1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
|
"""Supporting functions for the 'reference' command."""
import collections
import logging
import numpy as np
import pandas as pd
import pyfaidx
from skgenome import tabio, GenomicArray as GA
from . import core, fix, descriptives, params
from .cmdutil import read_cna
from .cnary import CopyNumArray as CNA
def do_reference_flat(targets, antitargets=None, fa_fname=None, is_haploid_x_reference=False, diploid_parx_genome=None):
"""Compile a neutral-coverage reference from the given intervals.
Combines the intervals, shifts chrX values if requested, and calculates GC
and RepeatMasker content from the genome FASTA sequence.
"""
ref_probes = bed2probes(targets)
if antitargets:
ref_probes.add(bed2probes(antitargets))
# Set sex chromosomes by "reference" sex
ref_probes["log2"] = ref_probes.expect_flat_log2(is_haploid_x_reference, diploid_parx_genome)
ref_probes["depth"] = np.exp2(ref_probes["log2"]) # Shim
# Calculate GC and RepeatMasker content for each probe's genomic region
if fa_fname:
gc, rmask = get_fasta_stats(ref_probes, fa_fname)
ref_probes["gc"] = gc
ref_probes["rmask"] = rmask
else:
logging.info(
"No FASTA reference genome provided; skipping GC, RM calculations"
)
ref_probes.sort_columns()
return ref_probes
def bed2probes(bed_fname):
"""Create a neutral-coverage CopyNumArray from a file of regions."""
regions = tabio.read_auto(bed_fname)
table = regions.data.loc[:, ("chromosome", "start", "end")]
table["gene"] = regions.data["gene"] if "gene" in regions.data else "-"
table["log2"] = 0.0
table["spread"] = 0.0
return CNA(table, {"sample_id": core.fbase(bed_fname)})
def do_reference(
target_fnames,
antitarget_fnames=None,
fa_fname=None,
is_haploid_x_reference=False,
diploid_parx_genome=None,
female_samples=None,
do_gc=True,
do_edge=True,
do_rmask=True,
do_cluster=False,
min_cluster_size=4,
):
"""Compile a coverage reference from the given files (normal samples)."""
if antitarget_fnames:
core.assert_equal(
"Unequal number of target and antitarget files given",
targets=len(target_fnames),
antitargets=len(antitarget_fnames),
)
if not fa_fname:
logging.info(
"No FASTA reference genome provided; skipping GC, RM calculations"
)
if female_samples is None:
# NB: Antitargets are usually preferred for inferring sex, but might be
# empty files, in which case no inference can be done. Since targets are
# guaranteed to exist, infer from those first, then replace those
# values where antitargets are suitable.
logging.info("Sample sex not provided; inferring from samples. ")
sexes = infer_sexes(target_fnames, False, diploid_parx_genome)
if antitarget_fnames:
a_sexes = infer_sexes(antitarget_fnames, False, diploid_parx_genome)
for sid, a_is_xx in a_sexes.items():
t_is_xx = sexes.get(sid)
if t_is_xx is None:
sexes[sid] = a_is_xx
elif t_is_xx != a_is_xx and a_is_xx is not None:
logging.warning(
"Sample %s chromosomal X/Y ploidy looks "
"like %s in targets but %s in antitargets; "
"preferring antitargets",
sid,
"female" if t_is_xx else "male",
"female" if a_is_xx else "male",
)
sexes[sid] = a_is_xx
else:
# In this case the gender of the samples is provided and won't be inferred
logging.info(f'Provided sample sex is {"female" if female_samples else "male"}. ')
sexes = dict()
for fname in target_fnames:
sexes[read_cna(fname).sample_id] = female_samples
# TODO - refactor/inline this func here, once it works
ref_probes = combine_probes(
target_fnames,
antitarget_fnames,
fa_fname,
is_haploid_x_reference,
diploid_parx_genome,
sexes,
do_gc,
do_edge,
do_rmask,
do_cluster,
min_cluster_size,
)
warn_bad_bins(ref_probes)
return ref_probes
def infer_sexes(cnn_fnames, is_haploid_x, diploid_parx_genome):
"""Map sample IDs to inferred chromosomal sex, where possible.
For samples where the source file is empty or does not include either sex
chromosome, that sample ID will not be in the returned dictionary.
"""
sexes = {}
for fname in cnn_fnames:
cnarr = read_cna(fname)
if cnarr:
is_xx = cnarr.guess_xx(is_haploid_x, diploid_parx_genome)
if is_xx is not None:
sexes[cnarr.sample_id] = is_xx
return sexes
def combine_probes(
filenames,
antitarget_fnames,
fa_fname,
is_haploid_x,
diploid_parx_genome,
sexes,
fix_gc,
fix_edge,
fix_rmask,
do_cluster,
min_cluster_size,
):
"""Calculate the median coverage of each bin across multiple samples.
Parameters
----------
filenames : list
List of string filenames, corresponding to targetcoverage.cnn and
antitargetcoverage.cnn files, as generated by 'coverage' or
'import-picard'.
fa_fname : str
Reference genome sequence in FASTA format, used to extract GC and
RepeatMasker content of each genomic bin.
is_haploid_x : bool
do_cluster : bool
fix_gc : bool
fix_edge : bool
fix_rmask : bool
Returns
-------
CopyNumArray
One object summarizing the coverages of the input samples, including
each bin's "average" coverage, "spread" of coverages, and GC content.
"""
# Special parameters:
# skip_low (when centering) = True for target; False for antitarget
# do_edge = as given for target; False for antitarget
# do_rmask = False for target; as given for antitarget
ref_df, all_logr, all_depths = load_sample_block(
filenames, fa_fname, is_haploid_x, diploid_parx_genome, sexes, True, fix_gc, fix_edge, False
)
if antitarget_fnames:
# XXX TODO ensure ordering matches targets!
# argsort on both -> same?
anti_ref_df, anti_logr, anti_depths = load_sample_block(
antitarget_fnames,
fa_fname,
is_haploid_x,
diploid_parx_genome,
sexes,
False,
fix_gc,
False,
fix_rmask,
)
if not anti_ref_df.empty:
ref_df = pd.concat([ref_df, anti_ref_df], ignore_index=True)
all_logr = np.hstack([all_logr, anti_logr])
all_depths = np.hstack([all_depths, anti_depths])
stats_all = summarize_info(all_logr, all_depths)
ref_df = ref_df.assign(**stats_all)
if do_cluster:
# Get extra cols, concat axis=1 here (DATAFRAME v-concat)
sample_ids = [core.fbase(f) for f in filenames]
if len(sample_ids) != len(all_logr) - 1:
raise ValueError(
f"Expected {len(all_logr) - 1} target coverage files (.cnn), "
+ f"got {len(sample_ids)}"
)
clustered_cols = create_clusters(all_logr, min_cluster_size, sample_ids)
if clustered_cols:
try:
ref_df = ref_df.assign(**clustered_cols)
except ValueError as exc:
print("Reference:", len(ref_df.index))
for cl_key, cl_col in clustered_cols.items():
print(cl_key, ":", len(cl_col))
raise exc
else:
print("** Why weren't there any clustered cols?")
ref_cna = CNA(ref_df, meta_dict={"sample_id": "reference"})
# NB: Up to this point, target vs. antitarget bins haven't been row-sorted.
# Holding off until here ensures the cluster-specific log2 columns are
# sorted with the same row order as the rest of the CNA dataframe.
ref_cna.sort()
ref_cna.sort_columns()
# TODO figure out centering
# ref_probes.center_all(skip_low=True) # <-- on each cluster col, too?
# or just subtract the same amount from the cluster calls after figuring
# out the main one?
return ref_cna
def load_sample_block(
filenames, fa_fname, is_haploid_x, diploid_parx_genome, sexes, skip_low, fix_gc, fix_edge, fix_rmask
):
r"""Load and summarize a pool of \*coverage.cnn files.
Run separately for the on-target and (optional) antitarget bins.
Returns
-------
ref_df : pandas.DataFrame
All columns needed for the reference CNA object, including
aggregate log2 and spread.
all_logr : numpy.ndarray
All sample log2 ratios, as a 2D matrix (rows=bins, columns=samples),
to be used with do_cluster.
"""
# Ensures samples' target and antitarget matrix columns are in the same
# order, so they can be concatenated.
# (We don't explicitly pair off each sample's target and antitarget .cnn
# files; as long as the filename prefixes match, the resulting columns will
# be consistent. Same is true for sample sex inference.)
filenames = sorted(filenames, key=core.fbase)
# Load coverage from target/antitarget files
logging.info("Loading %s", filenames[0])
cnarr1 = read_cna(filenames[0])
if len(cnarr1) == 0:
# Just create an empty array with the right columns
col_names = ["chromosome", "start", "end", "gene", "log2", "depth"]
if "gc" in cnarr1 or fa_fname:
col_names.append("gc")
if fa_fname:
col_names.append("rmask")
col_names.append("spread")
empty_df = pd.DataFrame.from_records([], columns=col_names)
empty_logr = np.array([[]] * (len(filenames) + 1))
empty_dp = np.array([[]] * len(filenames))
return empty_df, empty_logr, empty_dp
# Calculate GC and RepeatMasker content for each probe's genomic region
ref_columns = {
"chromosome": cnarr1.chromosome,
"start": cnarr1.start,
"end": cnarr1.end,
"gene": cnarr1["gene"],
}
if fa_fname and (fix_rmask or fix_gc):
gc, rmask = get_fasta_stats(cnarr1, fa_fname)
if fix_gc:
ref_columns["gc"] = gc
if fix_rmask:
ref_columns["rmask"] = rmask
elif "gc" in cnarr1 and fix_gc:
# Reuse .cnn GC values if they're already stored (via import-picard)
gc = cnarr1["gc"]
ref_columns["gc"] = gc
# Make the sex-chromosome coverages of male and female samples compatible
is_chr_x = cnarr1.chr_x_filter(diploid_parx_genome)
is_chr_y = cnarr1.chr_y_filter(diploid_parx_genome)
ref_flat_logr = cnarr1.expect_flat_log2(is_haploid_x, diploid_parx_genome)
ref_edge_bias = fix.get_edge_bias(cnarr1, params.INSERT_SIZE)
# Pseudocount of 1 "flat" sample
all_depths = [cnarr1["depth"] if "depth" in cnarr1 else np.exp2(cnarr1["log2"])]
all_logr = [
ref_flat_logr,
bias_correct_logr(
cnarr1,
ref_columns,
ref_edge_bias,
ref_flat_logr,
sexes,
is_chr_x,
is_chr_y,
fix_gc,
fix_edge,
fix_rmask,
skip_low,
diploid_parx_genome
),
]
# Load only coverage depths from the remaining samples
for fname in filenames[1:]:
logging.info("Loading %s", fname)
cnarrx = read_cna(fname)
# Bin information should match across all files
if not np.array_equal(
cnarr1.data.loc[:, ("chromosome", "start", "end", "gene")].values,
cnarrx.data.loc[:, ("chromosome", "start", "end", "gene")].values,
):
raise RuntimeError(
f"{fname} bins do not match those in {filenames[0]}"
)
all_depths.append(
cnarrx["depth"] if "depth" in cnarrx else np.exp2(cnarrx["log2"])
)
all_logr.append(
bias_correct_logr(
cnarrx,
ref_columns,
ref_edge_bias,
ref_flat_logr,
sexes,
is_chr_x,
is_chr_y,
fix_gc,
fix_edge,
fix_rmask,
skip_low,
diploid_parx_genome
)
)
all_logr = np.vstack(all_logr)
all_depths = np.vstack(all_depths)
ref_df = pd.DataFrame.from_dict(ref_columns)
return ref_df, all_logr, all_depths
def bias_correct_logr(
cnarr,
ref_columns,
ref_edge_bias,
ref_flat_logr,
sexes,
is_chr_x,
is_chr_y,
fix_gc,
fix_edge,
fix_rmask,
skip_low,
diploid_parx_genome,
):
"""Perform bias corrections on the sample."""
cnarr.center_all(skip_low=skip_low, diploid_parx_genome=diploid_parx_genome)
shift_sex_chroms(cnarr, sexes, ref_flat_logr, is_chr_x, is_chr_y)
# Skip bias corrections if most bins have no coverage (e.g. user error)
if (
cnarr["log2"] > params.NULL_LOG2_COVERAGE - params.MIN_REF_COVERAGE
).sum() <= len(cnarr) // 2:
logging.warning(
"WARNING: most bins have no or very low coverage; "
"check that the right BED file was used"
)
else:
if "gc" in ref_columns and fix_gc:
logging.info(f"Correcting for GC bias for {cnarr.sample_id}...")
cnarr = fix.center_by_window(cnarr, 0.1, ref_columns["gc"])
if "rmask" in ref_columns and fix_rmask:
logging.info(f"Correcting for RepeatMasker bias for {cnarr.sample_id}...")
cnarr = fix.center_by_window(cnarr, 0.1, ref_columns["rmask"])
if fix_edge:
logging.info(f"Correcting for density bias for {cnarr.sample_id}...")
cnarr = fix.center_by_window(cnarr, 0.1, ref_edge_bias)
return cnarr["log2"]
def shift_sex_chroms(cnarr, sexes, ref_flat_logr, is_chr_x, is_chr_y):
"""Shift sample X and Y chromosomes to match the reference sex.
Reference values::
XY: chrX -1, chrY -1
XX: chrX 0, chrY -1
Plan::
chrX:
xx sample, xx ref: 0 (from 0)
xx sample, xy ref: -= 1 (from -1)
xy sample, xx ref: += 1 (from 0) +1
xy sample, xy ref: 0 (from -1) +1
chrY:
xx sample, xx ref: = -1 (from -1)
xx sample, xy ref: = -1 (from -1)
xy sample, xx ref: 0 (from -1) +1
xy sample, xy ref: 0 (from -1) +1
"""
is_xx = sexes.get(cnarr.sample_id)
cnarr["log2"] += ref_flat_logr
if is_xx:
# chrX has same ploidy as autosomes; chrY is just unusable noise
cnarr[is_chr_y, "log2"] = -1.0 # np.nan is worse
else:
# 1/2 #copies of each sex chromosome
cnarr[is_chr_x | is_chr_y, "log2"] += 1.0
def summarize_info(all_logr, all_depths):
"""Average & spread of log2ratios and depths for a group of samples.
Can apply to all samples, or a given cluster of samples.
"""
logging.info("Calculating average bin coverages")
cvg_centers = np.apply_along_axis(descriptives.biweight_location, 0, all_logr)
depth_centers = np.apply_along_axis(descriptives.biweight_location, 0, all_depths)
logging.info("Calculating bin spreads")
spreads = np.array(
[
descriptives.biweight_midvariance(a, initial=i)
for a, i in zip(all_logr.T, cvg_centers)
]
)
result = {
"log2": cvg_centers,
"depth": depth_centers,
"spread": spreads,
}
# TODO center the resulting log2
# ref_df = pd.DataFrame.from_dict(ref_columns)
# ref_cna = CNA.from_columns(ref_columns, {'sample_id': "reference"})
return result
def create_clusters(logr_matrix, min_cluster_size, sample_ids):
"""Extract and summarize clusters of samples in logr_matrix.
1. Calculate correlation coefficients between all samples (columns).
2. Cluster the correlation matrix.
3. For each resulting sample cluster (down to a minimum size threshold),
calculate the central log2 value for each bin, similar to the full pool.
Also print the sample IDs in each cluster, if feasible.
Also recalculate and store the 'spread' of each cluster, though this might
not be necessary/good.
Return a DataFrame of just the log2 values. Column names are ``log2_i``
where i=1,2,... .
"""
# from .cluster import markov
from .cluster import kmeans
# Drop the pseudocount sample
logr_matrix = logr_matrix[1:, :]
print("Clustering", len(logr_matrix), "samples...")
# clusters = markov(logr_matrix)
clusters = kmeans(logr_matrix)
cluster_cols = {}
sample_ids = np.array(sample_ids) # For easy indexing
for i, clust_idx in enumerate(clusters):
i += 1
# print(len(clust_idx), clust_idx)
if len(clust_idx) < min_cluster_size:
logging.info(
"Skipping cluster #%d, size %d < min. %d",
i,
len(clust_idx),
min_cluster_size,
)
continue
logging.info("Summarizing cluster #%d of %d samples", i, len(clust_idx))
# List which samples are in each cluster
samples = sample_ids[clust_idx]
logging.info("\n".join(["\t" + s for s in samples]))
# Calculate each cluster's summary stats
clust_matrix = logr_matrix[clust_idx, :]
# XXX re-add the pseudocount sample to each cluster? need benchmark
clust_info = summarize_info(clust_matrix, [])
cluster_cols.update(
{
f"log2_{i}": clust_info["log2"],
f"spread_{i}": clust_info["spread"],
}
)
return cluster_cols
def warn_bad_bins(cnarr, max_name_width=50):
"""Warn about target bins where coverage is poor.
Prints a formatted table to stderr.
"""
bad_bins = cnarr[fix.mask_bad_bins(cnarr)]
fg_index = ~bad_bins["gene"].isin(params.ANTITARGET_ALIASES)
fg_bad_bins = bad_bins[fg_index]
if len(fg_bad_bins) > 0:
bad_pct = (
100 * len(fg_bad_bins) / sum(~cnarr["gene"].isin(params.ANTITARGET_ALIASES))
)
logging.info(
"Targets: %d (%s) bins failed filters "
"(log2 < %s, log2 > %s, spread > %s)",
len(fg_bad_bins),
f"{bad_pct:.4}%",
params.MIN_REF_COVERAGE,
-params.MIN_REF_COVERAGE,
params.MAX_REF_SPREAD,
)
if len(fg_bad_bins) < 500:
gene_cols = min(max_name_width, max(map(len, fg_bad_bins["gene"])))
labels = fg_bad_bins.labels()
chrom_cols = max(labels.apply(len))
last_gene = None
for label, probe in zip(labels, fg_bad_bins):
if probe.gene == last_gene:
gene = ' "'
else:
gene = probe.gene
last_gene = gene
if len(gene) > max_name_width:
gene = gene[: max_name_width - 3] + "..."
if "rmask" in cnarr:
logging.info(
" %s %s log2=%.3f spread=%.3f rmask=%.3f",
gene.ljust(gene_cols),
label.ljust(chrom_cols),
probe.log2,
probe.spread,
probe.rmask,
)
else:
logging.info(
" %s %s log2=%.3f spread=%.3f",
gene.ljust(gene_cols),
label.ljust(chrom_cols),
probe.log2,
probe.spread,
)
# Count the number of BG bins dropped, too (names are all "Antitarget")
bg_bad_bins = bad_bins[~fg_index]
if len(bg_bad_bins) > 0:
bad_pct = (
100 * len(bg_bad_bins) / sum(cnarr["gene"].isin(params.ANTITARGET_ALIASES))
)
logging.info(
"Antitargets: %d (%s) bins failed filters",
len(bg_bad_bins),
f"{bad_pct:.4}%",
)
def get_fasta_stats(cnarr, fa_fname):
"""Calculate GC and RepeatMasker content of each bin in the FASTA genome."""
logging.info("Calculating GC and RepeatMasker content in %s ...", fa_fname)
gc_rm_vals = [
calculate_gc_lo(subseq) for subseq in fasta_extract_regions(fa_fname, cnarr)
]
gc_vals, rm_vals = zip(*gc_rm_vals)
return np.asarray(gc_vals, dtype=float), np.asarray(rm_vals, dtype=float)
def calculate_gc_lo(subseq):
"""Calculate the GC and lowercase (RepeatMasked) content of a string."""
cnt_at_lo = subseq.count("a") + subseq.count("t")
cnt_at_up = subseq.count("A") + subseq.count("T")
cnt_gc_lo = subseq.count("g") + subseq.count("c")
cnt_gc_up = subseq.count("G") + subseq.count("C")
tot = float(cnt_gc_up + cnt_gc_lo + cnt_at_up + cnt_at_lo)
if not tot:
return 0.0, 0.0
frac_gc = (cnt_gc_lo + cnt_gc_up) / tot
frac_lo = (cnt_at_lo + cnt_gc_lo) / tot
return frac_gc, frac_lo
def fasta_extract_regions(fa_fname, intervals):
"""Extract an iterable of regions from an indexed FASTA file.
Input: FASTA file name; iterable of (seq_id, start, end) (1-based)
Output: iterable of string sequences.
"""
with pyfaidx.Fasta(fa_fname, as_raw=True) as fa_file:
for chrom, subarr in intervals.by_chromosome():
logging.info("Extracting sequences from chromosome %s", chrom)
for _chrom, start, end in subarr.coords():
yield fa_file[_chrom][int(start) : int(end)]
def reference2regions(refarr):
"""Split reference into target and antitarget regions."""
is_bg = refarr["gene"].isin(params.ANTITARGET_ALIASES)
regions = GA(
refarr.data.loc[:, ("chromosome", "start", "end", "gene")],
{"sample_id": "reference"},
)
targets = regions[~is_bg]
antitargets = regions[is_bg]
return targets, antitargets
|