1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
(*
* This file is part of Coccinelle, licensed under the terms of the GPL v2.
* See copyright.txt in the Coccinelle source code for more information.
* The Coccinelle source code can be obtained at http://coccinelle.lip6.fr
*)
(* ********************************************************************** *)
(* Module: EXAMPLE_ENGINE (instance of CTL_ENGINE) *)
(* ********************************************************************** *)
(* Simple env.: meta.vars and values are strings *)
module SIMPLE_ENV =
struct
type value = string;;
type mvar = string;;
let eq_mvar x x' = x = x';;
let eq_val v v' = v = v';;
let merge_val v v' = v;;
end
;;
(* Simple predicates *)
module WRAPPER_PRED =
struct
type predicate = string
end
module EXAMPLE_ENGINE =
Wrapper_ctl.CTL_ENGINE_BIS (SIMPLE_ENV) (Ctl_engine.OGRAPHEXT_GRAPH) (WRAPPER_PRED)
let top_wit = []
(* ******************************************************************** *)
(* *)
(* EXAMPLES *)
(* *)
(* ******************************************************************** *)
(* For convenience in the examples *)
(* FIX ME: remove *)
open Ctl_engine.OGRAPHEXT_GRAPH;;
open EXAMPLE_ENGINE;;
open Ast_ctl;;
(* ---------------------------------------------------------------------- *)
(* Helpers *)
(* ---------------------------------------------------------------------- *)
(* FIX ME: move to ENGINE module *)
let (-->) x v = Subst (x,v);;
(* FIX ME: move to ENGINE module *)
let (-/->) x v = NegSubst(x,v);;
let mkgraph nodes edges =
let g = ref (new Ograph_extended.ograph_extended) in
let addn (n,x) =
(* let (g',i) = (!g)#add_node x in *)
(* now I need to force the nodei of a node, because of the state(vx) predicates
hence add_node -> add_nodei
*)
let (g', i) = !g#add_nodei n x in
assert (i = n);
g := g'; (n,i) in
let adde anodes (n1,n2,x) =
let g' = (!g)#add_arc ((List.assoc n1 anodes,List.assoc n2 anodes),x) in
g := g'; () in
let add_nodes = List.map addn nodes in
let _add_edges = List.map (adde add_nodes) edges in
!g
;;
(* CTL parameterised on basic predicates and metavar's*)
type ('pred,'mvar) old_gen_ctl =
| False_
| True_
| Pred_ of 'pred
| Not_ of ('pred,'mvar) old_gen_ctl
| Exists_ of 'mvar * ('pred,'mvar) old_gen_ctl (* !!! *)
| And_ of ('pred,'mvar) old_gen_ctl * ('pred,'mvar) old_gen_ctl
| Or_ of ('pred,'mvar) old_gen_ctl * ('pred,'mvar) old_gen_ctl
| Implies_ of ('pred,'mvar) old_gen_ctl * ('pred,'mvar) old_gen_ctl
| AF_ of ('pred,'mvar) old_gen_ctl
| AX_ of ('pred,'mvar) old_gen_ctl
| AG_ of ('pred,'mvar) old_gen_ctl
| AU_ of ('pred,'mvar) old_gen_ctl * ('pred,'mvar) old_gen_ctl
| EF_ of ('pred,'mvar) old_gen_ctl
| EX_ of ('pred,'mvar) old_gen_ctl
| EG_ of ('pred,'mvar) old_gen_ctl
| EU_ of ('pred,'mvar) old_gen_ctl * ('pred,'mvar) old_gen_ctl
| Let_ of string * ('pred,'mvar) old_gen_ctl * ('pred,'mvar) old_gen_ctl
| Ref_ of string
let rec mkanno phi0 =
let anno phi = (phi,None) in
match phi0 with
| False_ -> anno False
| True_ -> anno True
| Pred_(p) -> anno (Pred(p))
| Not_(phi) -> anno (Not(mkanno phi))
| Exists_(v,phi) -> anno (Exists(v,mkanno phi))
| And_(phi1,phi2) -> anno (And(mkanno phi1,mkanno phi2))
| Or_(phi1,phi2) -> anno (Or(mkanno phi1,mkanno phi2))
| Implies_(phi1,phi2) -> anno (Implies(mkanno phi1,mkanno phi2))
| AF_(phi1) -> anno (AF(mkanno phi1))
| AX_(phi1) -> anno (AX(mkanno phi1))
| AG_(phi1) -> anno (AG(mkanno phi1))
| AU_(phi1,phi2) -> anno (AU(mkanno phi1,mkanno phi2))
| EF_(phi1) -> anno (EF(mkanno phi1))
| EX_(phi1) -> anno (EX(mkanno phi1))
| EG_(phi1) -> anno (EG(mkanno phi1))
| EU_(phi1,phi2) -> anno (EU(mkanno phi1,mkanno phi2))
| Let_ (x,phi1,phi2) -> anno (Let(x,mkanno phi1,mkanno phi2))
| Ref_(s) -> anno (Ref(s))
(* ******************************************************************** *)
(* Example 1 *)
(* CTL: f(x) /\ AF(Ey.g(y)) *)
(* ******************************************************************** *)
let ex1lab s =
match s with
| "f(x)" -> [(0,["x" --> "1"]); (1,["x" --> "2"])]
| "g(y)" -> [(3,["y" --> "1"]); (4,["y" --> "2"])]
| "f(1)" -> [(0,[])]
| "f(2)" -> [(1,[])]
| "g(1)" -> [(3,[])]
| "g(2)" -> [(4,[])]
| _ -> []
;;
let ex1graph =
let nodes =
[(0,"f(1)");(1,"f(2)");(2,"< >");(3,"g(1)");(4,"g(2)");(5,"<exit>")] in
let edges = [(0,2); (1,2); (2,3); (2,4); (3,5); (4,5); (5,5)] in
mkgraph nodes (List.map (fun (x,y) -> (x,y,())) edges)
;;
let ex1states = List.map fst (ex1graph#nodes)#tolist;;
let ex1model = (ex1graph,ex1lab,ex1states);;
let ex1model_wrapped = (ex1graph,wrap_label ex1lab,ex1states);;
let ex1s0 = Exists_("v0",Pred_ ("f(x)",UnModif "v0"));;
let ex1s1 = Exists_("v1",Pred_ ("g(y)",Modif "v1"));;
let ex1s2 = Exists_("y",ex1s1);;
let ex1s3 = AF_(ex1s2);;
let ex1s4 = And_(ex1s0,ex1s3);;
let ex1s3a = AX_(ex1s2);;
let ex1s4a = AX_(AX_(ex1s2));;
let ex1s5a = And_(ex1s0,ex1s4a);;
let ex1s0b = Pred_ ("g(y)", Modif "v0");;
let ex1s1b = Exists_ ("v0",ex1s0b);;
let ex1s2b = Exists_ ("y",ex1s1b);;
let ex1s3b = AF_(ex1s2b);;
let ex1s4b = AX_(ex1s3b);;
let ex1s5b = Pred_ ("f(x)", UnModif "v3");;
let ex1s6b = Exists_ ("v3", ex1s5b);;
let ex1s7b = Exists_ ("x", ex1s6b);;
let ex1s8b = And_(ex1s7b,ex1s4b);;
let ex1s7c = And_(ex1s6b,ex1s4b);;
let ex1s8c = Exists_("x",ex1s7c);;
let ex1phi1 = ex1s4;;
let ex1phi2 = ex1s5a;;
let ex1phi3 =
And_
(Exists_ ("x",
(Exists_ ("v3",
Pred_ ("f(x)", UnModif "v3")))),
AX_
(AF_
(Exists_ ("y", (* change this to Y and have strange behaviour *)
(Exists_ ("v0",
Pred_ ("g(y)", Modif "v0")
))))));;
let ex1phi4 =
Exists_ ("x",
And_ (
(Exists_ ("v3",
Pred_ ("f(x)", UnModif "v3"))),
AX_
(AF_
(Exists_ ("y", (* change this to Y and have strange behaviour *)
(Exists_ ("v0",
Pred_ ("g(y)", Modif "v0")
)))))));;
let ex1phi5 = AU_(True_,Exists_("y", Exists_("v0",Pred_("g(y)",Modif "v0"))));;
let ex1phi6 =
AU_(
Not_(Exists_("x",Exists_("v1",Pred_("f(x)",UnModif "v1")))),
Exists_("y", Exists_("v0",Pred_("g(y)",Modif "v0")))
);;
(* use with ex1nc *)
let ex1phi7 =
AU_(
Not_(Or_(Pred_("f(1)",Control),Pred_("f(2)",Control))),
Exists_("y", Exists_("v0",Pred_("g(y)",Modif "v0")))
);;
let ex1 phi = satbis ex1model (mkanno phi);;
let ex1nc phi = satbis_noclean ex1model (mkanno phi);;
(* ******************************************************************** *)
(* Example 2 *)
(* ******************************************************************** *)
let ex2lab s =
match s with
| "p" -> [0,[]]
| "{" -> [(1,[]); (2,[])]
| "}" -> [(3,[]); (4,[])]
| "paren(v)" -> [(1,["v" --> "1"]); (2,["v" --> "2"]);
(3,["v" --> "2"]); (4,["v" --> "1"])]
| _ -> []
;;
let ex2graph =
let nodes =
[(0,"p");(1,"{");(2,"{");(3,"}");(4,"}");(5,"<exit>")] in
let edges = [(0,1); (1,2); (2,3); (3,4); (4,5); (5,5)] in
mkgraph nodes (List.map (fun (x,y) -> (x,y,())) edges)
;;
let ex2states = List.map fst (ex2graph#nodes)#tolist;;
let ex2model = (ex2graph,ex2lab,ex2states);;
let ex2model_wrapped = (ex2graph,wrap_label ex2lab,ex2states);;
let ex2s0 = Pred_("p",Control);;
let ex2s1 = Pred_("{",Control);;
let ex2s2 = Pred_("paren(v)",Control);;
let ex2s3 = And_(ex2s1,ex2s2);;
let ex2s4 = Pred_("}",Control);;
let ex2s5 = Pred_("paren(v)",Control);;
let ex2s6 = And_(ex2s4,ex2s5);;
let ex2s7 = AF_(ex2s6);;
let ex2s8 = And_(ex2s3,ex2s7);;
let ex2s9 = Exists_("v",ex2s8);;
let ex2s10 = AX_(ex2s9);;
let ex2s11 = And_(ex2s0,ex2s10);;
let ex2phi1 = ex2s11;;
let ex2 phi = satbis_noclean ex2model (mkanno phi)
(*
+--- s11:& ---+
| |
s0:p s10:AX
|
s9:exists v
|
+---------- s8:& --------+
| |
+-- s3:& --+ s7:AF
| | |
s1:"{" s2:paren(v) +-- s6:& -+
| |
s4:"}" s5:paren(v)
s0 : p : (0,_,_)
s1 : "{" : (1,_,_); (2,_,_)
s2 : paren(v) : (1,v=1,_); (2,v=2,_); (3,v=2,_); (4,v=1,_)
s3 : "{" & paren(v) : (1,v=1,_); (2,v=2,_)
s4 : "}" : (3,_,_); (4,_,_)
s5 : paren(v) : (1,v=1,_); (2,v=2,_); (3,v=2,_); (4,v=1,_)
s6 : "}" & paren(v) : (3,v=2,_); (4,v=1,_)
s7 : AF(...) : (0;1;2;3,v=2,_); (0;1;2;3;4,v=1,_)
s8 : (...&...) & AF(...) : (1,v=1,_); (2,v=2,_)
s9 : exists ... : (1,_,(1,v=1)); (2,_,(2,v=2))
s10 : AX(...) : (0,_,(1,v=1)); (1,_,(2,v=2))
s11 : p & AX(...) : (0,_,(1,v=1))
*)
|