1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
/*
//
// Copyright 1997-2009 Torsten Rohlfing
//
// Copyright 2004-2011, 2013 SRI International
//
// This file is part of the Computational Morphometry Toolkit.
//
// http://www.nitrc.org/projects/cmtk/
//
// The Computational Morphometry Toolkit is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// The Computational Morphometry Toolkit is distributed in the hope that it
// will be useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with the Computational Morphometry Toolkit. If not, see
// <http://www.gnu.org/licenses/>.
//
// $Revision: 5436 $
//
// $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
// $LastChangedBy: torstenrohlfing $
//
*/
/**\name Build Volume from slice images.
*\author Torsten Rohlfing
*/
#ifndef __cmtkVolumeFromSlices_h_included_
#define __cmtkVolumeFromSlices_h_included_
#include <cmtkconfig.h>
#include <Base/cmtkTypes.h>
#include <Base/cmtkVolume.h>
#include <Base/cmtkUniformVolume.h>
#include <Base/cmtkScalarImage.h>
#include <stdio.h>
/**\name Error bounds for various floating point situations.
*/
//@{
/// Maximum calibration error in mm. Provides tolerance for fp rounding.
#define CMTK_MAX_CALIB_ERROR 1e-5
/** Maximum angular error.
* This is the maximum difference of grid angle cosines from 90 degrees.
* Must be more tolerant than MAX_CALIB_ERROR as the imaging devices have
* a ROTTEN floating-point accuracy.
*/
#define CMTK_MAX_ANGLE_ERROR 1e-3
/** Maximum error allowed for image localization.
* Must be more tolerant than MAX_CALIB_ERROR again as the imaging devices have
* an even WORSE than ROTTEN floating-point accuracy.
*/
#define CMTK_MAX_LOCALIZE_ERROR 1e-2
//@}
namespace
cmtk
{
/** \addtogroup IO */
//@{
/// Class for building 3D fields from slice image data.
class VolumeFromSlices
{
public:
/// This class.
typedef VolumeFromSlices Self;
/// Default constructor.
VolumeFromSlices( const Types::Coordinate tolerance = 0 /*!< Tolerance for floating point comparisons, e.g., when testing for uniform pixel/slice spacings.*/ ) :
m_Tolerance( tolerance ),
DataSize( 0 ),
RawData( NULL ),
VolumeDataArray( NULL ),
BytesPerPixel( 0 ),
SignBit( false ),
DataType( TYPE_NONE ),
IncX( 0 ), IncY( 0 ), BlockSize( 0 ),
Padding( false )
{
Points[0] = Points[1] = Points[2] = NULL;
}
/// Virtual dummy destructor.
virtual ~VolumeFromSlices() {}
protected:
/// Stored floating point tolerance.
Types::Coordinate m_Tolerance;
/** Start creation of new volume.
*/
void InitSequence( const ScalarImage* image, const unsigned int numberOfSlices );
/** Allocate memory for the 3D image data.
*/
virtual char* AllocDataArray( const int bytesperpixel, const int data_size ) const;
/** Put image data into a custom data structure.
* By default, the image data is encapsulated into a newly created
* TypedArray object.
*/
virtual TypedArray::SmartPtr EncapDataArray( const ScalarDataType dtype, void *const data, const int data_size ) const;
/** Copy one slice of data into field.
* This function rearranges the bytes in the given 2D image so that after
* all slices have been copied to the 3D array, the xy-plane is always axial
* with respect to the patient.
*/
const char* FillPlane ( unsigned int& plane, const ScalarImage* image );
/** Finish volume creation and free temporary storage.
*\param sliceOffset This reference is set to the absolute slice coordinate
* of the original image that became the first plane in the resulting volume.
* This can be used to write images with precisely the same absolute
* positions later.
*\param sliceDirection This reference is set to a flag indicating whether
* in the original images the slice positions increased (+1) or decreased
* (-1) with increasing slice index.
*\return The newly created volume object as returned by ConstructVolume().
*/
UniformVolume::SmartPtr FinishVolume( Types::Coordinate& sliceOffset, int& sliceDirection );
/** Finish volume creation without additional information.
* If the additional information returned by the previous FinishVolume(...)
* function is not reuqired, this function may be called instead.
*/
UniformVolume::SmartPtr FinishVolume ()
{
Types::Coordinate dummy_c;
int dummy_i;
return FinishVolume( dummy_c, dummy_i );
}
/** Construct Volume object.
* This function takes the geometry and data as read from the slice images.
* Its purpose is to compose an Volume object out of these components.
* By default, an instance of UniformVolume will be created for
* uniformly-spaced data, while an instance of igsRectilinearVolume is
* created for non-uniformly spaced images. Derived classes my override this
* function to create specialized volume classes derived from the
* aforementioned base classes.
*\param Dims Dimensions of the 3D data, ie. number of voxels in x-, y-, and
* z-direction.
*\param Size Extents of data in [mm] in x-, y-, and z-direction.
*\param Points Positions of the grid points (voxels) with respect to the
* three spatial coordinates. In case the points are uniformly spaced in all
* three dimensions, an instance of UniformVolume is created with grid
* spacing as defined by the uniform spacings in this array. Otherwise, an
* instance of igsRectilinearVolume is created with precisely this array as
* its "Points" field.
*\param Data Pixel data array for the new volume.
*\see igsRectilinearVolume#Points
*\return The newly created instance of a class derived from Volume.
*\see Volume
*/
virtual UniformVolume::SmartPtr ConstructVolume( const DataGrid::IndexType& Dims, const UniformVolume::CoordinateVectorType& Size, const Types::Coordinate *Points[3], TypedArray::SmartPtr& Data ) const;
/** Check image consistency.
* This function is used to verify that all images share the same matrix
* size, identical pixel calibrations, and the same primitive data type.
* Also, slices with zero distance and changing directions of the table
* position are detected and reported.
*\param plane Index of this image in the sequence.
*\param image A reference to a structure describing the next image.
*\param frame Index of frame within a multi-frame image.
*\return A pointer to an error message, of NULL if image was okay.
*/
const char* CheckImage ( const int plane, const ScalarImage* image, const unsigned int frame = 0 );
/** Handle an error condition.
* Basically, this function is intended to notify the user of errors
* occurring during the volume building process, such as inconsistent images.
* By default, all errors are simply printed to the standard error output.
* Derived classes may override this function to provide
* environment-specific interaction.
*\param message A textual description of the error condition.
*/
virtual void HandleError ( const char* message ) const
{
fputs ( message, stderr );
}
private:
/** Dimensions of the 3D data.
* This array is filled with the number of voxels in x-, y-, and z-direction.
*/
DataGrid::IndexType Dims;
/** Size of the 3D data.
* This array holds the extents of the 3D data in x-, y-, and z-direction.
* All values are in real-world coordinates, ie. [mm].
*/
UniformVolume::CoordinateVectorType Size;
/** Axes points of the constructed volume.
* During assembly of the 3D data, this array is filled with the positions
* of the grid points in all three dimensions.
*/
Types::Coordinate* Points[3];
/// Number of voxels.
unsigned int DataSize;
/// Pointer to the volume data.
char *RawData;
/// Volume data array.
TypedArray::SmartPtr VolumeDataArray;
/// Number of allocated bytes per voxel.
int BytesPerPixel;
/// Is the data signed?
bool SignBit;
/// Primitive image data type.
ScalarDataType DataType;
/// Pixel calibration of the slice images.
Types::Coordinate Spacing[2];
/// X-coordinate of image origin.
ScalarImage::SpaceVectorType FirstImagePosition;
/// X-coordinate of image origin.
ScalarImage::SpaceVectorType ImagePosition;
/// X-coordinate of image origin.
ScalarImage::SpaceVectorType ImageOrientation[2];
/// Coordinate increment in x-direction for every block copy operation.
int IncX;
/// Coordinate increment in y-direction for every block copy operation.
int IncY;
/// Number of continuous bytes that can be copied.
int BlockSize;
/** Vector between the origins of subsequent images.
* Once two images have been read, the difference of their origins in 3D
* space is copied to this field. The origins of subsequent slices must then
* be in the very same direction in order to make up a rectangular 3D
* volume.
*/
ScalarImage::SpaceVectorType IncrementVector;
/** Flag for pixel padding.
* If this flag is set, PaddingValue defines a non-data value for padded
* pixels.
*/
bool Padding;
/** Padding value.
*/
union {
unsigned char int8;
unsigned short int16;
unsigned int int32;
} PaddingValue;
};
//@}
} // namespace cmtk
#endif // #ifndef __cmtkVolumeFromSlices_h_included_
|