1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
"""Supporting functions for the 'fix' command."""
import logging
import numpy as np
import pandas as pd
from . import descriptives, params, smoothing
def do_fix(
target_raw,
antitarget_raw,
reference,
diploid_parx_genome=None,
do_gc=True,
do_edge=True,
do_rmask=True,
do_cluster=False,
smoothing_window_fraction=None,
):
"""Combine target and antitarget coverages and correct for biases."""
# Load, recenter and GC-correct target & antitarget probes separately
logging.info("Processing target: %s", target_raw.sample_id)
cnarr, ref_matched = load_adjust_coverages(
target_raw,
reference,
True,
do_gc,
do_edge,
False,
diploid_parx_genome,
smoothing_window_fraction=smoothing_window_fraction,
)
logging.info("Processing antitarget: %s", antitarget_raw.sample_id)
anti_cnarr, ref_anti = load_adjust_coverages(
antitarget_raw,
reference,
False,
do_gc,
False,
do_rmask,
diploid_parx_genome,
smoothing_window_fraction=smoothing_window_fraction,
)
if len(anti_cnarr):
# Combine target and antitarget bins
cnarr.add(anti_cnarr)
ref_matched.add(ref_anti)
# Find reference clusters, if requested
log2_key = "log2"
spread_key = "spread"
if do_cluster:
ref_log2_cols = [
col
for col in ref_matched.data.columns
if col == "log2" or col.startswith("log2")
]
if len(ref_log2_cols) == 1:
logging.info(
"Reference does not contain any sub-clusters; using %s", log2_key
)
else:
# Get correlations between test sample and each reference cluster
corr_coefs = np.array(
[cnarr.log2.corr(ref_matched[ref_col]) for ref_col in ref_log2_cols]
)
ordered = [
(k, r) for r, k in sorted(zip(corr_coefs, ref_log2_cols), reverse=True)
]
logging.info(
"Correlations with each cluster:\n\t%s",
"\n\t".join([f"{k}\t: {r}" for k, r in ordered]),
)
log2_key = ordered[0][0]
if log2_key.startswith("log2_"):
suffix = log2_key.split("_", 1)[1]
spread_key = "spread_" + suffix
logging.info(" -> Choosing columns %r and %r", log2_key, spread_key)
# Normalize coverages according to the reference
# (Subtract the reference log2 copy number to get the log2 ratio)
cnarr.data["log2"] -= ref_matched[log2_key]
cnarr = apply_weights(cnarr, ref_matched, log2_key, spread_key)
cnarr.center_all(skip_low=True, diploid_parx_genome=diploid_parx_genome)
return cnarr
def load_adjust_coverages(
cnarr,
ref_cnarr,
skip_low,
fix_gc,
fix_edge,
fix_rmask,
diploid_parx_genome,
smoothing_window_fraction=None
):
"""Load and filter probe coverages; correct using reference and GC."""
if "gc" in cnarr:
# Don't choke on Picard-derived files that have the GC column
cnarr = cnarr.keep_columns(cnarr._required_columns + ("depth",))
# No corrections needed if there are no data rows (e.g. no antitargets)
if not len(cnarr):
return cnarr, ref_cnarr[:0]
ref_matched = match_ref_to_sample(ref_cnarr, cnarr)
# Drop bins that had poor coverage in the pooled reference
ok_cvg_indices = ~mask_bad_bins(ref_matched)
logging.info("Keeping %d of %d bins", sum(ok_cvg_indices), len(ref_matched))
cnarr = cnarr[ok_cvg_indices]
ref_matched = ref_matched[ok_cvg_indices]
# Apply corrections for known systematic biases in coverage
cnarr.center_all(skip_low=skip_low, diploid_parx_genome=diploid_parx_genome)
# Skip bias corrections if most bins have no coverage (e.g. user error)
if (
cnarr["log2"] > params.NULL_LOG2_COVERAGE - params.MIN_REF_COVERAGE
).sum() <= len(cnarr) // 2:
logging.warning(
"WARNING: most bins have no or very low coverage; "
"check that the right BED file was used"
)
else:
# Smoothing window fraction converges on percentile binning, like Picard
frac = smoothing_window_fraction
if frac is None:
frac = max(0.01, len(cnarr) ** -0.5)
cnarr_index_reset = False
if fix_gc:
if "gc" in ref_matched:
logging.info("Correcting for GC bias...")
cnarr = center_by_window(cnarr, frac, ref_matched["gc"])
cnarr_index_reset = True
else:
logging.warning("WARNING: Skipping correction for GC bias")
if fix_edge:
logging.info("Correcting for density bias...")
edge_bias = get_edge_bias(cnarr, params.INSERT_SIZE)
cnarr = center_by_window(cnarr, frac, edge_bias)
cnarr_index_reset = True
if fix_rmask:
if "rmask" in ref_matched:
logging.info("Correcting for RepeatMasker bias...")
cnarr = center_by_window(cnarr, frac, ref_matched["rmask"])
cnarr_index_reset = True
else:
logging.warning("WARNING: Skipping correction for RepeatMasker bias")
if cnarr_index_reset:
ref_matched.data.reset_index(drop=True, inplace=True)
return cnarr, ref_matched
def mask_bad_bins(cnarr):
"""Flag the bins with excessively low or inconsistent coverage.
Returns
-------
np.array
A boolean array where True indicates bins that failed the checks.
"""
mask = (
(cnarr["log2"] < params.MIN_REF_COVERAGE)
| (cnarr["log2"] > -params.MIN_REF_COVERAGE)
| (cnarr["spread"] > params.MAX_REF_SPREAD)
)
if "depth" in cnarr:
mask |= cnarr["depth"] == 0
if "gc" in cnarr:
assert params.GC_MIN_FRACTION >= 0 and params.GC_MIN_FRACTION <= 1
assert params.GC_MAX_FRACTION >= 0 and params.GC_MAX_FRACTION <= 1
lower_gc_bound = min(params.GC_MIN_FRACTION, params.GC_MAX_FRACTION)
upper_gc_bound = max(params.GC_MIN_FRACTION, params.GC_MAX_FRACTION)
mask |= (cnarr["gc"] > upper_gc_bound) | (cnarr["gc"] < lower_gc_bound)
return mask
def match_ref_to_sample(ref_cnarr, samp_cnarr):
"""Filter the reference bins to match the sample (target or antitarget)."""
# Assign each bin a unique string ID based on genomic coordinates
samp_labeled = samp_cnarr.data.set_index(pd.Index(samp_cnarr.coords()))
ref_labeled = ref_cnarr.data.set_index(pd.Index(ref_cnarr.coords()))
for dset, name in ((samp_labeled, "sample"), (ref_labeled, "reference")):
dupes = dset.index.duplicated()
if dupes.any():
raise ValueError(
(
"Duplicated genomic coordinates in {} set. Total duplicated regions: {}, starting with:\n"
"{}."
).format(
name,
len(dset.index[dupes]),
"\n".join(map(str, dset.index[dupes][:10])),
)
)
# Take the reference bins with IDs identical to those in the sample
ref_matched = ref_labeled.reindex(index=samp_labeled.index)
# Check for signs that the wrong reference was used
num_missing = pd.isnull(ref_matched.start).sum()
if num_missing > 0:
raise ValueError(
f"Reference is missing {num_missing} bins found in {samp_cnarr.sample_id}"
)
x = ref_cnarr.as_dataframe(
ref_matched.reset_index(drop=True).set_index(samp_cnarr.data.index)
)
return x
def center_by_window(cnarr, fraction, sort_key):
"""Smooth out biases according to the trait specified by sort_key.
E.g. correct GC-biased bins by windowed averaging across similar-GC
bins; or for similar interval sizes.
"""
# Separate neighboring bins that could have the same key
# (to avoid re-centering actual CNV regions -- only want an independently
# sampled subset of presumably overall-CN-neutral bins)
df = cnarr.data.reset_index(drop=True)
np.random.seed(0xA5EED)
shuffle_order = np.random.permutation(df.index)
# df = df.reindex(shuffle_order)
df = df.iloc[shuffle_order]
# Apply the same shuffling to the key array as to the target probe set
if isinstance(sort_key, pd.Series):
# XXX why
sort_key = sort_key.values
sort_key = sort_key[shuffle_order]
# Sort the data according to the specified parameter
order = np.argsort(sort_key, kind="mergesort")
df = df.iloc[order]
biases = smoothing.rolling_median(df["log2"], fraction)
# biases = smoothing.savgol(df['log2'], fraction)
df["log2"] -= biases
fixarr = cnarr.as_dataframe(df)
fixarr.sort()
return fixarr
def get_edge_bias(cnarr, margin):
"""Quantify the "edge effect" of the target tile and its neighbors.
The result is proportional to the change in the target's coverage due to
these edge effects, i.e. the expected loss of coverage near the target
edges and, if there are close neighboring tiles, gain of coverage due
to "spill over" reads from the neighbor tiles.
(This is not the actual change in coverage. This is just a tribute.)
"""
output_by_chrom = []
for _chrom, subarr in cnarr.by_chromosome():
tile_starts = subarr["start"].values
tile_ends = subarr["end"].values
tgt_sizes = tile_ends - tile_starts
# Calculate coverage loss at (both edges of) each tile
losses = edge_losses(tgt_sizes, margin)
# Find tiled intervals within a margin (+/- bp) of the given probe
# (excluding the probe itself), then calculate the relative coverage
# "gain" due to the neighbors, if any
gap_sizes = tile_starts[1:] - tile_ends[:-1]
ok_gaps_mask = gap_sizes < margin
ok_gaps = gap_sizes[ok_gaps_mask]
left_gains = edge_gains(tgt_sizes[1:][ok_gaps_mask], ok_gaps, margin)
right_gains = edge_gains(tgt_sizes[:-1][ok_gaps_mask], ok_gaps, margin)
gains = np.zeros(len(subarr))
gains[np.concatenate([[False], ok_gaps_mask])] += left_gains
gains[np.concatenate([ok_gaps_mask, [False]])] += right_gains
output_by_chrom.append(gains - losses)
return pd.Series(np.concatenate(output_by_chrom), index=cnarr.data.index)
def edge_losses(target_sizes, insert_size):
"""Calculate coverage losses at the edges of baited regions.
Letting i = insert size and t = target size, the proportional loss of
coverage near the two edges of the baited region (combined) is:
.. math :: i/2t
If the "shoulders" extend outside the bait $(t < i), reduce by:
.. math :: (i-t)^2 / 4it
on each side, or (i-t)^2 / 2it total.
"""
losses = insert_size / (2 * target_sizes)
# Drop the shoulder part that would extend past the bait
small_mask = target_sizes < insert_size
t_small = target_sizes[small_mask]
losses[small_mask] -= (insert_size - t_small) ** 2 / (2 * insert_size * t_small)
return losses
def edge_gains(target_sizes, gap_sizes, insert_size):
"""Calculate coverage gain from neighboring baits' flanking reads.
Letting i = insert size, t = target size, g = gap to neighboring bait,
the gain of coverage due to a nearby bait, if g < i, is::
.. math :: (i-g)^2 / 4it
If the neighbor flank extends beyond the target (t+g < i), reduce by::
.. math :: (i-t-g)^2 / 4it
If a neighbor overlaps the target, treat it as adjacent (gap size 0).
"""
if not (gap_sizes <= insert_size).all():
raise ValueError(
"Gaps greater than insert size:\n"
+ gap_sizes[gap_sizes > insert_size].head()
)
gap_sizes = np.maximum(0, gap_sizes)
gains = (insert_size - gap_sizes) ** 2 / (4 * insert_size * target_sizes)
# Drop the flank part that extends past this baited region
past_other_side_mask = target_sizes + gap_sizes < insert_size
g_past = gap_sizes[past_other_side_mask]
t_past = target_sizes[past_other_side_mask]
gains[past_other_side_mask] -= (insert_size - t_past - g_past) ** 2 / (
4 * insert_size * t_past
)
return gains
def apply_weights(cnarr, ref_matched, log2_key, spread_key, epsilon=1e-4):
"""Calculate weights for each bin.
Bin weight is an estimate of (1 - variance) and within the range
``(0, 1]``.
Weights are derived from:
- Each bin's size
- Sample's genome-wide average (on/off-target) coverage depth
- Sample's genome-wide observed (on/off-target) bin variances
And with a pooled reference:
- Each bin's coverage depth in the reference
- The "spread" column of the reference (approx. stdev)
These estimates of variance assume the number of aligned reads per bin
follows a Poisson distribution, approximately log-normal.
Parameters
----------
cnarr : CopyNumArray
Sample bins.
ref_match : CopyNumArray
Reference bins.
log2_key : string
The 'log2' column name in the reference to use. A clustered reference
may have a suffix indicating the cluster, e.g. "log2_1".
spread_key : string
The 'spread' or 'spread_<cluster_id>' column name to use.
epsilon : float
Minimum value for bin weights, to avoid 0-weight bins causing errors
later during segmentation. (CBS doesn't allow 0-weight bins.)
Returns: The input `cnarr` with a `weight` column added.
"""
# Weight by sample-level features -- works for flat reference, too
logging.debug("Weighting bins by size and overall variance in sample")
simple_wt = np.zeros(len(cnarr))
# Calculate separately for on-, off-target bins
is_anti = cnarr["gene"].isin(params.ANTITARGET_ALIASES)
tgt_cna = cnarr[~is_anti]
tgt_var = (
descriptives.biweight_midvariance(tgt_cna.drop_low_coverage().residuals()) ** 2
)
bin_sz = np.sqrt(tgt_cna["end"] - tgt_cna["start"])
tgt_simple_wts = 1 - tgt_var / (bin_sz / bin_sz.mean())
simple_wt[~is_anti] = tgt_simple_wts
if is_anti.any():
# Check for a common user error
anti_cna = cnarr[is_anti]
anti_ok = anti_cna.drop_low_coverage()
frac_anti_low = 1 - (len(anti_ok) / len(anti_cna))
if frac_anti_low > 0.5:
# Off-target bins are mostly garbage -- skip reweighting
logging.warning(
"WARNING: Most antitarget bins ({:.2f}%, {:d}/{:d})"
" have low or no coverage; is this amplicon/WGS?".format(
100 * frac_anti_low, len(anti_cna) - len(anti_ok), len(anti_cna)
)
)
anti_var = descriptives.biweight_midvariance(anti_ok.residuals()) ** 2
anti_bin_sz = np.sqrt(anti_cna["end"] - anti_cna["start"])
anti_simple_wts = 1 - anti_var / (anti_bin_sz / anti_bin_sz.mean())
simple_wt[is_anti] = anti_simple_wts
# Report any difference in bin set variability
var_ratio = max(tgt_var, 0.01) / max(anti_var, 0.01)
if var_ratio > 1:
logging.info("Targets are %.2f x more variable than antitargets", var_ratio)
else:
logging.info(
"Antitargets are %.2f x more variable than targets", 1.0 / var_ratio
)
if (ref_matched[spread_key] > epsilon).any() and (
np.abs(np.mod(ref_matched[log2_key], 1)) > epsilon
).any():
# Pooled/paired reference only
logging.debug("Weighting bins by coverage spread in reference")
# NB: spread ~= SD, so variance ~= spread^2
fancy_wt = 1.0 - ref_matched[spread_key] ** 2
# Average w/ simple weights, giving this more emphasis
x = 0.9
weights = x * fancy_wt + (1 - x) * simple_wt
else:
# Flat reference, only 1 weight estimate
weights = simple_wt
return cnarr.add_columns(weight=weights.clip(epsilon, 1.0))
|