include <Base/cmtkAnatomicalOrientation.h>
#include <math.h>
namespace
cmtk
{
/** \addtogroup IO */
//@{
void
VolumeFromSlices::InitSequence
( const ScalarImage* image, const unsigned int numberOfSlices )
{
Padding = false;
Spacing[0] = image->GetPixelSize( AXIS_X );
Spacing[1] = image->GetPixelSize( AXIS_Y );
ImagePosition = image->GetImageOrigin();
Dims[0] = image->GetDims()[AXIS_X];
Dims[1] = image->GetDims()[AXIS_Y];
Dims[2] = numberOfSlices;
BytesPerPixel = image->GetPixelData()->GetItemSize();
DataType = image->GetPixelData()->GetType();
DataSize = Dims[0] * Dims[1] * Dims[2];
VolumeDataArray = TypedArray::Create( image->GetPixelData()->GetType(), DataSize );
// Allocate array for axis sample points
for ( unsigned int idx = 0; idx<3; ++idx )
Points[idx] = Memory::ArrayC::Allocate<Types::Coordinate>( Dims[idx] );
// Set sample points for uniform original x- and y-axis
for ( unsigned int dim=0; dim<2; ++dim )
{
for ( int idx=0; idx < Dims[dim]; ++idx )
{
Points[dim][idx] = idx * Spacing[dim];
}
// Set size in axis direction.
Size[dim] = (Dims[dim]-1) * Spacing[dim];
}
}
char*
VolumeFromSlices::AllocDataArray
( const int bytesPerPixel, const int dataSize ) const
{
return Memory::ArrayC::Allocate<char>( bytesPerPixel * dataSize );
}
TypedArray::SmartPtr
VolumeFromSlices::EncapDataArray ( const ScalarDataType dtype, void *const data, const int data_size )
const
{
return TypedArray::Create( dtype, data, data_size, Padding, &PaddingValue, Memory::ArrayC::Delete );
}
const char*
VolumeFromSlices::FillPlane
( unsigned int& plane, const ScalarImage* image )
{
char* rawDataPtr = static_cast<char*>( VolumeDataArray->GetDataPtr() );
const size_t bytesPerBlock = BytesPerPixel * Dims[0] * Dims[1];
for ( int planeIdx = 0; planeIdx < image->GetNumberOfFrames(); ++planeIdx, ++plane )
{
const char *check = this->CheckImage( plane, image, planeIdx );
if ( check ) return check;
memcpy( rawDataPtr + bytesPerBlock * plane, image->GetPixelData()->GetDataPtr(), bytesPerBlock );
// set world coordinate of the plane just read
Types::Coordinate slicePosition = (ImagePosition - FirstImagePosition).RootSumOfSquares();
slicePosition = 1e-6 * ( MathUtil::Round( 1e+6 * slicePosition) );
Points[2][plane] = slicePosition;
}
return NULL;
}
UniformVolume::SmartPtr
VolumeFromSlices::FinishVolume ( Types::Coordinate& sliceOffset, int& sliceDirection )
{
Types::Coordinate *next_point = Points[2];
sliceOffset = next_point[0];
sliceDirection = MathUtil::Sign(next_point[1]-sliceOffset);
Types::Coordinate previous_plane = sliceOffset;
// normalize z-coordinates so that they start with zero and increase with
// growing z-index.
*next_point = 0;
int idx;
for ( idx=1, ++next_point; idx < Dims[2]; ++idx, ++next_point )
{
Types::Coordinate next_plane = *next_point;
(*next_point) = *(next_point-1)+fabs(next_plane-previous_plane);
previous_plane = next_plane;
}
Size[2] = *(next_point-1);
// Encapsulate raw volume data.
if ( !VolumeDataArray )
VolumeDataArray = TypedArray::SmartPtr( this->EncapDataArray( SelectDataTypeInteger( BytesPerPixel, SignBit ), RawData, DataSize ) );
const Types::Coordinate* aux[] = { Points[0], Points[1], Points[2] };
UniformVolume::SmartPtr Result = this->ConstructVolume( Dims, Size, aux, VolumeDataArray );
// if something went wrong assembling the volume, then return NULL pointer
if ( ! Result )
return Result;
// clear reference, since now linked by volume.
VolumeDataArray = TypedArray::SmartPtr::Null();
for ( idx = 0; idx<3; ++idx )
Memory::ArrayC::Delete( Points[idx] );
Result->SetMetaInfo( META_SPACE, "LPS" );
Result->SetMetaInfo( META_SPACE_ORIGINAL, "LPS" );
// actual image directions
const Types::Coordinate spacing[3] = { (Size[0] / (Dims[0]-1)), (Size[1] / (Dims[1]-1)), (Size[2] / (Dims[2]-1)) };
this->ImageOrientation[0] *= spacing[0] / this->ImageOrientation[0].RootSumOfSquares();
this->ImageOrientation[1] *= spacing[1] / this->ImageOrientation[1].RootSumOfSquares();
this->IncrementVector *= spacing[2] / this->IncrementVector.RootSumOfSquares();
const Types::Coordinate directions[3][3] =
{
{ this->ImageOrientation[0][0], this->ImageOrientation[0][1], this->ImageOrientation[0][2] },
{ this->ImageOrientation[1][0], this->ImageOrientation[1][1], this->ImageOrientation[1][2] },
{ this->IncrementVector[0], this->IncrementVector[1], this->IncrementVector[2] }
};
const Matrix3x3<Types::Coordinate> m3( directions );
Matrix4x4<Types::Coordinate> m4( m3 );
for ( int i = 0; i < 3; ++i )
m4[3][i] = this->FirstImagePosition[i];
Result->m_IndexToPhysicalMatrix = m4;
// const std::string orientationString0 = Result->GetOrientationFromDirections();
Result->ChangeCoordinateSpace( AnatomicalOrientation::ORIENTATION_STANDARD );
const std::string orientationString = Result->GetOrientationFromDirections();
Result->SetMetaInfo( META_SPACE_UNITS_STRING, "mm" ); // seems to be implied in DICOM
Result->SetMetaInfo( META_IMAGE_ORIENTATION, orientationString );
Result->SetMetaInfo( META_IMAGE_ORIENTATION_ORIGINAL, orientationString );
return Result;
}
const char*
VolumeFromSlices::CheckImage
( const int plane, const ScalarImage* image, const unsigned int frame )
{
if ( ( this->Dims[0] != image->GetDims()[AXIS_X] ) || ( this->Dims[1] != image->GetDims()[AXIS_Y] ) )
return "Image size mismatch";
if ( ( fabs( image->GetPixelSize( AXIS_X ) - Spacing[0] ) > CMTK_MAX_CALIB_ERROR ) ||
( fabs( image->GetPixelSize( AXIS_Y ) - Spacing[1] ) > CMTK_MAX_CALIB_ERROR ) )
return "Calibration mismatch";
// not too many things can go wrong for the very first slice.
if ( plane == 0 )
{
FirstImagePosition = ImagePosition = image->GetImageOrigin( frame );
ImageOrientation[0] = image->GetImageDirectionX();
ImageOrientation[1] = image->GetImageDirectionY();
return NULL;
}
// check whether this slice is parallel to the previous one
for ( unsigned int dim = 0; dim<3; ++dim )
{
if ( ( fabs( ImageOrientation[0][dim] - image->GetImageDirectionX()[dim] ) > CMTK_MAX_CALIB_ERROR ) ||
( fabs( ImageOrientation[1][dim] - image->GetImageDirectionY()[dim] ) > CMTK_MAX_CALIB_ERROR ) )
return "Non-parallel image planes";
}
// Second++ slice: Compute slice-to-slice vector
ScalarImage::SpaceVectorType imageToImage = image->GetImageOrigin( frame ) - ImagePosition;
if ( imageToImage.MaxAbsValue() < CMTK_MAX_LOCALIZE_ERROR )
{
StdErr.printf( "Two slices at position (%f,%f,%f)\n", (float)ImagePosition[0], (float)ImagePosition[1], (float)ImagePosition[2] );
return "Encountered two slices in identical location.";
}
else
imageToImage /= imageToImage.MaxAbsValue();
// Check whether slice-to-slice direction is orthogonal to image
// axes.
const Types::Coordinate scalarX = fabs( imageToImage * ImageOrientation[0] );
const Types::Coordinate scalarY = fabs( imageToImage * ImageOrientation[1] );
if ( (scalarX > CMTK_MAX_ANGLE_ERROR) || (scalarY > CMTK_MAX_ANGLE_ERROR) )
{
fprintf( stderr, "errX = %f, errY = %f, thresh = %f\n", scalarX, scalarY, CMTK_MAX_ANGLE_ERROR );
return "Data grid must be orthogonal.";
}
// if this is the second slice, save increment vector for further tests.
if ( plane == 1 )
IncrementVector = imageToImage;
// otherwise, perform these tests
else
{
// Are we still going in the same direction?
if ( (imageToImage - IncrementVector).MaxAbsValue() > CMTK_MAX_LOCALIZE_ERROR )
{
// Nope, but why? Let's give user some more hints
if ( ( (imageToImage * IncrementVector) > 0 ) )
// Basically same direction, so FOV has changed
return "Field-of-view mismatch";
else
// Completely different direction: We're going backwards
return "Encountered altering slice direction.";
}
}
// Finally, save essential information about current image.
ImagePosition = image->GetImageOrigin( frame );
return NULL;
}
UniformVolume::SmartPtr
VolumeFromSlices::ConstructVolume
( const DataGrid::IndexType& dims, const UniformVolume::CoordinateVectorType& size, const Types::Coordinate *points[3], TypedArray::SmartPtr& data ) const
{
bool isUniform = true;
Types::Coordinate error = 0;
for ( unsigned int dim=0; (dim<3) && isUniform; ++dim )
{
Types::Coordinate delta = points[dim][1] - points[dim][0];
for ( int idx=2; (idx<dims[dim]) && isUniform; ++idx )
{
if ( fabs( delta - (points[dim][idx] - points[dim][idx-1]) ) > ( this->m_Tolerance * delta ) )
isUniform = false;
error = fabs( delta - (points[dim][idx] - points[dim][idx-1]) );
}
}
if ( !isUniform )
{
StdErr << "ERROR: not a uniform volume (error = " << error << ")\n";
return UniformVolume::SmartPtr( NULL );
}
return UniformVolume::SmartPtr( new UniformVolume( dims, size, data ) );
}
} // namespace cmtk
|