File: cmtkLabelCombinationMultiClassSTAPLE.cxx

package info (click to toggle)
cmtk 3.3.1p2%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,524 kB
  • sloc: cpp: 87,098; ansic: 23,347; sh: 3,896; xml: 1,551; perl: 707; makefile: 334
file content (323 lines) | stat: -rw-r--r-- 8,712 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/*
//
//  Copyright 1997-2009 Torsten Rohlfing
//
//  Copyright 2004-2011, 2013 SRI International
//
//  This file is part of the Computational Morphometry Toolkit.
//
//  http://www.nitrc.org/projects/cmtk/
//
//  The Computational Morphometry Toolkit is free software: you can
//  redistribute it and/or modify it under the terms of the GNU General Public
//  License as published by the Free Software Foundation, either version 3 of
//  the License, or (at your option) any later version.
//
//  The Computational Morphometry Toolkit is distributed in the hope that it
//  will be useful, but WITHOUT ANY WARRANTY; without even the implied
//  warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License along
//  with the Computational Morphometry Toolkit.  If not, see
//  <http://www.gnu.org/licenses/>.
//
//  $Revision: 5436 $
//
//  $LastChangedDate: 2018-12-10 19:01:20 -0800 (Mon, 10 Dec 2018) $
//
//  $LastChangedBy: torstenrohlfing $
//
*/

#include <Segmentation/cmtkLabelCombinationMultiClassSTAPLE.h>
#include <Segmentation/cmtkLabelCombinationVoting.h>

#include <System/cmtkProgress.h>
#include <System/cmtkDebugOutput.h>

#include <vector>
#include <algorithm>

namespace
cmtk
{

/** \addtogroup Segmentation */
//@{

LabelCombinationMultiClassSTAPLE
::LabelCombinationMultiClassSTAPLE
( const std::vector<TypedArray::SmartPtr>& data, const int maxIterations, const bool disputedOnly )
{
  const size_t numberOfInputs = data.size();
  const size_t numberOfPixels = data[ 0 ]->GetDataSize();

  // First, determine which pixels are "active" and will be considered by the algorithm.
  // If "disputedOnly" is true, these will be the pixels for which at least one input map disagrees with the others.
  std::vector<bool> activePixels( numberOfPixels );

  if ( disputedOnly )
    {
    size_t nDisputed = 0;
    for ( size_t n = 0; n < numberOfPixels; ++n )
      {
      bool disputed = false;

      Types::DataItem refVal = -1;
      for ( size_t k = 0; (k < numberOfInputs) && !disputed; ++k )
	{
	Types::DataItem lVal;
	if ( data[k]->Get( lVal, n ) )
	  {
	  if ( refVal == -1 )
	    {
	    refVal = lVal;
	    }
	  else
	    {
	    if ( lVal != refVal )
	      {
	      disputed = true;
	      ++nDisputed;
	      }
	    }
	  }
	}

      activePixels[n] = disputed;
      }

    DebugOutput( 5 ) << "MultiClassSTAPLE running for " << nDisputed << " disputed out of " << numberOfPixels << " total pixels.\n";
    }
  else
    {
    std::fill( activePixels.begin(), activePixels.end(), true );
    DebugOutput( 5 ) << "MultiClassSTAPLE running for all pixels.\n";
    }

  // Next figure out how many classes thare are in the first place.
  int numberOfClasses = 1;
  for ( size_t k = 0; k < numberOfInputs; ++k )
    {
    const Types::DataItemRange range = data[k]->GetRange();
    numberOfClasses = std::max( numberOfClasses, 1+static_cast<int>( range.m_UpperBound ) );
    }

  // allocate priors vector
  this->m_Priors.resize( numberOfClasses );

  // init priors
  size_t totalMass = 0;
  std::fill( this->m_Priors.begin(), this->m_Priors.end(), static_cast<RealValueType>( 0.0 ) );
  for ( size_t k = 0; k < numberOfInputs; ++k )
    {
    Types::DataItem lVal;
    for ( size_t n = 0; n < numberOfPixels; ++n )
      {
      if ( activePixels[n] )
	{
	if ( data[k]->Get( lVal, n ) )
	  {
	  this->m_Priors[static_cast<int>(lVal)]++;
	  ++totalMass;
	  }
	}
      }
    }

  if ( totalMass )
    {
    for ( int l = 0; l < numberOfClasses; ++l )
      this->m_Priors[l] /= totalMass;
    }

  // initialize result using simple voting.
  { LabelCombinationVoting voting( data ); this->m_Result = voting.GetResult(); } // use local scope to free voting object storage right away

  // allocate current and updated confusion matrix arrays
  this->m_Confusion.resize( numberOfInputs );
  this->m_ConfusionNew.resize( numberOfInputs );
  for ( size_t k = 0; k < numberOfInputs; ++k )
    {
    this->m_Confusion[k].Resize( 1+numberOfClasses, numberOfClasses );
    this->m_ConfusionNew[k].Resize( 1+numberOfClasses, numberOfClasses );
    }

  // initialize confusion matrices from voting result
  for ( size_t k = 0; k < numberOfInputs; ++k )
    {
    this->m_Confusion[k].SetAll( 0.0 );

    for ( size_t n = 0; n < numberOfPixels; ++n )
      {
      if ( activePixels[n] )
	{
	Types::DataItem lValue, vValue;
	if ( data[k]->Get( lValue, n ) )
	  {
	  if ( this->m_Result->Get( vValue, n ) && (vValue >= 0) )
	    ++(this->m_Confusion[k][static_cast<int>(lValue)][static_cast<int>(vValue)]);
	  }
	}
      }
    }
  
  // normalize matrix rows to unit probability sum
  for ( size_t k = 0; k < numberOfInputs; ++k )
    {
    for ( int inLabel = 0; inLabel <= numberOfClasses; ++inLabel )
      {
      // compute sum over all output labels for given input label
      double sum = 0;
      for ( int outLabel = 0; outLabel < numberOfClasses; ++outLabel )
	{
	sum += this->m_Confusion[k][inLabel][outLabel];
	}
      
      // make sure that this input label did in fact show up in the input!!
      if ( sum > 0 )
	{
	// normalize
	for ( int outLabel = 0; outLabel < numberOfClasses; ++outLabel )
	  {
	  this->m_Confusion[k][inLabel][outLabel] /= sum;
	  }
	}
      }
    }
  
  // allocate array for pixel class weights
  std::vector<double> W( numberOfClasses );

  Progress::Begin( 0, maxIterations, 1, "Multi-label STAPLE" );
  
  // main EM loop
  for ( int it = 0; it < maxIterations; ++it )
    {
    Progress::SetProgress( it );

    // reset updated confusion matrices.
    for ( size_t k = 0; k < numberOfInputs; ++k )
      {
      this->m_ConfusionNew[k].SetAll( 0.0 );
      }

    for ( size_t n = 0; n < numberOfPixels; ++n )
      {
      if ( activePixels[n] )
	{
	// the following is the E step
	for ( int ci = 0; ci < numberOfClasses; ++ci )
	  W[ci] = this->m_Priors[ci];
	
	for ( size_t k = 0; k < numberOfInputs; ++k )
	  {
	  Types::DataItem lValue;
	  if ( data[k]->Get( lValue, n ) )
	    {
	    for ( int ci = 0; ci < numberOfClasses; ++ci )
	      {
	      W[ci] *= this->m_Confusion[k][static_cast<int>(lValue)][ci];
	      }
	    }
	  }
	
	// the following is the M step
	double sumW = W[0];
	for ( int ci = 1; ci < numberOfClasses; ++ci )
	  sumW += W[ci];
	
	if ( sumW )
	  {
	  for ( int ci = 0; ci < numberOfClasses; ++ci )
	    W[ci] /= sumW;
	  }
	
	for ( size_t k = 0; k < numberOfInputs; ++k )
	  {
	  Types::DataItem lValue;
	  if ( data[k]->Get( lValue, n ) )
	    {
	    for ( int ci = 0; ci < numberOfClasses; ++ci )
	      {
	      this->m_ConfusionNew[k][static_cast<int>(lValue)][ci] += W[ci];	    
	      }
	    }
	  }
	}
      }

    // Normalize matrix elements of each of the updated confusion matrices
    // with sum over all expert decisions.
    for ( size_t k = 0; k < numberOfInputs; ++k )
      {
      // compute sum over all output classifications
      for ( int ci = 0; ci < numberOfClasses; ++ci ) 
	{
	double sumW = this->m_ConfusionNew[k][0][ci]; 
	for ( int j = 1; j <= numberOfClasses; ++j )
	  sumW += this->m_ConfusionNew[k][j][ci];
	
	// normalize with for each class ci
	if ( sumW )
	  {
	  for ( int j = 0; j <= numberOfClasses; ++j )
	    this->m_ConfusionNew[k][j][ci] /= sumW;
	  }
	}
      }
  
    // now we're applying the update to the confusion matrices and compute the
    // maximum parameter change in the process.
    for ( size_t k = 0; k < numberOfInputs; ++k )
      for ( int j = 0; j <= numberOfClasses; ++j )
	for ( int ci = 0; ci < numberOfClasses; ++ci )
	  {
	  this->m_Confusion[k][j][ci] = this->m_ConfusionNew[k][j][ci];
	  }    
    } // main EM loop

  // assemble output (this time, all voxels, disputed and non-disputed, to get the complete image)
  for ( size_t n = 0; n < numberOfPixels; ++n )
    {
    // basically, we'll repeat the E step from above
    for ( int ci = 0; ci < numberOfClasses; ++ci )
      W[ci] = this->m_Priors[ci];
    
    for ( size_t k = 0; k < numberOfInputs; ++k )
      {
      Types::DataItem lValue;
      if ( data[k]->Get( lValue, n ) )
	{
	for ( int ci = 0; ci < numberOfClasses; ++ci )
	  {
	  W[ci] *= this->m_Confusion[k][static_cast<int>(lValue)][ci];
	  }
	}
      }
    
    // now determine the label with the maximum W
    int winningLabel = -1;
    double winningLabelW = 0;
    for ( int ci = 0; ci < numberOfClasses; ++ci )
      {
      if ( W[ci] > winningLabelW )
	{
	winningLabelW = W[ci];
	winningLabel = ci;
	}
      else
	if ( ! (W[ci] < winningLabelW ) )
	  {
	  winningLabel = -1;
	  }
      }
    
    this->m_Result->Set( winningLabel, n );
    }

  Progress::Done();
}

} // namespace cmtk