File: trig.lisp

package info (click to toggle)
cmucl 21a-4
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 50,060 kB
  • sloc: lisp: 375,822; ansic: 30,304; asm: 2,977; sh: 1,372; makefile: 355; csh: 31
file content (794 lines) | stat: -rw-r--r-- 27,228 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
;;; Tests for the basic trig, hyperbolic, exponential and log
;;; functions.

(defpackage :trig-tests
  (:use :cl :lisp-unit))

(in-package "TRIG-TESTS")

(define-test sin.signed-zeroes
  "Test sin for 0d0 and -0d0"
  (:tag :sin :signed-zeroes)
  (assert-eql 0d0 (sin 0d0))
  (assert-eql -0d0 (sin -0d0)))


(define-test sin.very-small
  "Tests sin for the case of |x| < 2^-27, but not 0."
  (:tag :sin)
  (assert-eql (scale-float 1d0 -28)
	      (sin (scale-float 1d0 -28))))

(define-test sin.no-reduction
  "Test sin for small args without reduction"
  (:tag :sin)
  (assert-eql 0.479425538604203d0
	      (sin .5d0))
  (assert-eql -0.479425538604203d0
	      (sin -0.5d0)))

(define-test sin.pi/2
  "Test for arg near pi/2"
  (:tag :sin)
  (assert-eql 1d0 (sin (/ pi 2))))

(define-test sin.arg-reduction
  "Test for sin with arg reduction"
  (:tag :sin)
  ;; Test for argument reduction with n mod 4 = 0
  (assert-eql -7.07106781186547675943154203316156531867416581156d-1
	      (sin (* 7/4 pi)))
    ;; Test for argument reduction with n mod 4 = 1
  (assert-eql 7.07106781186547329560731709118834541043171055432d-1
	      (sin (* 9/4 pi)))
  ;; Test for argument reduction with n mod 4 = 2
  (assert-eql 7.07106781186548390575743300374993861263439430213d-1
	      (sin (* 11/4 pi)))
  ;; Test for argument reduction with n mod 4 = 3
  (assert-eql -7.07106781186547871002109559079472349116005337743d-1
	      (sin (* 13/4 pi)))
  ;; Test for argument reduction, big value
  (assert-eql 0.377820109360752d0
	      (sin (scale-float 1d0 120))))

(define-test sin.exceptions
  "Test sin for exceptional values"
  (:tag :sin :exceptions)
  (kernel::with-float-traps-masked ()
    (assert-error 'floating-point-invalid-operation
		  (sin ext:double-float-positive-infinity))
    (assert-error 'floating-point-invalid-operation
		  (sin ext:double-float-negative-infinity))))

(define-test cos.signed-zeroes
  "Test cos for 0d0 and -0d0"
  (:tag :cos :signed-zeroes)
  (assert-eql 1d0 (cos 0d0))
  (assert-eql 1d0 (cos -0d0)))

(define-test cos.very-small
  "Test cos for |x| < 2^-27"
  (:tag :cos)
  (assert-eql 1d0 (cos (scale-float 1d0 -28))))

(define-test cos.code-paths
  "Tests various code paths in cos evaluation"
  (:tag :cos)
  ;; Test for branch |x| < .3
  (assert-eql 0.9689124217106447d0
	      (cos 0.25d0))
  ;; Test for branch |x| > .3 and \x| < .78125
  (assert-eql 8.7758256189037271611628158260382965199164519711d-1
	      (cos 0.5d0))
  ;; Test for branch |x| > .3 and |x| > .78125
  (assert-eql 0.7073882691671998d0
	      (cos 0.785d0)))

(define-test cos.pi/2  
  "Test cos(pi/2)"
  (:tag :cos)
  (assert-eql 6.123233995736766d-17
	      (cos (/ pi 2))))

(define-test cos.arg-reduction
  "Test for cos with arg reduction"
  (:tag :cos)
    ;; Test for argument reduction with n mod 4 = 0
  (assert-eql 7.07106781186547372858534520893509069186435867941d-1
	      (cos (* 7/4 pi)))
  ;; Test for argument reduction with n mod 4 = 1
  (assert-eql 7.0710678118654771924095701509080985020443197242d-1
	      (cos (* 9/4 pi)))
  ;; Test for argument reduction with n mod 4 = 2
  (assert-eql -7.07106781186546658225945423833643190916000739026d-1
	      (cos (* 11/4 pi)))
  ;; Test for argument reduction with n mod 4 = 3
  (assert-eql -7.07106781186547177799579165130055836531929091466d-1
	      (cos (* 13/4 pi)))
  ;; Test for argument reduction
  (assert-eql -0.9258790228548379d0
	      (cos (scale-float 1d0 120))))

(define-test cos.exceptions
  "Test cos for exceptional values"
  (:tag :sin :exceptions)
  (kernel::with-float-traps-masked ()
    (assert-error 'floating-point-invalid-operation
		  (cos ext:double-float-positive-infinity))
    (assert-error 'floating-point-invalid-operation
		  (cos ext:double-float-negative-infinity))))

(define-test tan.signed-zeroes
  "Test tan for 0d0 and -0d0"
  (:tag :tan :signed-zeroes)
  (assert-eql 0d0 (tan 0d0))
  (assert-eql -0d0 (tan -0d0)))

(define-test tan.very-small
  "Test for tan, |x| < 2^-28"
  (:tag :tan)
  (assert-eql (scale-float 1d0 -29)
	      (tan (scale-float 1d0 -29)))
  (assert-eql (scale-float -1d0 -29)
	      (tan (scale-float -1d0 -29))))

(define-test tan.pi/2
  "Test for tan(pi/2)"
  (:tag :tan)
  (assert-eql 1.63312393531953697559677370415289165308640681049d16
	      (tan (/ pi 2))))

(define-test tan.code-paths
  "Tests for various code paths in tan"
  (:tag :tan)
  ;; |x| < .6744
  (assert-eql 5.4630248984379051325517946578028538329755172018d-1
	      (tan 0.5d0))
  ;; |x = 11/16 = 0.6875 > .6744
  (assert-eql 8.21141801589894121911423965374711700875371645309d-1
	      (tan (float 11/16 1d0)))
  ;; This was found by maxima's testsuite.  A bug in kernel-tan when
  ;; returning cot(x).
  (assert-eql 2.0000000000000028604455051971538975562294147582d0
	      (tan 1.107148717794091d0)))

(define-test tan.arg-reduction
  "Test for tan with arg reduction"
  (:tag :tan)
  ;; Test for argument reduction with n even
  (assert-eql -1.00000000000000042862637970157370388940976433505d0
	      (tan (* 7/4 pi)))
  ;; Test for argument reduction with n odd
  (assert-eql 9.99999999999999448908940383691222098948324989275d-1
	      (tan (* 9/4 pi)))
  (assert-eql -4.08066388841804238545143494525595117765084022768d-1
	      (tan (scale-float 1d0 120))))

(define-test tan.exceptions
  "Test tan for exceptional values"
  (:tag :sin :exceptions)
  (kernel::with-float-traps-masked ()
    (assert-error 'floating-point-invalid-operation
		  (tan ext:double-float-positive-infinity))
    (assert-error 'floating-point-invalid-operation
		  (tan ext:double-float-negative-infinity))))

(define-test sincos.signed-zeroes
  "Test sincos at 0d0, -0d0"
  (:tag :sincos :signed-zeroes)
  (assert-equal '(0d0 1d0)
		(multiple-value-list (kernel::%sincos 0d0)))
  (assert-equal '(-0d0 1d0)
		(multiple-value-list (kernel::%sincos -0d0))))

;; Test sincos at a bunch of random points and compare the result from
;; sin and cos.  If they differ, save the result in a list to be
;; returned.
(defun sincos-test (limit n)
  (let (results)
    (dotimes (k n)
      (let* ((x (random limit))
	     (s-exp (sin x))
	     (c-exp (cos x)))
	(multiple-value-bind (s c)
	    (kernel::%sincos x)
	  (unless (and (eql s s-exp)
		       (eql c c-exp))
	    (push (list x
			(list s s-exp)
			(list c c-exp))
		  results)))))
    results))

(define-test sincos.consistent
  "Test sincos is consistent with sin and cos"
  (:tag :sincos)
  ;; Small values
  (assert-eql nil
	      (sincos-test (/ pi 4) 1000))
  ;; Medium
  (assert-eql nil
	      (sincos-test 16d0 1000))
  ;; Large
  (assert-eql nil
	      (sincos-test (scale-float 1d0 120) 1000))
  ;; Very large
  (assert-eql nil
	      (sincos-test (scale-float 1d0 1023) 1000)))

(defun close-to (actual expected &optional (threshold double-float-epsilon))
  "Determine if Actual is close to Expected.  If Expected is not zero,
  then close-to returns t if |Actual - Expected|/|Expected| <=
  Threshold.  If Expected is 0, then close-to returns T if |Actual -
  Expected| <= threshold.  In either of these conditions does not
  hold, then a list of the actual error (relative or absolute), the
  actual value and the expected value is returned."
  (let ((err (if (zerop expected)
		 (abs (- actual expected))
		 (/ (abs (- actual expected))
		    (abs expected)))))
    (if (<= err threshold)
	t
	(list err actual expected))))


;;; Tests for double-double-floats
(define-test dd-sin.signed-zeroes
  "Test sin for 0w0 and -0w0"
  (:tag :sin :double-double :signed-zeroes)
  (assert-eql 0w0 (sin 0w0))
  (assert-equal -0w0 (sin -0w0)))

(define-test dd-sin.no-reduction
  "Test sin for small args without reduction"
  (:tag :sin :double-double)
  (assert-eq t (close-to
		(sin .5w0)
		4.794255386042030002732879352155713880818033679406006751886166131w-1
		1w-32))
  (assert-eq t (close-to
		(sin -0.5w0)
		-4.794255386042030002732879352155713880818033679406006751886166131w-1
		1w-32)))

(define-test dd-sin.pi/2
  "Test for arg near pi/2"
  (:tag :sin :double-double)
  (assert-eq t (close-to
		(sin (/ kernel:dd-pi 2))
		1w0
		1w-50)))

;; The reference value were computed using maxima.  Here's how to
;; compute the reference value.  Set fpprec:64 to tell maxima to use
;; 64 digits of precision. For 7/4*pi, do (integer-decode-float (* 7/4
;; kernel:dd-pi)) to get the exact rational representation of the
;; desired double-double-float.  Then bfloat(sin(<rational>)).
(define-test dd-sin.arg-reduction
  "Test for sin with arg reduction"
  (:tag :sin :double-double)
  ;; Test for argument reduction with n mod 4 = 0
  (assert-eq t (close-to
		(sin (* 7/4 kernel:dd-pi))
		-7.07106781186547524400844362104849691328261037289050238659653433w-1
		0w0))
    ;; Test for argument reduction with n mod 4 = 1
  (assert-eq t (close-to
		(sin (* 9/4 kernel:dd-pi))
		7.07106781186547524400844362104858161816423215627023442400880643w-1
		0w0))
  ;; Test for argument reduction with n mod 4 = 2
  (assert-eq t (close-to
		(sin (* 11/4 kernel:dd-pi))
		7.071067811865475244008443621048998682901731241858306822215522497w-1
		8.716w-33))
  ;; Test for argument reduction with n mod 4 = 3
  (assert-eq t (close-to
		(sin (* 13/4 kernel:dd-pi))
		-7.071067811865475244008443621048777109664479707052746581685893187w-1
		8.716w-33))
  ;; Test for argument reduction, big value
  (assert-eq t (close-to
		(sin (scale-float 1w0 120))
		3.778201093607520226555484700569229919605866976512306642257987199w-1
		8.156w-33)))

(define-test dd-cos.signed-zeroes
  "Test cos for 0w0 and -0w0"
  (:tag :cos :double-double :signed-zeroes)
  (assert-eql 1w0 (cos 0w0))
  (assert-equal 1w0 (cos -0w0)))

(define-test dd-cos.no-reduction
  "Test cos for small args without reduction"
  (:tag :cos :double-double)
  (assert-eq t (close-to
		(cos .5w0)
		8.775825618903727161162815826038296519916451971097440529976108683w-1
		0w0))
  (assert-eq t (close-to
		(cos -0.5w0)
		8.775825618903727161162815826038296519916451971097440529976108683w-1
		0w0)))

(define-test dd-cos.pi/2
  "Test for arg near pi/2"
  (:tag :cos :double-double)
  (assert-eq t (close-to
		(cos (/ kernel:dd-pi 2))
		-1.497384904859169777320797133937725094986669701841027904483071358w-33
		0w0)))

(define-test dd-cos.arg-reduction
  "Test for cos with arg reduction"
  (:tag :cos :double-double)
  ;; Test for argument reduction with n mod 4 = 0
  (assert-eq t (close-to
		(cos (* 7/4 kernel:dd-pi))
		7.07106781186547524400844362104849691328261037289050238659653433w-1
		0w0))
    ;; Test for argument reduction with n mod 4 = 1
  (assert-eq t (close-to
		(cos (* 9/4 kernel:dd-pi))
		7.07106781186547524400844362104858161816423215627023442400880643w-1
		3.487w-32))
  ;; Test for argument reduction with n mod 4 = 2
  (assert-eq t (close-to
		(cos (* 11/4 kernel:dd-pi))
		-7.071067811865475244008443621048998682901731241858306822215522497w-1
		1.482w-31))
  ;; Test for argument reduction with n mod 4 = 3
  (assert-eq t (close-to
		(cos (* 13/4 kernel:dd-pi))
		-7.071067811865475244008443621048777109664479707052746581685893187w-1
		7.845w-32))
  ;; Test for argument reduction, big value
  (assert-eq t (close-to
		(cos (scale-float 1w0 120))
		-9.258790228548378673038617641074149467308332099286564602360493726w-1
		0w0)))

(define-test dd-tan.signed-zeroes
  "Test tan for 0w0 and -0w0"
  (:tag :tan :double-double :signed-zeroes)
  (assert-eql 0w0 (tan 0w0))
  (assert-equal -0w0 (tan -0w0)))

(define-test dd-tan.no-reduction
  "Test tan for small args without reduction"
  (:tag :tan :double-double)
  (assert-eq t (close-to
		(tan .5w0)
		5.463024898437905132551794657802853832975517201797912461640913859w-1
		0w0))
  (assert-eq t (close-to
		(tan -0.5w0)
		-5.463024898437905132551794657802853832975517201797912461640913859w-1
		0w0)))

(define-test dd-tan.pi/2
  "Test for arg near pi/2"
  (:tag :tan :double-double)
  (assert-eq t (close-to
		(tan (/ kernel:dd-pi 2))
		-6.67830961000672557834948096545679895621313886078988606234681001w32
		0w0)))

(define-test dd-tan.arg-reduction
  "Test for tan with arg reduction"
  (:tag :tan :double-double)
  ;; Test for argument reduction with n even
  (assert-eq t (close-to
		(tan (* 7/4 kernel:dd-pi))
		-1.000000000000000000000000000000001844257310064121018312678894979w0
		3.422w-49))
  ;; Test for argument reduction with n odd
  (assert-eq t (close-to
		(tan (* 9/4 kernel:dd-pi))
		1.000000000000000000000000000000025802415787810837455445433037983w0
		0w0))
  ;; Test for argument reduction, big value
  (assert-eq t (close-to
		(tan (scale-float 1w0 120))
		-4.080663888418042385451434945255951177650840227682488471558860153w-1
		1.888w-33)))

(define-test dd-sincos.signed-zeroes
  "Test sincos at 0d0, -0d0"
  (:tag :sincos :signed-zeroes :double-double)
  (assert-equal '(0w0 1w0)
		(multiple-value-list (kernel::dd-%sincos 0w0)))
  (assert-equal '(-0w0 1w0)
		(multiple-value-list (kernel::dd-%sincos -0w0))))

;; Test sincos at a bunch of random points and compare the result from
;; sin and cos.  If they differ, save the result in a list to be
;; returned.
(defun dd-sincos-test (limit n)
  (let (results)
    (dotimes (k n)
      (let* ((x (random limit))
	     (s-exp (sin x))
	     (c-exp (cos x)))
	(multiple-value-bind (s c)
	    (kernel::dd-%sincos x)
	  (unless (and (eql s s-exp)
		       (eql c c-exp))
	    (push (list x
			(list s s-exp)
			(list c c-exp))
		  results)))))
    results))

(define-test dd-sincos.consistent
  "Test sincos is consistent with sin and cos"
  (:tag :sincos :double-double)
  ;; Small values
  (assert-eql nil
	      (dd-sincos-test (/ kernel:dd-pi 4) 1000))
  ;; Medium
  (assert-eql nil
	      (dd-sincos-test 16w0 1000))
  ;; Large
  (assert-eql nil
	      (dd-sincos-test (scale-float 1w0 120) 1000))
  ;; Very large
  (assert-eql nil
	      (dd-sincos-test (scale-float 1w0 1023) 1000)))


;;; Tests for branch cuts.


;; Compute fun(arg) and check that the signs of the real and imaginary
;; parts match the value of real-sign and imag-sign, respectively.
;; Return T if the signs match.
(defun check-signs (fun arg real-sign imag-sign)
  (let* ((z (funcall fun arg))
	 (x (realpart z))
	 (y (imagpart z)))
    (cond ((and (= (float-sign x) real-sign)
		(= (float-sign y) imag-sign))
	   t)
	  (t
	   (format t "Sign of result doesn't match expected signs~%~
                 ~& fun = ~A~
                 ~& arg = ~A~
                 ~& res = ~A~
                 ~& expected = ~A ~A~%"
		   fun arg z real-sign imag-sign)
	   nil))))

;; Return the signs of the real and imaginary parts of z.
(defun get-signs (z)
  (values (float-sign (realpart z))
	  (float-sign (imagpart z))))

;; Carefully compute 1-z. For z = x + i*y, we want 1-x - i*y, which
;; only really matters when y is a signed zero.
(defun 1-z (z)
  (if (complexp z)
      (complex (- 1 (realpart z)) (- (imagpart z)))
      (- 1 z)))

(defun z-1 (z)
  (if (complexp z)
      (complex (- (realpart z) 1)
	       (imagpart z))
      (- z 1)))

  
;; Carefully compute 1+z. For z = x + i*y, we want 1+x + i*y, which
;; only really matters when y is a signed zero.
(defun 1+z (z)
  (if (complexp z)
      (complex (+ 1 (realpart z)) (imagpart z))
      (+ 1 z)))

(defun r-z (r z)
  (if (complexp z)
      (complex (- r (realpart z))
	       (- (imagpart z)))
      (- r z)))

;; Carefully compute i*z = i*(x+i*y) = -y + i*x.
(defun i*z (z)
  (if (complexp z)
      (complex (- (imagpart z)) (realpart z))
      (complex 0 z)))

;; Carefully compute r*z, where r is a real value and z is complex.
(defun r*z (r z)
  (if (complexp z)
      (complex (* r (realpart z)) (* r (imagpart z)))
      (* r z)))

;; asin(x) = -i*log(i*x + sqrt(1-x^2))
;;
;; The branch cut is the real axis |x| > 1.  For x < -1, it is
;; continuous with quadrant II; for x > 1, continuous with quadrant
;; IV.
;;
(defun asin-def (z)
  (- (i*z (log (+ (i*z z)
		  (sqrt (1-z (* z z))))))))


(define-test branch-cut.asin
  (:tag :asin :branch-cuts)
  ;; Test for x < -1, which is continuous with Quadrant II.  Compute
  ;; the value at #c(-2d0 1d-10) and check that components of
  ;; asin(-2+0.0*i) have the same signs as the reference value.
  (multiple-value-bind (tr ti)
      (get-signs (asin-def #c(-2d0 1d-20)))
    (assert-true (check-signs #'asin -2d0 tr ti))
    (assert-true (check-signs #'asin -2w0 tr ti))
    (assert-true (check-signs #'asin #c(-2d0 0) tr ti))
    (assert-true (check-signs #'asin #c(-2w0 0) tr ti)))
  ;; Test the other side of the branch cut for x < -1.
  (multiple-value-bind (tr ti)
      (get-signs (asin-def #c(-2d0 -1d-20)))
    (assert-true (check-signs #'asin #c(-2d0 -0d0) tr ti))
    (assert-true (check-signs #'asin #c(-2w0 -0w0) tr ti)))

  ;; Test for x > 1, which is continuous with Quadrant IV, using the
  ;; value at #c(+2d0 1d-10) as the reference
  (multiple-value-bind (tr ti)
      (get-signs (asin-def #c(2d0 1d-20)))
    (assert-true (check-signs #'asin #c(2d0 0) tr ti))
    (assert-true (check-signs #'asin #c(2w0 0) tr ti)))
  ;; Test the other side of the branch cut for x > 1.
  (multiple-value-bind (tr ti)
      (get-signs (asin-def #c(2d0 -1d-20)))
    (assert-true (check-signs #'asin 2d0 tr ti))
    (assert-true (check-signs #'asin 2w0 tr ti))
    (assert-true (check-signs #'asin #c(2d0 -0d0) tr ti))
    (assert-true (check-signs #'asin #c(2w0 -0w0) tr ti))))

;; acos(z) = pi/2 - asin(z).
;;
;; The branch cut is the real axis for |x| > 1.  For x < -1, it is
;; continous with Quadrant II; for x > 1, Quadrant IV.
(defun acos-def (z)
  (if (typep z 'kernel:double-double-float)
      (r-z (/ kernel:dd-pi 2)
	   (asin-def z))
      (r-z (/ pi 2)
	   (asin-def z))))

(define-test branch-cut.acos
  (:tag :acos :branch-cuts)
  ;; Test for x < -1, which is continuous with Quadrant II.  Compute
  ;; the value at #c(-2d0 1d-10) and check that components of
  ;; acos(-2+0.0*i) have the same signs as the reference value.
  (multiple-value-bind (tr ti)
      (get-signs (acos-def #c(-2d0 1d-20)))
    (assert-true (check-signs #'acos -2d0 tr ti))
    (assert-true (check-signs #'acos -2w0 tr ti))
    (assert-true (check-signs #'acos #c(-2d0 0) tr ti))
    (assert-true (check-signs #'acos #c(-2w0 0) tr ti)))
  ;; Test the other side of the branch cut for x < -1.
  (multiple-value-bind (tr ti)
      (get-signs (acos-def #c(-2d0 -1d-20)))
    (assert-true (check-signs #'acos #c(-2d0 -0d0) tr ti))
    (assert-true (check-signs #'acos #c(-2w0 -0w0) tr ti)))

  ;; Test for x > 1, which is continuous with Quadrant IV, using the
  ;; value at #c(+2d0 1d-10) as the reference
  (multiple-value-bind (tr ti)
      (get-signs (acos-def #c(2d0 1d-20)))
    (assert-true (check-signs #'acos #c(2d0 0) tr ti))
    (assert-true (check-signs #'acos #c(2w0 0) tr ti)))
  ;; Test the other side of the branch cut for x > 1.
  (multiple-value-bind (tr ti)
      (get-signs (acos-def #c(2d0 -1d-20)))
    (assert-true (check-signs #'acos 2d0 tr ti))
    (assert-true (check-signs #'acos 2w0 tr ti))
    (assert-true (check-signs #'acos #c(2d0 -0d0) tr ti))
    (assert-true (check-signs #'acos #c(2w0 -0w0) tr ti))))

;; atan(z) = (log(1+i*z) - log(1-i*z))/(2*i)
;;         = -i/2*(log(1+i*z) - log(1-i*z))
;;
;; WARNING: The CLHS is a bit confused here. Two definitions of atan
;; are given in the CLHS
;; http://www.lispworks.com/documentation/HyperSpec/Body/f_asin_.htm
;; and they are not consistent.  Plus, there is a typo in the second
;; definition. (Missing parens.)
;;
;; For clarification, we turn to
;; http://www.lispworks.com/documentation/HyperSpec/Issues/iss069_w.htm,
;; which recommends using the second formula and also puts in the
;; parentheses in the correct places.
;;
;; BUT, this is further confused by the example that atan(0+2*i) is
;; 1.57-0.549*i for the proposed formula but -1.57+0.549*i under the
;; current formula.
;;
;;
;; I think the inconsistency is that the results are derived without
;; signed zeroes.  But we have signed zeroes, so let us derive the
;; actual value of atan(0+2*i) using the (second) formula.
;;
;;   atan(0+2*i) = (log(1+i*(0+2*i)) - log(1-i*(0+2*i)))/(2*i)
;;      = (log(1+(-2+0*i)) - log(1-(-2+0*i)))/(2*i)
;;      = (log(-1-0*i) - log(3-0*i))/(2*i)
;;      = ((log(1) - pi*i) - (log(3) - 0*i))/(2*i)
;;      = (-log(3) - pi*i)/(2*i)
;;      = -pi/2 + log(3)/2*i
;;
;; The branch cut is the imaginary axis, |y| > 1.  For y < -1, atan is
;; continuous with Quadrant IV; for y > 1, Quadrant II.
(defun atan-def (z)
  (let* ((iz (i*z z))
	 (w (- (log (1+z iz))
	       (log (1-z iz)))))
    (r*z -1/2 (i*z w))))

(define-test branch-cut.atan
  (:tag :atan :branch-cuts)
  ;; Test for y < -1, which is continuous with Quadrant IV.  Use the
  ;; value at #c(1d-20 -2d0) as the reference.
  (multiple-value-bind (tr ti)
      (get-signs (atan-def #c(1d-20 -2d0)))
    (assert-true (check-signs #'atan #c(0d0 -2d0) tr ti))
    (assert-true (check-signs #'atan #c(0w0 -2w0) tr ti)))
  ;; Test the other side of the branch cut for x < -1.
  (multiple-value-bind (tr ti)
      (get-signs (atan-def #c(-1d-20 -2d0)))
    (assert-true (check-signs #'atan #c(-0d0 -2d0) tr ti))
    (assert-true (check-signs #'atan #c(-0w0 -2w0) tr ti)))

  ;; Test for y > 1, which is continuous with Quadrant II, using the
  ;; value at #c(-1d-20 +2d0) as the reference
  (multiple-value-bind (tr ti)
      (get-signs (atan-def #c(-1d-20 2d0)))
    (assert-true (check-signs #'atan #c(-0d0 2d0) tr ti))
    (assert-true (check-signs #'atan #c(-0w0 2w0) tr ti)))
  ;; Test the other side of the branch cut for x > 1.
  (multiple-value-bind (tr ti)
      (get-signs (atan-def #c(1d-20 2d0)))
    (assert-true (check-signs #'atan #c(0d0 2d0) tr ti))
    (assert-true (check-signs #'atan #c(0d0 2w0) tr ti))))

;; asinh(z) = log(z + sqrt(1+z^2))
;;
;; The branch cut is the imaginary axis with |y| > 1. For y > 1, asinh
;; is continuous with Quadrant I.  For y < -1, it is continuous with
;; Quadrant III.

(defun asinh-def (z)
  (log (+ z (sqrt (1+z (* z z))))))

(define-test branch-cut.asinh
  (:tag :asinh :branch-cuts)
  ;; Test for y < -1, which is continuous with Quadrant I.  Use the
  ;; value at #c(1d-20 -2d0) as the reference.
  (multiple-value-bind (tr ti)
      (get-signs (asinh-def #c(1d-20 -2d0)))
    (assert-true (check-signs #'asinh #c(0d0 -2d0) tr ti))
    (assert-true (check-signs #'asinh #c(0w0 -2w0) tr ti)))
  ;; Test the other side of the branch cut for y < -1.
  (multiple-value-bind (tr ti)
      (get-signs (asinh-def #c(-1d-20 -2d0)))
    (assert-true (check-signs #'asinh #c(-0d0 -2d0) tr ti))
    (assert-true (check-signs #'asinh #c(-0w0 -2w0) tr ti)))

  ;; Test for y > 1, which is continuous with Quadrant III, using the
  ;; value at #c(-1d-20 +2d0) as the reference
  (multiple-value-bind (tr ti)
      (get-signs (asinh-def #c(-1d-20 2d0)))
    (assert-true (check-signs #'asinh #c(-0d0 2d0) tr ti))
    (assert-true (check-signs #'asinh #c(-0w0 2w0) tr ti)))
  ;; Test the other side of the branch cut for x > 1.
  (multiple-value-bind (tr ti)
      (get-signs (asinh-def #c(1d-20 2d0)))
    (assert-true (check-signs #'asinh #c(0d0 2d0) tr ti))
    (assert-true (check-signs #'asinh #c(0d0 2w0) tr ti))))

;; acosh(z) = 2*log(sqrt((z+1)/2) + sqrt((z-1)/2))
;;
;; The branch cut is along the real axis with x < 1.  For x < 0, it is
;; continuous with Quadrant II.  For 0< x < 1, it is continuous with
;; Quadrant I.

(defun acosh-def (z)
  (r*z 2
       (log (+ (sqrt (r*z 1/2 (1+z z)))
	       (sqrt (r*z 1/2 (z-1 z)))))))


(define-test branch-cut.acosh
  (:tag :acosh :branch-cuts)
  ;; Test for x < 0, which is continuous with Quadrant II.  Use the
  ;; value at #c(-2d0 1d-20) as a reference.
  (multiple-value-bind (tr ti)
      (get-signs (acosh-def #c(-2d0 1d-20)))
    (assert-true (check-signs #'acosh -2d0 tr ti))
    ;;(assert-true (check-signs #'acosh -2w0 tr ti))
    (assert-true (check-signs #'acosh #c(-2d0 0) tr ti))
    ;;(assert-true (check-signs #'acosh #c(-2w0 0) tr ti))
    )
  ;; Test the other side of the branch cut for x < -1.
  (multiple-value-bind (tr ti)
      (get-signs (acosh-def #c(-2d0 -1d-20)))
    (assert-true (check-signs #'acosh #c(-2d0 -0d0) tr ti))
    ;;(assert-true (check-signs #'acosh #c(-2w0 -0w0) tr ti))
    )

  ;; Test for 0 < x < 1, which is continuous with Quadrant I, using the
  ;; value at #c(0.25d0 1d-10) as the reference.
  (multiple-value-bind (tr ti)
      (get-signs (acosh-def #c(0.25d0 1d-20)))
    (assert-true (check-signs #'acosh #c(0.25d0 0) tr ti))
    (assert-true (check-signs #'acosh #c(0.25w0 0) tr ti))
    )
  ;; Test the other side of the branch cut for 0 < x < 1.
  (multiple-value-bind (tr ti)
      (get-signs (acosh-def #c(0.25d0 -1d-20)))
    (assert-true (check-signs #'acosh #c(0.25d0 -0d0) tr ti))
    (assert-true (check-signs #'acosh #c(0.25w0 -0w0) tr ti))))

;; atanh(z) = 1/2*(log(1+z) - log(1-z))
;;
;; The branch cut is on the real axis for |x| > 1.  For x < -1, it is
;; continuous with Quadrant III.  For x > 1, it is continuous with
;; quadrant I.
;;
;; NOTE: The rules above are what is given by the CLHS. However,
;; consider the value of atanh(-2) and atanh(-2-0.0*i)
;;
;;  atanh(-2) = 1/2*(log(1-2) - log(1+2))
;;            = 1/2*(log(-1) - log(3))
;;            = 1/2*(i*pi - log(3))
;;            = -1/2*log(3) + i*pi/2
;;
;;  atanh(-2-0*i) = 1/2*(log(1+(-2-0*i)) - log(1-(-2-0*i)))
;;                = 1/2*(log(-1-0*i) - log(3-0*i))
;;                = 1/2*(-i*pi - log(3))
;;                = -1/2*log(3) - i*pi/2
;;
;;  atanh(-2+0*i) = 1/2*(log(1+(-2+0*i)) - log(1-(-2+0*i)))
;;                = 1/2*(log(-1+0*i) - log(3-0*i))
;;                = 1/2*(i*pi - log(3))
;;                = -1/2*log(3) + i*pi/2
;;
;; Thus, atanh(-2) is continuous with Quadrant II, NOT continuous with
;; Quadrant III!
;;
;; The formula, however, is clear.  We will use the formula and ignore
;; the text in the CLHS.
(defun atanh-def (z)
  (r*z 1/2
       (- (log (1+z z))
	  (log (1-z z)))))

(define-test branch-cut.atanh
  (:tag :atanh :branch-cuts)
  ;; Test for x < -1, which is continuous with Quadrant II.  Use the
  ;; the value at #c(-2d0 +1d-20) as the reference.
  (multiple-value-bind (tr ti)
      (get-signs (atanh-def #c(-2d0 1d-20)))
    (assert-true (check-signs #'atanh -2d0 tr ti))
    (assert-true (check-signs #'atanh -2w0 tr ti))
    (assert-true (check-signs #'atanh #c(-2d0 0d0) tr ti))
    (assert-true (check-signs #'atanh #c(-2w0 0w0) tr ti)))
  ;; Test the other side of the branch cut for x < -1.
  (multiple-value-bind (tr ti)
      (get-signs (atanh-def #c(-2d0 -1d-20)))
    (assert-true (check-signs #'atanh #c(-2d0 -0d0) tr ti))
    (assert-true (check-signs #'atanh #c(-2w0 -0w0) tr ti)))

  ;; Test for x > 1, which is continuous with Quadrant IV, using the
  ;; value at #c(+2d0 -1d-10) as the reference
  (multiple-value-bind (tr ti)
      (get-signs (atanh-def #c(2d0 -1d-10)))
    (assert-true (check-signs #'atanh 2d0 tr ti))
    (assert-true (check-signs #'atanh 2w0 tr ti))
    (assert-true (check-signs #'atanh #c(2d0 -0d0) tr ti))
    (assert-true (check-signs #'atanh #c(2w0 -0w0) tr ti)))
  ;; Test the other side of the branch cut for x > 1.
  (multiple-value-bind (tr ti)
      (get-signs (atanh-def #c(2d0 +1d-20)))
    (assert-true (check-signs #'atanh #c(2d0 0d0) tr ti))
    (assert-true (check-signs #'atanh #c(2w0 0w0) tr ti))))