1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
;; Tests for various float transformations.
(defpackage :float-tran-tests
(:use :cl :lisp-unit))
(in-package "FLOAT-TRAN-TESTS")
(define-test decode-float-sign
"Test type derivation of the sign from decode-float"
(assert-equalp (c::make-member-type :members (list 1f0 -1f0))
(c::decode-float-sign-derive-type-aux
(c::specifier-type 'single-float)))
(assert-equalp (c::make-member-type :members (list 1d0 -1d0))
(c::decode-float-sign-derive-type-aux
(c::specifier-type 'double-float)))
(assert-equalp (c::make-member-type :members (list 1f0))
(c::decode-float-sign-derive-type-aux
(c::specifier-type '(single-float (0f0))))))
(define-test decode-float-exp
"Test type derivation of the exponent from decode-float"
(assert-equalp (c::specifier-type '(integer -148 128))
(c::decode-float-exp-derive-type-aux
(c::specifier-type 'single-float)))
(assert-equalp (c::specifier-type '(integer -1073 1024))
(c::decode-float-exp-derive-type-aux
(c::specifier-type 'double-float)))
#+double-double
(assert-equalp (c::specifier-type '(integer -1073 1024))
(c::decode-float-exp-derive-type-aux
(c::specifier-type 'kernel:double-double-float)))
(assert-equalp (c::specifier-type '(integer 2 8))
(c::decode-float-exp-derive-type-aux
(c::specifier-type '(double-float 2d0 128d0)))))
(define-test log2-single-transform
"Test tranform of (log x 2) to (kernel::log2 x)"
(let ((test-fun
(compile nil
(lambda (x)
(declare (type (single-float (0f0)) x))
(log x 2)))))
;; test-fun should have transformed (log x 2) to kernel::log2
(assert-true (search "log2" (with-output-to-string (*standard-output*)
(disassemble test-fun)))))
(let ((test-fun
(compile nil
(lambda (x)
(declare (type (single-float 0f0) x))
(log x 2)))))
;; test-fun should not have transformed (log x 2) to kernel::log2
;; because x can be -0 for which log should return a complex
;; result.
(assert-false (search "log2" (with-output-to-string (*standard-output*)
(disassemble test-fun)))))
(let ((test-fun
(compile nil
(lambda (x)
(declare (type (single-float 0f0) x))
(log x 2d0)))))
;; test-fun should not have transformed (log x 2) to kernel::log2
;; because the result should be a double due to floating-point
;; contagion.
(assert-false (search "log2" (with-output-to-string (*standard-output*)
(disassemble test-fun))))))
(define-test log2-double-transform
"Test tranform of (log x 2) to (kernel::log2 x)"
(let ((test-fun-good
(compile nil
(lambda (x)
(declare (type (double-float (0d0)) x))
(log x 2)))))
;; test-fun should have transformed (log x 2) to kernel::log2
(assert-true (search "log2" (with-output-to-string (*standard-output*)
(disassemble test-fun-good)))))
(let ((test-fun-bad
(compile nil
(lambda (x)
(declare (type (double-float 0d0) x))
(log x 2)))))
;; test-fun should not have transformed (log x 2) to kernel::log2
;; because x can be -0 for which log should return a complex
;; result.
(assert-false (search "log2" (with-output-to-string (*standard-output*)
(disassemble test-fun-bad)))))
(let ((test-fun-good-2
(compile nil
(lambda (x)
(declare (type (double-float (0d0)) x))
(log x 2f0)))))
;; test-fun should have transformed (log x 2) to kernel::log2
(assert-true (search "log2" (with-output-to-string (*standard-output*)
(disassemble test-fun-good-2))))))
(define-test log10-single-transform
"Test tranform of (log x 10) to (kernel::log2 x)"
(let ((test-fun-good
(compile nil
(lambda (x)
(declare (type (single-float (0f0)) x))
(log x 10)))))
;; test-fun should have transformed (log x 2) to kernel:%log10
(assert-true (search "log10" (with-output-to-string (*standard-output*)
(disassemble test-fun-good)))))
(let ((test-fun-bad
(compile nil
(lambda (x)
(declare (type (single-float 0f0) x))
(log x 10)))))
;; test-fun should not have transformed (log x 2) to kernel:%log10
;; because x can be -0 for which log should return a complex
;; result.
(assert-false (search "log10" (with-output-to-string (*standard-output*)
(disassemble test-fun-bad)))))
(let ((test-fun-bad-2
(compile nil
(lambda (x)
(declare (type (single-float (0f0)) x))
(log x 10d0)))))
;; test-fun should not have transformed (log x 2) to kernel:%log10
;; because the result should be a double due to floating-point
;; contagion.
(assert-false (search "log10" (with-output-to-string (*standard-output*)
(disassemble test-fun-bad-2))))))
(define-test log10-double-transform
"Test tranform of (log x 10) to (kernel:%log10 x)"
(let ((test-fun-good
(compile nil
(lambda (x)
(declare (type (double-float (0d0)) x))
(log x 10)))))
;; test-fun should have transformed (log x 10) to kernel:%log10
(assert-true (search "log10" (with-output-to-string (*standard-output*)
(disassemble test-fun-good)))))
(let ((test-fun-bad
(compile nil
(lambda (x)
(declare (type (double-float 0d0) x))
(log x 10)))))
;; test-fun should not have transformed (log x 10) to kernel:%log10
;; because x can be -0 for which log should return a complex
;; result.
(assert-false (search "log10" (with-output-to-string (*standard-output*)
(disassemble test-fun-bad)))))
(let ((test-fun-good-2
(compile nil
(lambda (x)
(declare (type (double-float (0d0)) x))
(log x 10f0)))))
;; test-fun should have transformed (log x 10) to kernel:%log10
(assert-true (search "log10" (with-output-to-string (*standard-output*)
(disassemble test-fun-good-2))))))
(define-test scale-float-transform.single
(let ((xfrm-scale
(compile nil
(lambda (x n)
(declare (single-float x)
(type (integer -149 127) n))
(scale-float x n))))
(scale
(compile nil
(lambda (x n)
(declare (single-float x)
(type (signed-byte 32) n))
(scale-float x n)))))
;; If the deftransform for scale-float was applied, (scale-float
;; most-positive-single-float 2) is done as a multiplication which
;; will overflow. The operation will be '*. If the deftransform
;; was not applied, the overflow will still be signaled, but the
;; operation will be 'scale-float.
(assert-eql '*
(handler-case
(funcall xfrm-scale most-positive-single-float 2)
(arithmetic-error (c)
(arithmetic-error-operation c))))
(assert-eql 'scale-float
(handler-case
(funcall scale most-positive-single-float 2)
(arithmetic-error (c)
(arithmetic-error-operation c))))))
(define-test scale-float-transform.double
(let ((xfrm-scale
(compile nil
(lambda (x n)
(declare (double-float x)
(type (integer -1074 1023) n))
(scale-float x n))))
(scale
(compile nil
(lambda (x n)
(declare (double-float x)
(type (signed-byte 32) n))
(scale-float x n)))))
;; If the deftransform for scale-float was applied, (scale-float
;; most-positive-double-float 2) is done as a multiplication which
;; will overflow. The operation will be '*. If the deftransform
;; was not applied, the overflow will still be signaled, but the
;; operation will be 'scale-float.
(assert-eql '*
(handler-case
(funcall xfrm-scale most-positive-double-float 2)
(arithmetic-error (c)
(arithmetic-error-operation c))))
(assert-eql 'scale-float
(handler-case
(funcall scale most-positive-double-float 2)
(arithmetic-error (c)
(arithmetic-error-operation c))))))
|