File: reference.py

package info (click to toggle)
cnvkit 0.9.12-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 96,464 kB
  • sloc: python: 12,407; makefile: 263; sh: 84; xml: 38
file content (617 lines) | stat: -rw-r--r-- 22,266 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
"""Supporting functions for the 'reference' command."""
import collections
import logging

import numpy as np
import pandas as pd
import pyfaidx
from skgenome import tabio, GenomicArray as GA

from . import core, fix, descriptives, params
from .cmdutil import read_cna
from .cnary import CopyNumArray as CNA


def do_reference_flat(targets, antitargets=None, fa_fname=None, is_haploid_x_reference=False, diploid_parx_genome=None):
    """Compile a neutral-coverage reference from the given intervals.

    Combines the intervals, shifts chrX values if requested, and calculates GC
    and RepeatMasker content from the genome FASTA sequence.
    """
    ref_probes = bed2probes(targets)
    if antitargets:
        ref_probes.add(bed2probes(antitargets))
    # Set sex chromosomes by "reference" sex
    ref_probes["log2"] = ref_probes.expect_flat_log2(is_haploid_x_reference, diploid_parx_genome)
    ref_probes["depth"] = np.exp2(ref_probes["log2"])  # Shim
    # Calculate GC and RepeatMasker content for each probe's genomic region
    if fa_fname:
        gc, rmask = get_fasta_stats(ref_probes, fa_fname)
        ref_probes["gc"] = gc
        ref_probes["rmask"] = rmask
    else:
        logging.info(
            "No FASTA reference genome provided; skipping GC, RM calculations"
        )
    ref_probes.sort_columns()
    return ref_probes


def bed2probes(bed_fname):
    """Create a neutral-coverage CopyNumArray from a file of regions."""
    regions = tabio.read_auto(bed_fname)
    table = regions.data.loc[:, ("chromosome", "start", "end")]
    table["gene"] = regions.data["gene"] if "gene" in regions.data else "-"
    table["log2"] = 0.0
    table["spread"] = 0.0
    return CNA(table, {"sample_id": core.fbase(bed_fname)})


def do_reference(
    target_fnames,
    antitarget_fnames=None,
    fa_fname=None,
    is_haploid_x_reference=False,
    diploid_parx_genome=None,
    female_samples=None,
    do_gc=True,
    do_edge=True,
    do_rmask=True,
    do_cluster=False,
    min_cluster_size=4,
):
    """Compile a coverage reference from the given files (normal samples)."""
    if antitarget_fnames:
        core.assert_equal(
            "Unequal number of target and antitarget files given",
            targets=len(target_fnames),
            antitargets=len(antitarget_fnames),
        )
    if not fa_fname:
        logging.info(
            "No FASTA reference genome provided; skipping GC, RM calculations"
        )

    if female_samples is None:
        # NB: Antitargets are usually preferred for inferring sex, but might be
        # empty files, in which case no inference can be done. Since targets are
        # guaranteed to exist, infer from those first, then replace those
        # values where antitargets are suitable.
        logging.info("Sample sex not provided; inferring from samples. ")
        sexes = infer_sexes(target_fnames, False, diploid_parx_genome)
        if antitarget_fnames:
            a_sexes = infer_sexes(antitarget_fnames, False, diploid_parx_genome)
            for sid, a_is_xx in a_sexes.items():
                t_is_xx = sexes.get(sid)
                if t_is_xx is None:
                    sexes[sid] = a_is_xx
                elif t_is_xx != a_is_xx and a_is_xx is not None:
                    logging.warning(
                        "Sample %s chromosomal X/Y ploidy looks "
                        "like %s in targets but %s in antitargets; "
                        "preferring antitargets",
                        sid,
                        "female" if t_is_xx else "male",
                        "female" if a_is_xx else "male",
                    )
                    sexes[sid] = a_is_xx
    else:
        # In this case the gender of the samples is provided and won't be inferred
        logging.info(f'Provided sample sex is {"female" if female_samples else "male"}. ')
        sexes = dict()
        for fname in target_fnames:
            sexes[read_cna(fname).sample_id] = female_samples

    # TODO - refactor/inline this func here, once it works
    ref_probes = combine_probes(
        target_fnames,
        antitarget_fnames,
        fa_fname,
        is_haploid_x_reference,
        diploid_parx_genome,
        sexes,
        do_gc,
        do_edge,
        do_rmask,
        do_cluster,
        min_cluster_size,
    )
    warn_bad_bins(ref_probes)
    return ref_probes


def infer_sexes(cnn_fnames, is_haploid_x, diploid_parx_genome):
    """Map sample IDs to inferred chromosomal sex, where possible.

    For samples where the source file is empty or does not include either sex
    chromosome, that sample ID will not be in the returned dictionary.
    """
    sexes = {}
    for fname in cnn_fnames:
        cnarr = read_cna(fname)
        if cnarr:
            is_xx = cnarr.guess_xx(is_haploid_x, diploid_parx_genome)
            if is_xx is not None:
                sexes[cnarr.sample_id] = is_xx
    return sexes


def combine_probes(
    filenames,
    antitarget_fnames,
    fa_fname,
    is_haploid_x,
    diploid_parx_genome,
    sexes,
    fix_gc,
    fix_edge,
    fix_rmask,
    do_cluster,
    min_cluster_size,
):
    """Calculate the median coverage of each bin across multiple samples.

    Parameters
    ----------
    filenames : list
        List of string filenames, corresponding to targetcoverage.cnn and
        antitargetcoverage.cnn files, as generated by 'coverage' or
        'import-picard'.
    fa_fname : str
        Reference genome sequence in FASTA format, used to extract GC and
        RepeatMasker content of each genomic bin.
    is_haploid_x : bool
    do_cluster : bool
    fix_gc : bool
    fix_edge : bool
    fix_rmask : bool

    Returns
    -------
    CopyNumArray
        One object summarizing the coverages of the input samples, including
        each bin's "average" coverage, "spread" of coverages, and GC content.
    """
    # Special parameters:
    # skip_low (when centering) = True for target; False for antitarget
    # do_edge  = as given for target; False for antitarget
    # do_rmask  = False for target; as given for antitarget
    ref_df, all_logr, all_depths = load_sample_block(
        filenames, fa_fname, is_haploid_x, diploid_parx_genome, sexes, True, fix_gc, fix_edge, False
    )
    if antitarget_fnames:
        # XXX TODO ensure ordering matches targets!
        #   argsort on both -> same?
        anti_ref_df, anti_logr, anti_depths = load_sample_block(
            antitarget_fnames,
            fa_fname,
            is_haploid_x,
            diploid_parx_genome,
            sexes,
            False,
            fix_gc,
            False,
            fix_rmask,
        )
        if not anti_ref_df.empty:
            ref_df = pd.concat([ref_df, anti_ref_df], ignore_index=True)
        all_logr = np.hstack([all_logr, anti_logr])
        all_depths = np.hstack([all_depths, anti_depths])

    stats_all = summarize_info(all_logr, all_depths)
    ref_df = ref_df.assign(**stats_all)

    if do_cluster:
        # Get extra cols, concat axis=1 here (DATAFRAME v-concat)
        sample_ids = [core.fbase(f) for f in filenames]
        if len(sample_ids) != len(all_logr) - 1:
            raise ValueError(
                f"Expected {len(all_logr) - 1} target coverage files (.cnn), "
                + f"got {len(sample_ids)}"
            )
        clustered_cols = create_clusters(all_logr, min_cluster_size, sample_ids)
        if clustered_cols:
            try:
                ref_df = ref_df.assign(**clustered_cols)
            except ValueError as exc:
                print("Reference:", len(ref_df.index))
                for cl_key, cl_col in clustered_cols.items():
                    print(cl_key, ":", len(cl_col))
                raise exc
        else:
            print("** Why weren't there any clustered cols?")

    ref_cna = CNA(ref_df, meta_dict={"sample_id": "reference"})
    # NB: Up to this point, target vs. antitarget bins haven't been row-sorted.
    # Holding off until here ensures the cluster-specific log2 columns are
    # sorted with the same row order as the rest of the CNA dataframe.
    ref_cna.sort()
    ref_cna.sort_columns()
    # TODO figure out centering
    # ref_probes.center_all(skip_low=True)  # <-- on each cluster col, too?
    #   or just subtract the same amount from the cluster calls after figuring
    #   out the main one?
    return ref_cna


def load_sample_block(
    filenames, fa_fname, is_haploid_x, diploid_parx_genome, sexes, skip_low, fix_gc, fix_edge, fix_rmask
):
    r"""Load and summarize a pool of \*coverage.cnn files.

    Run separately for the on-target and (optional) antitarget bins.

    Returns
    -------
    ref_df : pandas.DataFrame
        All columns needed for the reference CNA object, including
        aggregate log2 and spread.
    all_logr : numpy.ndarray
        All sample log2 ratios, as a 2D matrix (rows=bins, columns=samples),
        to be used with do_cluster.
    """
    # Ensures samples' target and antitarget matrix columns are in the same
    # order, so they can be concatenated.
    # (We don't explicitly pair off each sample's target and antitarget .cnn
    # files; as long as the filename prefixes match, the resulting columns will
    # be consistent. Same is true for sample sex inference.)
    filenames = sorted(filenames, key=core.fbase)

    # Load coverage from target/antitarget files
    logging.info("Loading %s", filenames[0])
    cnarr1 = read_cna(filenames[0])
    if len(cnarr1) == 0:
        # Just create an empty array with the right columns
        col_names = ["chromosome", "start", "end", "gene", "log2", "depth"]
        if "gc" in cnarr1 or fa_fname:
            col_names.append("gc")
        if fa_fname:
            col_names.append("rmask")
        col_names.append("spread")
        empty_df = pd.DataFrame.from_records([], columns=col_names)
        empty_logr = np.array([[]] * (len(filenames) + 1))
        empty_dp = np.array([[]] * len(filenames))
        return empty_df, empty_logr, empty_dp

    # Calculate GC and RepeatMasker content for each probe's genomic region
    ref_columns = {
        "chromosome": cnarr1.chromosome,
        "start": cnarr1.start,
        "end": cnarr1.end,
        "gene": cnarr1["gene"],
    }
    if fa_fname and (fix_rmask or fix_gc):
        gc, rmask = get_fasta_stats(cnarr1, fa_fname)
        if fix_gc:
            ref_columns["gc"] = gc
        if fix_rmask:
            ref_columns["rmask"] = rmask
    elif "gc" in cnarr1 and fix_gc:
        # Reuse .cnn GC values if they're already stored (via import-picard)
        gc = cnarr1["gc"]
        ref_columns["gc"] = gc

    # Make the sex-chromosome coverages of male and female samples compatible
    is_chr_x = cnarr1.chr_x_filter(diploid_parx_genome)
    is_chr_y = cnarr1.chr_y_filter(diploid_parx_genome)
    ref_flat_logr = cnarr1.expect_flat_log2(is_haploid_x, diploid_parx_genome)
    ref_edge_bias = fix.get_edge_bias(cnarr1, params.INSERT_SIZE)
    # Pseudocount of 1 "flat" sample
    all_depths = [cnarr1["depth"] if "depth" in cnarr1 else np.exp2(cnarr1["log2"])]
    all_logr = [
        ref_flat_logr,
        bias_correct_logr(
            cnarr1,
            ref_columns,
            ref_edge_bias,
            ref_flat_logr,
            sexes,
            is_chr_x,
            is_chr_y,
            fix_gc,
            fix_edge,
            fix_rmask,
            skip_low,
            diploid_parx_genome
        ),
    ]

    # Load only coverage depths from the remaining samples
    for fname in filenames[1:]:
        logging.info("Loading %s", fname)
        cnarrx = read_cna(fname)
        # Bin information should match across all files
        if not np.array_equal(
            cnarr1.data.loc[:, ("chromosome", "start", "end", "gene")].values,
            cnarrx.data.loc[:, ("chromosome", "start", "end", "gene")].values,
        ):
            raise RuntimeError(
                f"{fname} bins do not match those in {filenames[0]}"
            )
        all_depths.append(
            cnarrx["depth"] if "depth" in cnarrx else np.exp2(cnarrx["log2"])
        )
        all_logr.append(
            bias_correct_logr(
                cnarrx,
                ref_columns,
                ref_edge_bias,
                ref_flat_logr,
                sexes,
                is_chr_x,
                is_chr_y,
                fix_gc,
                fix_edge,
                fix_rmask,
                skip_low,
                diploid_parx_genome
            )
        )
    all_logr = np.vstack(all_logr)
    all_depths = np.vstack(all_depths)
    ref_df = pd.DataFrame.from_dict(ref_columns)
    return ref_df, all_logr, all_depths


def bias_correct_logr(
    cnarr,
    ref_columns,
    ref_edge_bias,
    ref_flat_logr,
    sexes,
    is_chr_x,
    is_chr_y,
    fix_gc,
    fix_edge,
    fix_rmask,
    skip_low,
    diploid_parx_genome,
):
    """Perform bias corrections on the sample."""
    cnarr.center_all(skip_low=skip_low, diploid_parx_genome=diploid_parx_genome)
    shift_sex_chroms(cnarr, sexes, ref_flat_logr, is_chr_x, is_chr_y)
    # Skip bias corrections if most bins have no coverage (e.g. user error)
    if (
        cnarr["log2"] > params.NULL_LOG2_COVERAGE - params.MIN_REF_COVERAGE
    ).sum() <= len(cnarr) // 2:
        logging.warning(
            "WARNING: most bins have no or very low coverage; "
            "check that the right BED file was used"
        )
    else:
        if "gc" in ref_columns and fix_gc:
            logging.info(f"Correcting for GC bias for {cnarr.sample_id}...")
            cnarr = fix.center_by_window(cnarr, 0.1, ref_columns["gc"])
        if "rmask" in ref_columns and fix_rmask:
            logging.info(f"Correcting for RepeatMasker bias for {cnarr.sample_id}...")
            cnarr = fix.center_by_window(cnarr, 0.1, ref_columns["rmask"])
        if fix_edge:
            logging.info(f"Correcting for density bias for {cnarr.sample_id}...")
            cnarr = fix.center_by_window(cnarr, 0.1, ref_edge_bias)
    return cnarr["log2"]


def shift_sex_chroms(cnarr, sexes, ref_flat_logr, is_chr_x, is_chr_y):
    """Shift sample X and Y chromosomes to match the reference sex.

    Reference values::

        XY: chrX -1, chrY -1
        XX: chrX 0, chrY -1

    Plan::

        chrX:
        xx sample, xx ref: 0    (from 0)
        xx sample, xy ref: -= 1 (from -1)
        xy sample, xx ref: += 1 (from 0)    +1
        xy sample, xy ref: 0    (from -1)   +1
        chrY:
        xx sample, xx ref: = -1 (from -1)
        xx sample, xy ref: = -1 (from -1)
        xy sample, xx ref: 0    (from -1)   +1
        xy sample, xy ref: 0    (from -1)   +1

    """
    is_xx = sexes.get(cnarr.sample_id)
    cnarr["log2"] += ref_flat_logr
    if is_xx:
        # chrX has same ploidy as autosomes; chrY is just unusable noise
        cnarr[is_chr_y, "log2"] = -1.0  # np.nan is worse
    else:
        # 1/2 #copies of each sex chromosome
        cnarr[is_chr_x | is_chr_y, "log2"] += 1.0


def summarize_info(all_logr, all_depths):
    """Average & spread of log2ratios and depths for a group of samples.

    Can apply to all samples, or a given cluster of samples.
    """
    logging.info("Calculating average bin coverages")
    cvg_centers = np.apply_along_axis(descriptives.biweight_location, 0, all_logr)
    depth_centers = np.apply_along_axis(descriptives.biweight_location, 0, all_depths)
    logging.info("Calculating bin spreads")
    spreads = np.array(
        [
            descriptives.biweight_midvariance(a, initial=i)
            for a, i in zip(all_logr.T, cvg_centers)
        ]
    )

    result = {
        "log2": cvg_centers,
        "depth": depth_centers,
        "spread": spreads,
    }
    # TODO center the resulting log2
    # ref_df = pd.DataFrame.from_dict(ref_columns)
    # ref_cna = CNA.from_columns(ref_columns, {'sample_id': "reference"})
    return result


def create_clusters(logr_matrix, min_cluster_size, sample_ids):
    """Extract and summarize clusters of samples in logr_matrix.

    1. Calculate correlation coefficients between all samples (columns).
    2. Cluster the correlation matrix.
    3. For each resulting sample cluster (down to a minimum size threshold),
       calculate the central log2 value for each bin, similar to the full pool.
       Also print the sample IDs in each cluster, if feasible.

    Also recalculate and store the 'spread' of each cluster, though this might
    not be necessary/good.

    Return a DataFrame of just the log2 values. Column names are ``log2_i``
    where i=1,2,... .
    """
    # from .cluster import markov
    from .cluster import kmeans

    # Drop the pseudocount sample
    logr_matrix = logr_matrix[1:, :]
    print("Clustering", len(logr_matrix), "samples...")
    # clusters = markov(logr_matrix)
    clusters = kmeans(logr_matrix)
    cluster_cols = {}
    sample_ids = np.array(sample_ids)  # For easy indexing
    for i, clust_idx in enumerate(clusters):
        i += 1
        # print(len(clust_idx), clust_idx)
        if len(clust_idx) < min_cluster_size:
            logging.info(
                "Skipping cluster #%d, size %d < min. %d",
                i,
                len(clust_idx),
                min_cluster_size,
            )
            continue
        logging.info("Summarizing cluster #%d of %d samples", i, len(clust_idx))
        # List which samples are in each cluster
        samples = sample_ids[clust_idx]
        logging.info("\n".join(["\t" + s for s in samples]))
        # Calculate each cluster's summary stats
        clust_matrix = logr_matrix[clust_idx, :]
        # XXX re-add the pseudocount sample to each cluster? need benchmark
        clust_info = summarize_info(clust_matrix, [])
        cluster_cols.update(
            {
                f"log2_{i}": clust_info["log2"],
                f"spread_{i}": clust_info["spread"],
            }
        )
    return cluster_cols


def warn_bad_bins(cnarr, max_name_width=50):
    """Warn about target bins where coverage is poor.

    Prints a formatted table to stderr.
    """
    bad_bins = cnarr[fix.mask_bad_bins(cnarr)]
    fg_index = ~bad_bins["gene"].isin(params.ANTITARGET_ALIASES)
    fg_bad_bins = bad_bins[fg_index]
    if len(fg_bad_bins) > 0:
        bad_pct = (
            100 * len(fg_bad_bins) / sum(~cnarr["gene"].isin(params.ANTITARGET_ALIASES))
        )
        logging.info(
            "Targets: %d (%s) bins failed filters "
            "(log2 < %s, log2 > %s, spread > %s)",
            len(fg_bad_bins),
            f"{bad_pct:.4}%",
            params.MIN_REF_COVERAGE,
            -params.MIN_REF_COVERAGE,
            params.MAX_REF_SPREAD,
        )
        if len(fg_bad_bins) < 500:
            gene_cols = min(max_name_width, max(map(len, fg_bad_bins["gene"])))
            labels = fg_bad_bins.labels()
            chrom_cols = max(labels.apply(len))
            last_gene = None
            for label, probe in zip(labels, fg_bad_bins):
                if probe.gene == last_gene:
                    gene = '  "'
                else:
                    gene = probe.gene
                    last_gene = gene
                if len(gene) > max_name_width:
                    gene = gene[: max_name_width - 3] + "..."
                if "rmask" in cnarr:
                    logging.info(
                        "  %s  %s  log2=%.3f  spread=%.3f  rmask=%.3f",
                        gene.ljust(gene_cols),
                        label.ljust(chrom_cols),
                        probe.log2,
                        probe.spread,
                        probe.rmask,
                    )
                else:
                    logging.info(
                        "  %s  %s  log2=%.3f  spread=%.3f",
                        gene.ljust(gene_cols),
                        label.ljust(chrom_cols),
                        probe.log2,
                        probe.spread,
                    )

    # Count the number of BG bins dropped, too (names are all "Antitarget")
    bg_bad_bins = bad_bins[~fg_index]
    if len(bg_bad_bins) > 0:
        bad_pct = (
            100 * len(bg_bad_bins) / sum(cnarr["gene"].isin(params.ANTITARGET_ALIASES))
        )
        logging.info(
            "Antitargets: %d (%s) bins failed filters",
            len(bg_bad_bins),
            f"{bad_pct:.4}%",
        )


def get_fasta_stats(cnarr, fa_fname):
    """Calculate GC and RepeatMasker content of each bin in the FASTA genome."""
    logging.info("Calculating GC and RepeatMasker content in %s ...", fa_fname)
    gc_rm_vals = [
        calculate_gc_lo(subseq) for subseq in fasta_extract_regions(fa_fname, cnarr)
    ]
    gc_vals, rm_vals = zip(*gc_rm_vals)
    return np.asarray(gc_vals, dtype=float), np.asarray(rm_vals, dtype=float)


def calculate_gc_lo(subseq):
    """Calculate the GC and lowercase (RepeatMasked) content of a string."""
    cnt_at_lo = subseq.count("a") + subseq.count("t")
    cnt_at_up = subseq.count("A") + subseq.count("T")
    cnt_gc_lo = subseq.count("g") + subseq.count("c")
    cnt_gc_up = subseq.count("G") + subseq.count("C")
    tot = float(cnt_gc_up + cnt_gc_lo + cnt_at_up + cnt_at_lo)
    if not tot:
        return 0.0, 0.0
    frac_gc = (cnt_gc_lo + cnt_gc_up) / tot
    frac_lo = (cnt_at_lo + cnt_gc_lo) / tot
    return frac_gc, frac_lo


def fasta_extract_regions(fa_fname, intervals):
    """Extract an iterable of regions from an indexed FASTA file.

    Input: FASTA file name; iterable of (seq_id, start, end) (1-based)
    Output: iterable of string sequences.
    """
    with pyfaidx.Fasta(fa_fname, as_raw=True) as fa_file:
        for chrom, subarr in intervals.by_chromosome():
            logging.info("Extracting sequences from chromosome %s", chrom)
            for _chrom, start, end in subarr.coords():
                yield fa_file[_chrom][int(start) : int(end)]


def reference2regions(refarr):
    """Split reference into target and antitarget regions."""
    is_bg = refarr["gene"].isin(params.ANTITARGET_ALIASES)
    regions = GA(
        refarr.data.loc[:, ("chromosome", "start", "end", "gene")],
        {"sample_id": "reference"},
    )
    targets = regions[~is_bg]
    antitargets = regions[is_bg]
    return targets, antitargets