File: cmtkVolumeFromSlices.cxx

package info (click to toggle)
cmtk 3.3.1p2%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,524 kB
  • sloc: cpp: 87,098; ansic: 23,347; sh: 3,896; xml: 1,551; perl: 707; makefile: 334
file content (301 lines) | stat: -rw-r--r-- 10,440 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/*
//
//  Copyright 1997-2009 Torsten Rohlfing
//
//  Copyright 2004-2011, 2013 SRI International
//
//  This file is part of the Computational Morphometry Toolkit.
//
//  http://www.nitrc.org/projects/cmtk/
//
//  The Computational Morphometry Toolkit is free software: you can
//  redistribute it and/or modify it under the terms of the GNU General Public
//  License as published by the Free Software Foundation, either version 3 of
//  the License, or (at your option) any later version.
//
//  The Computational Morphometry Toolkit is distributed in the hope that it
//  will be useful, but WITHOUT ANY WARRANTY; without even the implied
//  warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License along
//  with the Computational Morphometry Toolkit.  If not, see
//  <http://www.gnu.org/licenses/>.
//
//  $Revision: 5436 $
//
//  $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
//  $LastChangedBy: torstenrohlfing $
//
*/

#include "cmtkVolumeFromSlices.h"

#include <System/cmtkProgress.h>

#include <Base/cmtkVolume.h>
#include <Base/cmtkUniformVolume.h>
#include <Base/cmtkAffineXform.h>
#include <Base/cmtkMathUtil.h>
#include <Base/cmtkAnatomicalOrientation.h>

#include <math.h>

namespace
cmtk
{

/** \addtogroup IO */
//@{

void 
VolumeFromSlices::InitSequence
( const ScalarImage* image, const unsigned int numberOfSlices )
{ 
  Padding = false;

  Spacing[0] = image->GetPixelSize( AXIS_X );
  Spacing[1] = image->GetPixelSize( AXIS_Y );

  ImagePosition = image->GetImageOrigin();

  Dims[0] = image->GetDims()[AXIS_X];
  Dims[1] = image->GetDims()[AXIS_Y];
  Dims[2] = numberOfSlices;

  BytesPerPixel = image->GetPixelData()->GetItemSize();
  DataType = image->GetPixelData()->GetType();

  DataSize = Dims[0] * Dims[1] * Dims[2];

  VolumeDataArray = TypedArray::Create( image->GetPixelData()->GetType(), DataSize );
  
  // Allocate array for axis sample points
  for ( unsigned int idx = 0; idx<3; ++idx )
    Points[idx] = Memory::ArrayC::Allocate<Types::Coordinate>( Dims[idx] );
  
  // Set sample points for uniform original x- and y-axis
  for ( unsigned int dim=0; dim<2; ++dim ) 
    {
    for ( int idx=0; idx < Dims[dim]; ++idx ) 
      {
      Points[dim][idx] = idx * Spacing[dim];
      }
    // Set size in axis direction.
    Size[dim] = (Dims[dim]-1) * Spacing[dim];
    }
}

char* 
VolumeFromSlices::AllocDataArray
( const int bytesPerPixel, const int dataSize ) const 
{
  return Memory::ArrayC::Allocate<char>( bytesPerPixel * dataSize );
}

TypedArray::SmartPtr
VolumeFromSlices::EncapDataArray ( const ScalarDataType dtype, void *const data, const int data_size ) 
  const
{
  return TypedArray::Create( dtype, data, data_size, Padding, &PaddingValue, Memory::ArrayC::Delete );
}

const char* 
VolumeFromSlices::FillPlane 
( unsigned int& plane, const ScalarImage* image )
{
  char* rawDataPtr = static_cast<char*>( VolumeDataArray->GetDataPtr() );

  const size_t bytesPerBlock = BytesPerPixel * Dims[0] * Dims[1];
  for ( int planeIdx = 0; planeIdx < image->GetNumberOfFrames(); ++planeIdx, ++plane ) 
    {
    const char *check = this->CheckImage( plane, image, planeIdx );
    if ( check ) return check;
    
    memcpy( rawDataPtr + bytesPerBlock * plane, image->GetPixelData()->GetDataPtr(), bytesPerBlock );
    
    // set world coordinate of the plane just read
    Types::Coordinate slicePosition = (ImagePosition - FirstImagePosition).RootSumOfSquares();
    slicePosition = 1e-6 * ( MathUtil::Round( 1e+6 * slicePosition) );
    Points[2][plane] = slicePosition;
    }
  
  return NULL;
}

UniformVolume::SmartPtr
VolumeFromSlices::FinishVolume ( Types::Coordinate& sliceOffset, int& sliceDirection )
{
  Types::Coordinate *next_point = Points[2];

  sliceOffset = next_point[0];
  sliceDirection = MathUtil::Sign(next_point[1]-sliceOffset);
  
  Types::Coordinate previous_plane = sliceOffset;
  
  // normalize z-coordinates so that they start with zero and increase with
  // growing z-index.
  *next_point = 0;
  int idx;
  for ( idx=1, ++next_point; idx < Dims[2]; ++idx, ++next_point ) 
    {
    Types::Coordinate next_plane = *next_point;
    (*next_point) = *(next_point-1)+fabs(next_plane-previous_plane);
    previous_plane = next_plane;
    }
  
  Size[2] = *(next_point-1);
  
  // Encapsulate raw volume data.
  
  if ( !VolumeDataArray )
    VolumeDataArray = TypedArray::SmartPtr( this->EncapDataArray( SelectDataTypeInteger( BytesPerPixel, SignBit ), RawData, DataSize ) );
  
  const Types::Coordinate* aux[] = { Points[0], Points[1], Points[2] };
  UniformVolume::SmartPtr Result = this->ConstructVolume( Dims, Size, aux, VolumeDataArray );

  // if something went wrong assembling the volume, then return NULL pointer
  if ( ! Result )
    return Result;

  // clear reference, since now linked by volume.
  VolumeDataArray = TypedArray::SmartPtr::Null(); 

  for ( idx = 0; idx<3; ++idx )
    Memory::ArrayC::Delete( Points[idx] );

  Result->SetMetaInfo( META_SPACE, "LPS" );
  Result->SetMetaInfo( META_SPACE_ORIGINAL, "LPS" );

  // actual image directions
  const Types::Coordinate spacing[3] = { (Size[0] / (Dims[0]-1)), (Size[1] / (Dims[1]-1)), (Size[2] / (Dims[2]-1)) };

  this->ImageOrientation[0] *= spacing[0] / this->ImageOrientation[0].RootSumOfSquares();
  this->ImageOrientation[1] *= spacing[1] / this->ImageOrientation[1].RootSumOfSquares();
  this->IncrementVector *= spacing[2] / this->IncrementVector.RootSumOfSquares();
  
  const Types::Coordinate directions[3][3] = 
    {
      { this->ImageOrientation[0][0], this->ImageOrientation[0][1], this->ImageOrientation[0][2] },
      { this->ImageOrientation[1][0], this->ImageOrientation[1][1], this->ImageOrientation[1][2] },
      { this->IncrementVector[0], this->IncrementVector[1], this->IncrementVector[2] }
    };
  
  const Matrix3x3<Types::Coordinate> m3( directions );
  Matrix4x4<Types::Coordinate> m4( m3 );
  for ( int i = 0; i < 3; ++i )
    m4[3][i] = this->FirstImagePosition[i];

  Result->m_IndexToPhysicalMatrix = m4;
//  const std::string orientationString0 = Result->GetOrientationFromDirections();
  Result->ChangeCoordinateSpace( AnatomicalOrientation::ORIENTATION_STANDARD );

  const std::string orientationString = Result->GetOrientationFromDirections();
  Result->SetMetaInfo( META_SPACE_UNITS_STRING, "mm" ); // seems to be implied in DICOM
  Result->SetMetaInfo( META_IMAGE_ORIENTATION, orientationString );
  Result->SetMetaInfo( META_IMAGE_ORIENTATION_ORIGINAL, orientationString );

  return Result;
}

const char* 
VolumeFromSlices::CheckImage
( const int plane, const ScalarImage* image, const unsigned int frame )
{
  if ( ( this->Dims[0] != image->GetDims()[AXIS_X] ) || ( this->Dims[1] != image->GetDims()[AXIS_Y] ) )
    return "Image size mismatch";
  
  if ( ( fabs( image->GetPixelSize( AXIS_X ) - Spacing[0] ) > CMTK_MAX_CALIB_ERROR ) ||
       ( fabs( image->GetPixelSize( AXIS_Y ) - Spacing[1] ) > CMTK_MAX_CALIB_ERROR ) )
    return "Calibration mismatch";
  
  // not too many things can go wrong for the very first slice.
  if ( plane == 0 ) 
    {
    FirstImagePosition = ImagePosition = image->GetImageOrigin( frame );
    ImageOrientation[0] = image->GetImageDirectionX();
    ImageOrientation[1] = image->GetImageDirectionY();
    return NULL;
    }

  // check whether this slice is parallel to the previous one
  for ( unsigned int dim = 0; dim<3; ++dim ) 
    {
    if ( ( fabs( ImageOrientation[0][dim] - image->GetImageDirectionX()[dim] ) > CMTK_MAX_CALIB_ERROR ) ||
	 ( fabs( ImageOrientation[1][dim] - image->GetImageDirectionY()[dim] ) > CMTK_MAX_CALIB_ERROR ) )
      return "Non-parallel image planes";
    }
  
  // Second++ slice: Compute slice-to-slice vector
  ScalarImage::SpaceVectorType imageToImage = image->GetImageOrigin( frame ) - ImagePosition;
  
  if ( imageToImage.MaxAbsValue() < CMTK_MAX_LOCALIZE_ERROR )
    {
    StdErr.printf( "Two slices at position (%f,%f,%f)\n", (float)ImagePosition[0], (float)ImagePosition[1], (float)ImagePosition[2] );
    return "Encountered two slices in identical location.";
    }
  else
    imageToImage /= imageToImage.MaxAbsValue();
  
  // Check whether slice-to-slice direction is orthogonal to image
  // axes.
  const Types::Coordinate scalarX = fabs( imageToImage * ImageOrientation[0] );
  const Types::Coordinate scalarY = fabs( imageToImage * ImageOrientation[1] );
  if ( (scalarX > CMTK_MAX_ANGLE_ERROR) || (scalarY > CMTK_MAX_ANGLE_ERROR) )
    {
    fprintf( stderr, "errX = %f, errY = %f, thresh = %f\n", scalarX, scalarY, CMTK_MAX_ANGLE_ERROR );
    return "Data grid must be orthogonal.";
    }
  
  // if this is the second slice, save increment vector for further tests.
  if ( plane == 1 )
    IncrementVector = imageToImage;
  // otherwise, perform these tests
  else 
    {
    // Are we still going in the same direction?
    if ( (imageToImage - IncrementVector).MaxAbsValue() > CMTK_MAX_LOCALIZE_ERROR )
      {
      // Nope, but why? Let's give user some more hints
      if ( ( (imageToImage * IncrementVector) > 0 ) )
	// Basically same direction, so FOV has changed
	return "Field-of-view mismatch";
      else
	// Completely different direction: We're going backwards
	return "Encountered altering slice direction.";
      }
    }
  
  // Finally, save essential information about current image.
  ImagePosition = image->GetImageOrigin( frame );
  
  return NULL;
}

UniformVolume::SmartPtr 
VolumeFromSlices::ConstructVolume
( const DataGrid::IndexType& dims, const UniformVolume::CoordinateVectorType& size, const Types::Coordinate *points[3], TypedArray::SmartPtr& data ) const
{
  bool isUniform = true;
  Types::Coordinate error = 0;
  for ( unsigned int dim=0; (dim<3) && isUniform; ++dim ) 
    {
    Types::Coordinate delta = points[dim][1] - points[dim][0];
    for ( int idx=2; (idx<dims[dim]) && isUniform; ++idx ) 
      {
      if ( fabs( delta - (points[dim][idx] - points[dim][idx-1]) ) > ( this->m_Tolerance * delta ) )
	isUniform = false;
      error = fabs( delta - (points[dim][idx] - points[dim][idx-1]) );
      }
    }
  
  if ( !isUniform )
    {
    StdErr << "ERROR: not a uniform volume (error = " << error << ")\n";
    return UniformVolume::SmartPtr( NULL );
    }
  return UniformVolume::SmartPtr( new UniformVolume( dims, size, data ) );
}

} // namespace cmtk