File: cmtkLabelCombinationLocalShapeBasedAveraging.cxx

package info (click to toggle)
cmtk 3.3.1p2%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,524 kB
  • sloc: cpp: 87,098; ansic: 23,347; sh: 3,896; xml: 1,551; perl: 707; makefile: 334
file content (221 lines) | stat: -rw-r--r-- 7,694 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/*
//
//  Copyright 1997-2009 Torsten Rohlfing
//
//  Copyright 2004-2012, 2014 SRI International
//
//  This file is part of the Computational Morphometry Toolkit.
//
//  http://www.nitrc.org/projects/cmtk/
//
//  The Computational Morphometry Toolkit is free software: you can
//  redistribute it and/or modify it under the terms of the GNU General Public
//  License as published by the Free Software Foundation, either version 3 of
//  the License, or (at your option) any later version.
//
//  The Computational Morphometry Toolkit is distributed in the hope that it
//  will be useful, but WITHOUT ANY WARRANTY; without even the implied
//  warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License along
//  with the Computational Morphometry Toolkit.  If not, see
//  <http://www.gnu.org/licenses/>.
//
//  $Revision: 5436 $
//
//  $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
//  $LastChangedBy: torstenrohlfing $
//
*/

#include "cmtkLabelCombinationLocalShapeBasedAveraging.h"

#include <System/cmtkConsole.h>
#include <System/cmtkExitException.h>
#include <System/cmtkDebugOutput.h>

#include <Base/cmtkRegionIndexIterator.h>
#include <Base/cmtkUniformDistanceMap.h>
#include <Base/cmtkMathFunctionWrappers.h>

#include <Registration/cmtkTypedArraySimilarity.h>

#ifdef _OPENMP
#  include <omp.h>
#endif

cmtk::TypedArray::SmartPtr 
cmtk::LabelCombinationLocalShapeBasedAveraging::GetResult() const
{
  const UniformVolume& targetImage = *(this->m_TargetImage);

  const size_t nPixels = targetImage.GetNumberOfPixels();
  cmtk::TypedArray::SmartPtr result( TypedArray::Create( TYPE_SHORT, nPixels ) );
  result->SetDataClass( DATACLASS_LABEL );
  std::vector<float> resultDistance( nPixels, 1.0 );
  
  const TargetRegionType region = targetImage.CropRegion();
  
  // signed distance maps for the atlas label maps.
  const size_t nAtlases = this->m_AtlasImages.size();
  std::vector<UniformVolume::SmartConstPtr> atlasDMaps( nAtlases );

  const int maxLabelValue = (this->m_MaxLabelValue>0) ? this->m_MaxLabelValue : this->ComputeMaximumLabelValue();
  for ( int label = 0; label <= maxLabelValue; ++label )
    {
    if ( this->ComputeLabelNumberOfPixels( label ) > 0 ) // skip unused label values
      {
      DebugOutput( 2 ) << "Processing label " << label << "\n";

      DebugOutput( 5 ) << "  Creating distance maps\n";
      for ( size_t n = 0; n < nAtlases; ++n )
	{
	atlasDMaps[n] = ( UniformDistanceMap<float>( *(this->m_AtlasLabels[n]), DistanceMap::SIGNED | DistanceMap::SQUARED | DistanceMap::VALUE_EXACT, label ).Get() );
	}
      
      DebugOutput( 5 ) << "  Combining distance maps\n";
#ifdef _OPENMP
#pragma omp parallel for
      for ( int slice = region.From()[2]; slice < region.To()[2]; ++slice )
	{
	TargetRegionType threadRegion = region;
	threadRegion.From()[2] = slice;
	threadRegion.To()[2] = slice+1;
	
	this->ComputeResultForRegion( *result, resultDistance, label, threadRegion, atlasDMaps );
	}
#else // _OPENMP
      this->ComputeResultForRegion( *result, resultDistance, label, region, atlasDMaps );
#endif // _OPENMP
      }
    }
  
  return result;
}

void
cmtk::LabelCombinationLocalShapeBasedAveraging::ComputeResultForRegion
( TypedArray& result, std::vector<float>& resultDistance, const int label, const Self::TargetRegionType& region, std::vector<UniformVolume::SmartConstPtr> dmaps ) const
{
  const UniformVolume& targetImage = *(this->m_TargetImage);
  const Self::TargetRegionType wholeImageRegion = targetImage.CropRegion();
  const size_t nAtlases = this->m_AtlasImages.size();
  std::vector<bool> valid( nAtlases );
  std::vector<short> labels( nAtlases );  
  std::vector<Types::DataItem> weights( nAtlases );  
  std::vector<size_t> bestPatchOffset( nAtlases );
  std::vector<double> distances( nAtlases );

  for ( RegionIndexIterator<TargetRegionType> it( region ); it != it.end(); ++it )
    {
    const size_t i = targetImage.GetOffsetFromIndex( it.Index() );

    for ( size_t n = 0; n < nAtlases; ++n )
      {
      Types::DataItem value;
      if ( (valid[n] = dmaps[n]->GetData()->Get( value, i ) ) )
	labels[n] = static_cast<short>( (value <= 0) ? label : -1 );
      }
    
    // detect local outliers in the distance maps, ie., grossly misregistered atlases
    if ( this->m_DetectLocalOutliers )
      {
      // create vector of distance values
      size_t nn = 0;
      for ( size_t n = 0; n < nAtlases; ++n )
	{
	if ( valid[n] )
	  distances[nn++] = dmaps[n]->GetDataAt( i );
	}
      
      // sort distance
      std::sort( distances.begin(), distances.begin()+nn );
      
      // determine 1st and 3rd quartile values
      const double Q1 = distances[static_cast<size_t>( 0.25 * nn )];
      const double Q3 = distances[static_cast<size_t>( 0.75 * nn )];
      
      // compute thresholds from quartiles and inter-quartile range
      const double lThresh = Q1 - 1.5 * (Q3-Q1);
      const double uThresh = Q3 + 1.5 * (Q3-Q1);

      // mark as invalid those atlases with values outside the "inlier" range
      for ( size_t n = 0; n < nAtlases; ++n )
	{
	if ( valid[n] )
	  {
	  const double d = dmaps[n]->GetDataAt( i );
	  if ( (d < lThresh) || (d > uThresh) )
	    valid[n] = false;
	  }
	}      
      }
    
    // find first non-padding atlas label
    size_t firstValid = 0;
    while ( (firstValid < nAtlases) && !valid[firstValid] )
      ++firstValid;
    
    // if all input atlases are undefined (padding) for this pixel, set output to padding and skip to next pixel.
    if ( firstValid == nAtlases )
      {
      continue;
      }

    std::fill( weights.begin(), weights.end(), -1 );
    std::fill( bestPatchOffset.begin(), bestPatchOffset.end(), 0 );
    
    const TargetRegionType patchSearchRegion( Max( (-1)*wholeImageRegion.From(), this->m_SearchRegion.From() ), Min( wholeImageRegion.To() - it.Index(), this->m_SearchRegion.To() ) );
    for ( RegionIndexIterator<TargetRegionType> searchIt( patchSearchRegion ); searchIt != searchIt.end(); ++searchIt )
      {
      const TargetRegionType patchRegion( Max( wholeImageRegion.From(), it.Index() + searchIt.Index() - this->m_PatchRadius ), Min( wholeImageRegion.To(), it.Index() + searchIt.Index() + this->m_PatchRadiusPlusOne ) );
      TypedArray::SmartConstPtr targetDataPatch( targetImage.GetRegionData( patchRegion ) );
      
      for ( size_t n = 0; n < nAtlases; ++n )
	{
	if ( valid[n] )
	  {
	  TypedArray::SmartConstPtr atlasDataPatch( this->m_AtlasImages[n]->GetRegionData( patchRegion ) );
	  const Types::DataItem w = TypedArraySimilarity::GetCrossCorrelation( targetDataPatch, atlasDataPatch );
	  if ( w > weights[n] )
	    {
	    weights[n] = w;
	    bestPatchOffset[n] = targetImage.GetOffsetFromIndex( searchIt.Index() );
	    }
	  }
	}
      }
    
    // Compute weights for the atlases from local image patch similarity.
    Types::DataItem minWeight = FLT_MAX;
    Types::DataItem maxWeight = FLT_MIN;
    
    for ( size_t n = 0; n < nAtlases; ++n )
      {
      if ( valid[n] )
	{
	minWeight = std::min( minWeight, weights[n] );
	maxWeight = std::max( maxWeight, weights[n] );
	}
      }
    
    maxWeight -= minWeight; // turn "max" into "range"
    
    double totalDistance = 0;
    for ( size_t n = 0; n < nAtlases; ++n )
      {
      if ( valid[n] )
	{
	totalDistance += (weights[n]-minWeight)/maxWeight * dmaps[n]->GetDataAt( i + bestPatchOffset[n] );
	}
      }  
    
    if ( totalDistance < resultDistance[i] )
      {
      result.Set( label, i );
      resultDistance[i] = static_cast<float>( totalDistance );
      }
    }
}