1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
|
(*
* This file is part of Coccinelle, licensed under the terms of the GPL v2.
* See copyright.txt in the Coccinelle source code for more information.
* The Coccinelle source code can be obtained at http://coccinelle.lip6.fr
*)
(* Detects subtrees that are all minus/plus and nodes that are "binding
context nodes". The latter is a node whose structure and immediate tokens
are the same in the minus and plus trees, and such that for every child,
the set of context nodes in the child subtree is the same in the minus and
plus subtrees. *)
module Ast = Ast_cocci
module Ast0 = Ast0_cocci
module V0 = Visitor_ast0
module VT0 = Visitor_ast0_types
module U = Unparse_ast0
(* --------------------------------------------------------------------- *)
(* Generic access to code *)
let set_mcodekind x mcodekind =
match x with
Ast0.DotsExprTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.DotsInitTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.DotsParamTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.DotsStmtTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.DotsDeclTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.DotsFieldTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.DotsCaseTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.DotsDefParamTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.IdentTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.ExprTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.AssignOpTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.BinaryOpTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.ArgExprTag(d) | Ast0.TestExprTag(d) ->
failwith "not possible - iso only"
| Ast0.TypeCTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.ParamTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.DeclTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.FieldTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.InitTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.StmtTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.ForInfoTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.CaseLineTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.StringFragmentTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.TopTag(d) -> Ast0.set_mcodekind d mcodekind
| Ast0.IsoWhenTag(_) -> failwith "only within iso phase"
| Ast0.IsoWhenTTag(_) -> failwith "only within iso phase"
| Ast0.IsoWhenFTag(_) -> failwith "only within iso phase"
| Ast0.MetaPosTag(p) -> failwith "invisible at this stage"
| Ast0.HiddenVarTag(p) -> failwith "hiddenvar only within iso phase"
| Ast0.WhenTag _ -> failwith "whentag only within iso phase"
let set_index x index =
match x with
Ast0.DotsExprTag(d) -> Ast0.set_index d index
| Ast0.DotsInitTag(d) -> Ast0.set_index d index
| Ast0.DotsParamTag(d) -> Ast0.set_index d index
| Ast0.DotsStmtTag(d) -> Ast0.set_index d index
| Ast0.DotsDeclTag(d) -> Ast0.set_index d index
| Ast0.DotsFieldTag(d) -> Ast0.set_index d index
| Ast0.DotsCaseTag(d) -> Ast0.set_index d index
| Ast0.DotsDefParamTag(d) -> Ast0.set_index d index
| Ast0.IdentTag(d) -> Ast0.set_index d index
| Ast0.ExprTag(d) -> Ast0.set_index d index
| Ast0.AssignOpTag(d) -> Ast0.set_index d index
| Ast0.BinaryOpTag(d) -> Ast0.set_index d index
| Ast0.ArgExprTag(d) | Ast0.TestExprTag(d) ->
failwith "not possible - iso only"
| Ast0.TypeCTag(d) -> Ast0.set_index d index
| Ast0.ParamTag(d) -> Ast0.set_index d index
| Ast0.InitTag(d) -> Ast0.set_index d index
| Ast0.DeclTag(d) -> Ast0.set_index d index
| Ast0.FieldTag(d) -> Ast0.set_index d index
| Ast0.StmtTag(d) -> Ast0.set_index d index
| Ast0.ForInfoTag(d) -> Ast0.set_index d index
| Ast0.CaseLineTag(d) -> Ast0.set_index d index
| Ast0.StringFragmentTag(d) -> Ast0.set_index d index
| Ast0.TopTag(d) -> Ast0.set_index d index
| Ast0.IsoWhenTag(_) -> failwith "only within iso phase"
| Ast0.IsoWhenTTag(_) -> failwith "only within iso phase"
| Ast0.IsoWhenFTag(_) -> failwith "only within iso phase"
| Ast0.MetaPosTag(p) -> failwith "invisible at this stage"
| Ast0.HiddenVarTag(p) -> failwith "hiddenvar only within iso phase"
| Ast0.WhenTag _ -> failwith "whentag only within iso phase"
let get_index = function
Ast0.DotsExprTag(d) -> Index.expression_dots d
| Ast0.DotsInitTag(d) -> Index.initialiser_dots d
| Ast0.DotsParamTag(d) -> Index.parameter_dots d
| Ast0.DotsStmtTag(d) -> Index.statement_dots d
| Ast0.DotsDeclTag(d) -> Index.declaration_dots d
| Ast0.DotsFieldTag(d) -> Index.field_dots d
| Ast0.DotsCaseTag(d) -> Index.case_line_dots d
| Ast0.DotsDefParamTag(d) -> Index.define_param_dots d
| Ast0.IdentTag(d) -> Index.ident d
| Ast0.ExprTag(d) -> Index.expression d
| Ast0.AssignOpTag(d) -> Index.assignOp d
| Ast0.BinaryOpTag(d) -> Index.binaryOp d
| Ast0.ArgExprTag(d) | Ast0.TestExprTag(d) ->
failwith "not possible - iso only"
| Ast0.TypeCTag(d) -> Index.typeC d
| Ast0.ParamTag(d) -> Index.parameterTypeDef d
| Ast0.InitTag(d) -> Index.initialiser d
| Ast0.DeclTag(d) -> Index.declaration d
| Ast0.FieldTag(d) -> Index.field d
| Ast0.StmtTag(d) -> Index.statement d
| Ast0.ForInfoTag(d) -> Index.forinfo d
| Ast0.CaseLineTag(d) -> Index.case_line d
| Ast0.StringFragmentTag(d) -> Index.string_fragment d
| Ast0.TopTag(d) -> Index.top_level d
| Ast0.IsoWhenTag(_) -> failwith "only within iso phase"
| Ast0.IsoWhenTTag(_) -> failwith "only within iso phase"
| Ast0.IsoWhenFTag(_) -> failwith "only within iso phase"
| Ast0.MetaPosTag(p) -> failwith "invisible at this stage"
| Ast0.HiddenVarTag(p) -> failwith "hiddenvar only within iso phase"
| Ast0.WhenTag _ -> failwith "whentag only within iso phase"
(* --------------------------------------------------------------------- *)
(* Collect the line numbers of the plus code. This is used for disjunctions.
It is not completely clear why this is necessary, but it seems like an easy
fix for whatever is the problem that is discussed in disj_cases *)
let plus_lines = ref ([] : int list)
let insert n =
let rec loop = function
[] -> [n]
| x::xs ->
match compare n x with
1 -> x::(loop xs)
| 0 -> x::xs
| -1 -> n::x::xs
| _ -> failwith "not possible" in
plus_lines := loop !plus_lines
let find n min max =
let rec loop = function
[] -> (min,max)
| [x] -> if n < x then (min,x) else (x,max)
| x1::x2::rest ->
if n < x1
then (min,x1)
else if n > x1 && n < x2 then (x1,x2) else loop (x2::rest) in
loop !plus_lines
let collect_plus_lines top =
plus_lines := [];
let bind x y = () in
let option_default = () in
let donothing r k e = k e in
let mcode (_,_,info,mcodekind,_,_) =
match mcodekind with
Ast0.PLUS _ -> insert info.Ast0.pos_info.Ast0.line_start
| _ -> () in
let statement r k s =
let mcode info bef = mcode ((),(),info,bef,(),-1) in
match Ast0.unwrap s with
(* cases for everything with extra mcode *)
| Ast0.Decl((info,bef),_) ->
bind (mcode info bef) (k s)
| Ast0.FunDecl((info,bef),_,_,_,_,_,_,_,_,_,(ainfo,aft)) ->
bind (mcode info bef) (bind (k s) (mcode ainfo aft))
| Ast0.IfThen(_,_,_,_,_,(info,aft,adj))
| Ast0.IfThenElse(_,_,_,_,_,_,_,(info,aft,adj))
| Ast0.Iterator(_,_,_,_,_,(info,aft,adj))
| Ast0.While(_,_,_,_,_,(info,aft,adj))
| Ast0.For(_,_,_,_,_,_,_,_,(info,aft,adj)) ->
bind (k s) (mcode info aft)
| _ -> k s in
let fn =
V0.flat_combiner bind option_default
mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode
mcode mcode
donothing donothing donothing donothing donothing donothing donothing
donothing
donothing donothing donothing donothing donothing donothing donothing
donothing donothing statement donothing donothing donothing donothing in
fn.VT0.combiner_rec_top_level top
(* --------------------------------------------------------------------- *)
type kind =
Neutral | AllMarked of Ast.count | NotAllMarked (* marked means + or - *)
(* --------------------------------------------------------------------- *)
(* The first part analyzes each of the minus tree and the plus tree
separately *)
(* ints are unique token indices (offset field) *)
type node =
Token (* tokens *) of kind * int (* unique index *) * Ast0.mcodekind *
int list (* context tokens *)
| Recursor (* children *) of kind *
int list (* indices of all tokens at the level below *) *
Ast0.mcodekind list (* tokens at the level below *) *
int list
| Bind (* neighbors *) of kind *
int list (* indices of all tokens at current level *) *
Ast0.mcodekind list (* tokens at current level *) *
int list (* indices of all tokens at the level below *) *
Ast0.mcodekind list (* tokens at the level below *)
* int list list
let kind2c = function
Neutral -> "neutral"
| AllMarked _ -> "allmarked"
| NotAllMarked -> "notallmarked"
let node2c = function
Token(k,_,_,_) -> Printf.sprintf "token %s\n" (kind2c k)
| Recursor(k,_,_,_) -> Printf.sprintf "recursor %s\n" (kind2c k)
| Bind(k,_,_,_,_,_) -> Printf.sprintf "bind %s\n" (kind2c k)
(* goal: detect negative in both tokens and recursors, or context only in
tokens *)
let bind c1 c2 =
let lub = function
(k1,k2) when k1 = k2 -> k1
| (Neutral,AllMarked c) -> AllMarked c
| (AllMarked c,Neutral) -> AllMarked c
| _ -> NotAllMarked in
match (c1,c2) with
(* token/token *)
(* there are tokens at this level, so ignore the level below *)
(Token(k1,i1,t1,l1),Token(k2,i2,t2,l2)) ->
Bind(lub(k1,k2),[i1;i2],[t1;t2],[],[],[l1;l2])
(* token/recursor *)
(* there are tokens at this level, so ignore the level below *)
| (Token(k1,i1,t1,l1),Recursor(k2,_,_,l2)) ->
Bind(lub(k1,k2),[i1],[t1],[],[],[l1;l2])
| (Recursor(k1,_,_,l1),Token(k2,i2,t2,l2)) ->
Bind(lub(k1,k2),[i2],[t2],[],[],[l1;l2])
(* token/bind *)
(* there are tokens at this level, so ignore the level below *)
| (Token(k1,i1,t1,l1),Bind(k2,i2,t2,_,_,l2)) ->
Bind(lub(k1,k2),i1::i2,t1::t2,[],[],l1::l2)
| (Bind(k1,i1,t1,_,_,l1),Token(k2,i2,t2,l2)) ->
Bind(lub(k1,k2),i1@[i2],t1@[t2],[],[],l1@[l2])
(* recursor/bind *)
| (Recursor(k1,bi1,bt1,l1),Bind(k2,i2,t2,bi2,bt2,l2)) ->
Bind(lub(k1,k2),i2,t2,bi1@bi2,bt1@bt2,l1::l2)
| (Bind(k1,i1,t1,bi1,bt1,l1),Recursor(k2,bi2,bt2,l2)) ->
Bind(lub(k1,k2),i1,t1,bi1@bi2,bt1@bt2,l1@[l2])
(* recursor/recursor and bind/bind - not likely to ever occur *)
| (Recursor(k1,bi1,bt1,l1),Recursor(k2,bi2,bt2,l2)) ->
Bind(lub(k1,k2),[],[],bi1@bi2,bt1@bt2,[l1;l2])
| (Bind(k1,i1,t1,bi1,bt1,l1),Bind(k2,i2,t2,bi2,bt2,l2)) ->
Bind(lub(k1,k2),i1@i2,t1@t2,bi1@bi2,bt1@bt2,l1@l2)
let option_default = (*Bind(Neutral,[],[],[],[],[])*)
Recursor(Neutral,[],[],[])
let contains_added_strings info =
let unsafe l =
List.exists
(fun (str,_) ->
match str with
(Ast.Noindent s | Ast.Indent s) -> not (Stdcompat.String.trim s = "")
| Ast.Space _ -> true (* adds a thing with space around it *))
l in
(* If this is true, eg if (x) return 0; will be broken up into
two rule elems. Not sure why that is needed, but surely it is not needed
when it is just whitespace that is added. *)
unsafe info.Ast0.strings_before || unsafe info.Ast0.strings_after
let mcode (_,_,info,mcodekind,pos,_) =
let offset = info.Ast0.pos_info.Ast0.offset in
match mcodekind with
Ast0.MINUS(_) -> Token(AllMarked Ast.ONE,offset,mcodekind,[])
| Ast0.PLUS c -> Token(AllMarked c,offset,mcodekind,[])
| Ast0.CONTEXT(_) -> Token(NotAllMarked,offset,mcodekind,[offset])
| _ -> failwith "not possible"
let neutral_mcode (_,_,info,mcodekind,pos,_) =
let offset = info.Ast0.pos_info.Ast0.offset in
match mcodekind with
Ast0.MINUS(_) -> Token(Neutral,offset,mcodekind,[])
| Ast0.PLUS _ -> Token(Neutral,offset,mcodekind,[])
| Ast0.CONTEXT(_) -> Token(Neutral,offset,mcodekind,[offset])
| _ -> failwith "not possible"
(* neutral for context; used for mcode in bef aft nodes that don't represent
anything if they don't contain some information *)
let nc_mcode (_,_,info,mcodekind,pos,_) =
(* distinguish from the offset of some real token *)
let offset = (-1) * info.Ast0.pos_info.Ast0.offset in
match mcodekind with
Ast0.MINUS(_) -> Token(AllMarked Ast.ONE,offset,mcodekind,[])
| Ast0.PLUS c -> Token(AllMarked c,offset,mcodekind,[])
| Ast0.CONTEXT(_) ->
(* Unlike the other mcode cases, we drop the offset from the context
offsets. This is because we don't know whether the term this is
associated with is - or context. In any case, the context offsets are
used for identification, and this invisible node should not be needed
for this purpose. *)
if contains_added_strings info
then
(* can we have ++ for strings? *)
Token(NotAllMarked,offset,mcodekind,[])
else Token(Neutral,offset,mcodekind,[])
| _ -> failwith "not possible"
let is_context = function Ast0.CONTEXT(_) -> true | _ -> false
let union_all l = List.fold_left Common.union_set [] l
(* is minus is true when we are processing minus code that might be
intermingled with plus code. it is used in disj_cases *)
let classify is_minus all_marked table code =
let mkres builder k il tl bil btl l e =
(match k with
AllMarked count ->
Ast0.set_mcodekind e (all_marked count) (* definitive *)
| _ ->
let check_index il tl =
if List.for_all is_context tl
then
(let e1 = builder e in
let index = (get_index e1)@il in
try
let _ = Hashtbl.find table index in
failwith
(Printf.sprintf "line %d: index %s already used\n"
(Ast0.get_info e).Ast0.pos_info.Ast0.line_start
(String.concat " " (List.map string_of_int index)))
with Not_found -> Hashtbl.add table index (e1,l)) in
if il = [] then check_index bil btl else check_index il tl);
if il = []
then Recursor(k, bil, btl, union_all l)
else Recursor(k, il, tl, union_all l) in
let compute_result builder e = function
Bind(k,il,tl,bil,btl,l) -> mkres builder k il tl bil btl l e
| Token(k,il,tl,l) -> mkres builder k [il] [tl] [] [] [l] e
| Recursor(k,bil,btl,l) -> mkres builder k [] [] bil btl [l] e in
let make_not_marked = function
Bind(k,il,tl,bil,btl,l) -> Bind(NotAllMarked,il,tl,bil,btl,l)
| Token(k,il,tl,l) -> Token(NotAllMarked,il,tl,l)
| Recursor(k,bil,btl,l) -> Recursor(NotAllMarked,bil,btl,l) in
let do_nothing builder r k e = compute_result builder e (k e) in
let disj_cases disj starter code fn ender =
(* neutral_mcode used so starter and ender don't have an affect on
whether the code is considered all plus/minus, but so that they are
consider in the index list, which is needed to make a disj with
something in one branch and nothing in the other different from code
that just has the something (starter/ender enough, mids not needed
for this). Cannot agglomerate + code over | boundaries, because two -
cases might have different + code, and don't want to put the + code
together into one unit. *)
let make_not_marked =
if is_minus
then
(let min = Ast0.get_line disj in
let max = Ast0.get_line_end disj in
let (plus_min,plus_max) = find min (min-1) (max+1) in
if max > plus_max then make_not_marked else (function x -> x))
else make_not_marked in
bind (neutral_mcode starter)
(bind (List.fold_right bind
(List.map make_not_marked (List.map fn code))
option_default)
(neutral_mcode ender)) in
(* no whencode in plus tree so have to drop it *)
(* need special cases for dots, nests, and disjs *)
let ident r k e =
compute_result Ast0.ident e
(match Ast0.unwrap e with
Ast0.DisjId(starter,id_list,_,ender)
| Ast0.ConjId(starter,id_list,_,ender) ->
disj_cases e starter id_list r.VT0.combiner_rec_ident ender
| _ -> k e) in
let expression r k e =
compute_result Ast0.expr e
(match Ast0.unwrap e with
Ast0.NestExpr(starter,exp,ender,whencode,multi) ->
k (Ast0.rewrap e (Ast0.NestExpr(starter,exp,ender,None,multi)))
| Ast0.Edots(dots,whencode) ->
k (Ast0.rewrap e (Ast0.Edots(dots,None)))
| Ast0.DisjExpr(starter,expr_list,_,ender)
| Ast0.ConjExpr(starter,expr_list,_,ender) ->
disj_cases e starter expr_list r.VT0.combiner_rec_expression ender
| _ -> k e) in
(* not clear why we have the next cases, since DisjDecl and
as it only comes from isos *)
(* actually, DisjDecl now allowed in source struct decls *)
let declaration r k e =
compute_result Ast0.decl e
(match Ast0.unwrap e with
Ast0.DisjDecl(starter,decls,_,ender)
| Ast0.ConjDecl(starter,decls,_,ender) ->
disj_cases e starter decls r.VT0.combiner_rec_declaration ender
(* Need special cases for the following so that the type will be
considered as a unit, rather than distributed around the
declared variable. This needs to be done because of the call to
compute_result, ie the processing of each term should make a
side-effect on the complete term structure as well as collecting
some information about it. So we have to visit each complete
term structure. In (all?) other such cases, we visit the terms
using rebuilder, which just visits the subterms, rather than
reordering their components. *)
| Ast0.Init(stg,ty,id,attr,eq,ini,sem) ->
bind (match stg with Some stg -> mcode stg | _ -> option_default)
(bind (r.VT0.combiner_rec_typeC ty)
(bind (r.VT0.combiner_rec_ident id)
(bind
(List.fold_right bind (List.map mcode attr)
option_default)
(bind (mcode eq)
(bind (r.VT0.combiner_rec_initialiser ini)
(mcode sem))))))
| Ast0.UnInit(stg,ty,id,attr,sem) ->
bind (match stg with Some stg -> mcode stg | _ -> option_default)
(bind (r.VT0.combiner_rec_typeC ty)
(bind (r.VT0.combiner_rec_ident id)
(bind
(List.fold_right bind (List.map mcode attr)
option_default)
(mcode sem))))
| _ -> k e) in
let field r k e =
compute_result Ast0.field e
(match Ast0.unwrap e with
Ast0.DisjField(starter,decls,_,ender)
| Ast0.ConjField(starter,decls,_,ender) ->
disj_cases e starter decls r.VT0.combiner_rec_field ender
| Ast0.Fdots(dots,whencode) ->
k (Ast0.rewrap e (Ast0.Fdots(dots,None)))
| Ast0.Field(ty,id,bf,sem) ->
let bitfield (_c, e) = r.VT0.combiner_rec_expression e in
bind (r.VT0.combiner_rec_typeC ty)
(bind (Common.default option_default r.VT0.combiner_rec_ident id)
(bind (Common.default option_default bitfield bf) (mcode sem)))
| _ -> k e) in
let param r k e =
compute_result Ast0.param e
(match Ast0.unwrap e with
Ast0.Param(ty,Some id) ->
(* needed for the same reason as in the Init and UnInit cases *)
bind (r.VT0.combiner_rec_typeC ty) (r.VT0.combiner_rec_ident id)
| _ -> k e) in
let typeC r k e =
compute_result Ast0.typeC e
(match Ast0.unwrap e with
Ast0.DisjType(starter,types,_,ender)
| Ast0.ConjType(starter,types,_,ender) ->
disj_cases e starter types r.VT0.combiner_rec_typeC ender
| _ -> k e) in
let initialiser r k i =
compute_result Ast0.ini i
(match Ast0.unwrap i with
Ast0.Idots(dots,whencode) ->
k (Ast0.rewrap i (Ast0.Idots(dots,None)))
| _ -> k i) in
let case_line r k e =
compute_result Ast0.case_line e
(match Ast0.unwrap e with
Ast0.DisjCase(starter,case_list,_,ender) ->
disj_cases e starter case_list r.VT0.combiner_rec_case_line ender
| _ -> k e) in
let statement r k s =
compute_result Ast0.stmt s
(match Ast0.unwrap s with
Ast0.Nest(started,stm_dots,ender,whencode,multi) ->
k (Ast0.rewrap s (Ast0.Nest(started,stm_dots,ender,[],multi)))
| Ast0.Dots(dots,whencode) ->
k (Ast0.rewrap s (Ast0.Dots(dots,[])))
| Ast0.Disj(starter,statement_dots_list,_,ender)
| Ast0.Conj(starter,statement_dots_list,_,ender) ->
disj_cases s starter statement_dots_list
r.VT0.combiner_rec_statement_dots
ender
(* cases for everything with extra mcode *)
| Ast0.Decl((info,bef),_) ->
bind (nc_mcode ((),(),info,bef,(),-1)) (k s)
| Ast0.FunDecl((info,bef),_,_,_,_,_,_,_,_,_,(ainfo,aft)) ->
(* not sure that the use of start is relevant here *)
let a1 = nc_mcode ((),(),info,bef,(),-1) in
let a2 = nc_mcode ((),(),ainfo,aft,(),-1) in
let b = k s in
bind a1 (bind b a2)
(* For these, the info of the aft mcode is derived from the else
branch. These might not correspond for a context if, eg if
only the else branch is replaced. Thus we take instead the
info of the starting keyword. In a context case, these will be
the same on the - and + sides. All that is used as an offset,
and it is only used as a key, so this is safe to do. For an
iterator, we take the left parenthesis, which should have the
same property. *)
| Ast0.IfThen(start,_,_,_,_,(info,aft,adj))
| Ast0.IfThenElse(start,_,_,_,_,_,_,(info,aft,adj))
| Ast0.Iterator(_,start,_,_,_,(info,aft,adj))
| Ast0.While(start,_,_,_,_,(info,aft,adj))
| Ast0.For(start,_,_,_,_,_,_,_,(info,aft,adj)) ->
let mcode_info (_,_,info,_,_,_) = info in
bind (k s) (nc_mcode ((),(),mcode_info start,aft,(),adj))
| _ -> k s) in
let string_fragment r k s =
compute_result Ast0.string_fragment s (k s) in
let do_top builder r k e = compute_result builder e (k e) in
let combiner =
V0.flat_combiner bind option_default
mcode mcode mcode mcode mcode mcode mcode mcode mcode
mcode mcode mcode mcode mcode
(do_nothing Ast0.dotsExpr) (do_nothing Ast0.dotsInit)
(do_nothing Ast0.dotsParam) (do_nothing Ast0.dotsStmt)
(do_nothing Ast0.dotsDecl) (do_nothing Ast0.dotsField)
(do_nothing Ast0.dotsCase)
(do_nothing Ast0.dotsDefParam)
ident expression (do_nothing Ast0.assignOp) (do_nothing Ast0.binaryOp)
typeC initialiser param declaration field
statement (do_nothing Ast0.forinfo) case_line string_fragment
(do_top Ast0.top) in
combiner.VT0.combiner_rec_top_level code
(* --------------------------------------------------------------------- *)
(* Traverse the hash tables and find corresponding context nodes that have
the same context children *)
(* this is just a sanity check - really only need to look at the top-level
structure *)
let equal_mcode (_,_,info1,_,_,_) (_,_,info2,_,_,_) =
info1.Ast0.pos_info.Ast0.offset = info2.Ast0.pos_info.Ast0.offset
let assignOp_equal_mcode op1 op2 =
match (Ast0.unwrap op1, Ast0.unwrap op2) with
Ast0.SimpleAssign op1', Ast0.SimpleAssign op2' -> equal_mcode op1' op2'
| Ast0.OpAssign op1', Ast0.OpAssign op2' -> equal_mcode op1' op2'
| Ast0.MetaAssign(mv1,_,_), Ast0.MetaAssign(mv2,_,_) -> equal_mcode mv1 mv2
| _ -> false
let binaryOp_equal_mcode op1 op2 =
match (Ast0.unwrap op1, Ast0.unwrap op2) with
Ast0.Arith op1', Ast0.Arith op2' -> equal_mcode op1' op2'
| Ast0.Logical op1', Ast0.Logical op2' -> equal_mcode op1' op2'
| Ast0.MetaBinary(mv1,_,_), Ast0.MetaBinary(mv2,_,_) -> equal_mcode mv1 mv2
| _ -> false
let equal_option e1 e2 =
match (e1,e2) with
(Some x, Some y) -> equal_mcode x y
| (None, None) -> true
| _ -> false
let dots fn d1 d2 =
List.length (Ast0.unwrap d1) = List.length (Ast0.unwrap d2)
let equal_ident i1 i2 =
match (Ast0.unwrap i1,Ast0.unwrap i2) with
(Ast0.Id(name1),Ast0.Id(name2)) -> equal_mcode name1 name2
| (Ast0.MetaId(name1,_,_,_),Ast0.MetaId(name2,_,_,_)) ->
equal_mcode name1 name2
| (Ast0.MetaFunc(name1,_,_),Ast0.MetaFunc(name2,_,_)) ->
equal_mcode name1 name2
| (Ast0.MetaLocalFunc(name1,_,_),Ast0.MetaLocalFunc(name2,_,_)) ->
equal_mcode name1 name2
| (Ast0.DisjId(starter1,_,mids1,ender1),
Ast0.DisjId(starter2,_,mids2,ender2))
| (Ast0.ConjId(starter1,_,mids1,ender1),
Ast0.ConjId(starter2,_,mids2,ender2)) ->
equal_mcode starter1 starter2 &&
List.for_all2 equal_mcode mids1 mids2 &&
equal_mcode ender1 ender2
| (Ast0.OptIdent(_),Ast0.OptIdent(_)) -> true
| _ -> false
let rec equal_expression e1 e2 =
match (Ast0.unwrap e1,Ast0.unwrap e2) with
(Ast0.Ident(_),Ast0.Ident(_)) -> true
| (Ast0.Constant(const1),Ast0.Constant(const2)) -> equal_mcode const1 const2
| (Ast0.StringConstant(lq1,const1,rq1),Ast0.StringConstant(lq2,const2,rq2))->
equal_mcode lq1 lq2 && equal_mcode rq1 rq2
| (Ast0.FunCall(_,lp1,_,rp1),Ast0.FunCall(_,lp2,_,rp2)) ->
equal_mcode lp1 lp2 && equal_mcode rp1 rp2
| (Ast0.Assignment(_,op1,_,_),Ast0.Assignment(_,op2,_,_)) ->
assignOp_equal op1 op2
| (Ast0.Sequence(_,op1,_),Ast0.Sequence(_,op2,_)) ->
equal_mcode op1 op2
| (Ast0.CondExpr(_,why1,_,colon1,_),Ast0.CondExpr(_,why2,_,colon2,_)) ->
equal_mcode why1 why2 && equal_mcode colon1 colon2
| (Ast0.Postfix(_,op1),Ast0.Postfix(_,op2)) -> equal_mcode op1 op2
| (Ast0.Infix(_,op1),Ast0.Infix(_,op2)) -> equal_mcode op1 op2
| (Ast0.Unary(_,op1),Ast0.Unary(_,op2)) -> equal_mcode op1 op2
| (Ast0.Binary(_,op1,_),Ast0.Binary(_,op2,_)) -> binaryOp_equal op1 op2
| (Ast0.Paren(lp1,_,rp1),Ast0.Paren(lp2,_,rp2)) ->
equal_mcode lp1 lp2 && equal_mcode rp1 rp2
| (Ast0.ArrayAccess(_,lb1,_,rb1),Ast0.ArrayAccess(_,lb2,_,rb2)) ->
equal_mcode lb1 lb2 && equal_mcode rb1 rb2
| (Ast0.RecordAccess(_,pt1,_),Ast0.RecordAccess(_,pt2,_)) ->
equal_mcode pt1 pt2
| (Ast0.RecordPtAccess(_,ar1,_),Ast0.RecordPtAccess(_,ar2,_)) ->
equal_mcode ar1 ar2
| (Ast0.Cast(lp1,_,rp1,_),Ast0.Cast(lp2,_,rp2,_)) ->
equal_mcode lp1 lp2 && equal_mcode rp1 rp2
| (Ast0.SizeOfExpr(szf1,_),Ast0.SizeOfExpr(szf2,_)) ->
equal_mcode szf1 szf2
| (Ast0.SizeOfType(szf1,lp1,_,rp1),Ast0.SizeOfType(szf2,lp2,_,rp2)) ->
equal_mcode szf1 szf2 && equal_mcode lp1 lp2 && equal_mcode rp1 rp2
| (Ast0.TypeExp(_),Ast0.TypeExp(_)) -> true
| (Ast0.Constructor(lp1,_,rp1,_),Ast0.Constructor(lp2,_,rp2,_)) ->
equal_mcode lp1 lp2 && equal_mcode rp1 rp2
| (Ast0.MetaErr(name1,_,_),Ast0.MetaErr(name2,_,_))
| (Ast0.MetaExpr(name1,_,_,_,_,_),Ast0.MetaExpr(name2,_,_,_,_,_))
| (Ast0.MetaExprList(name1,_,_,_),Ast0.MetaExprList(name2,_,_,_)) ->
equal_mcode name1 name2
| (Ast0.EComma(cm1),Ast0.EComma(cm2)) -> equal_mcode cm1 cm2
| (Ast0.DisjExpr(starter1,_,mids1,ender1),
Ast0.DisjExpr(starter2,_,mids2,ender2))
| (Ast0.ConjExpr(starter1,_,mids1,ender1),
Ast0.ConjExpr(starter2,_,mids2,ender2)) ->
equal_mcode starter1 starter2 &&
List.for_all2 equal_mcode mids1 mids2 &&
equal_mcode ender1 ender2
| (Ast0.NestExpr(starter1,_,ender1,_,m1),
Ast0.NestExpr(starter2,_,ender2,_,m2)) ->
equal_mcode starter1 starter2 && equal_mcode ender1 ender2 && m1 = m2
| (Ast0.Edots(dots1,_),Ast0.Edots(dots2,_)) -> equal_mcode dots1 dots2
| (Ast0.OptExp(_),Ast0.OptExp(_)) -> true
| _ -> false
and assignOp_equal op1 op2 =
match (Ast0.unwrap op1, Ast0.unwrap op2) with
| Ast0.SimpleAssign o1, Ast0.SimpleAssign o2 -> equal_mcode o1 o2
| Ast0.OpAssign o1, Ast0.OpAssign o2 -> equal_mcode o1 o2
| Ast0.MetaAssign(mv1,_,_), Ast0.MetaAssign(mv2,_,_) ->
equal_mcode mv1 mv2
| _ -> false
and binaryOp_equal op1 op2 =
match (Ast0.unwrap op1, Ast0.unwrap op2) with
| Ast0.Arith o1, Ast0.Arith o2 -> equal_mcode o1 o2
| Ast0.Logical o1, Ast0.Logical o2 -> equal_mcode o1 o2
| Ast0.MetaBinary(mv1,_,_), Ast0.MetaBinary(mv2,_,_) ->
equal_mcode mv1 mv2
| _ -> false
let equal_typeC t1 t2 =
match (Ast0.unwrap t1,Ast0.unwrap t2) with
(Ast0.ConstVol(cv1,_),Ast0.ConstVol(cv2,_)) -> equal_mcode cv1 cv2
| (Ast0.BaseType(ty1,stringsa),Ast0.BaseType(ty2,stringsb)) ->
List.for_all2 equal_mcode stringsa stringsb
| (Ast0.Signed(sign1,_),Ast0.Signed(sign2,_)) ->
equal_mcode sign1 sign2
| (Ast0.Pointer(_,star1),Ast0.Pointer(_,star2)) ->
equal_mcode star1 star2
| (Ast0.Array(_,lb1,_,rb1),Ast0.Array(_,lb2,_,rb2)) ->
equal_mcode lb1 lb2 && equal_mcode rb1 rb2
| (Ast0.Decimal(dec1,lp1,_,comma1,_,rp1),
Ast0.Decimal(dec2,lp2,_,comma2,_,rp2)) ->
equal_mcode dec1 dec2 && equal_mcode lp1 lp2 &&
equal_option comma1 comma2 && equal_mcode rp1 rp2
| (Ast0.EnumName(kind1,_),Ast0.EnumName(kind2,_)) ->
equal_mcode kind1 kind2
| (Ast0.EnumDef(_,lb1,_,rb1),Ast0.EnumDef(_,lb2,_,rb2)) ->
equal_mcode lb1 lb2 && equal_mcode rb1 rb2
| (Ast0.StructUnionName(kind1,_),Ast0.StructUnionName(kind2,_)) ->
equal_mcode kind1 kind2
| (Ast0.StructUnionDef(_,lb1,_,rb1),
Ast0.StructUnionDef(_,lb2,_,rb2)) ->
equal_mcode lb1 lb2 && equal_mcode rb1 rb2
| (Ast0.TypeOfExpr(tf1,lp1,_,rp1),Ast0.TypeOfExpr(tf2,lp2,_,rp2)) ->
equal_mcode tf1 tf2 && equal_mcode lp1 lp2 && equal_mcode rp1 rp2
| (Ast0.TypeOfType(tf1,lp1,_,rp1),Ast0.TypeOfType(tf2,lp2,_,rp2)) ->
equal_mcode tf1 tf2 && equal_mcode lp1 lp2 && equal_mcode rp1 rp2
| (Ast0.TypeName(name1),Ast0.TypeName(name2)) -> equal_mcode name1 name2
| (Ast0.MetaType(name1,_,_),Ast0.MetaType(name2,_,_)) ->
equal_mcode name1 name2
| (Ast0.DisjType(starter1,_,mids1,ender1),
Ast0.DisjType(starter2,_,mids2,ender2)) ->
equal_mcode starter1 starter2 &&
List.for_all2 equal_mcode mids1 mids2 &&
equal_mcode ender1 ender2
| (Ast0.ConjType(starter1,_,mids1,ender1),
Ast0.ConjType(starter2,_,mids2,ender2)) ->
equal_mcode starter1 starter2 &&
List.for_all2 equal_mcode mids1 mids2 &&
equal_mcode ender1 ender2
| (Ast0.OptType(_),Ast0.OptType(_)) -> true
| _ -> false
let equal_fninfo x y =
match (x,y) with
(Ast0.FStorage(s1),Ast0.FStorage(s2)) -> equal_mcode s1 s2
| (Ast0.FType(_),Ast0.FType(_)) -> true
| (Ast0.FInline(i1),Ast0.FInline(i2)) -> equal_mcode i1 i2
| (Ast0.FAttr(i1),Ast0.FAttr(i2)) -> equal_mcode i1 i2
| _ -> false
let equal_declaration d1 d2 =
match (Ast0.unwrap d1,Ast0.unwrap d2) with
(Ast0.MetaDecl(name1,_,_),Ast0.MetaDecl(name2,_,_)) ->
equal_mcode name1 name2
| (Ast0.Init(stg1,_,_,attr1,eq1,_,sem1),
Ast0.Init(stg2,_,_,attr2,eq2,_,sem2)) ->
equal_option stg1 stg2 && List.for_all2 equal_mcode attr1 attr2 &&
equal_mcode eq1 eq2 && equal_mcode sem1 sem2
| (Ast0.UnInit(stg1,_,_,attr1,sem1),Ast0.UnInit(stg2,_,_,attr2,sem2)) ->
equal_option stg1 stg2 && List.for_all2 equal_mcode attr1 attr2 &&
equal_mcode sem1 sem2
| (Ast0.FunProto(fninfo1,name1,lp1,p1,va1,rp1,sem1),
Ast0.FunProto(fninfo2,name2,lp2,p2,va2,rp2,sem2)) ->
let equal_varargs va1 va2 = match (va1,va2) with
| None, None -> true
| Some (c1, e1), Some (c2, e2) ->
equal_mcode c1 c2 && equal_mcode e1 e2
| _ -> false in
(List.length fninfo1) = (List.length fninfo2) &&
List.for_all2 equal_fninfo fninfo1 fninfo2 &&
equal_mcode lp1 lp2 && equal_varargs va1 va2 &&
equal_mcode rp1 rp2 && equal_mcode sem1 sem2
| (Ast0.MacroDecl(stg1,nm1,lp1,_,rp1,sem1),
Ast0.MacroDecl(stg2,nm2,lp2,_,rp2,sem2)) ->
equal_option stg1 stg2 &&
equal_mcode lp1 lp2 && equal_mcode rp1 rp2 && equal_mcode sem1 sem2
| (Ast0.MacroDeclInit(stg1,nm1,lp1,_,rp1,eq1,_,sem1),
Ast0.MacroDeclInit(stg2,nm2,lp2,_,rp2,eq2,_,sem2)) ->
equal_option stg1 stg2 &&
equal_mcode lp1 lp2 && equal_mcode rp1 rp2 && equal_mcode eq1 eq2
&& equal_mcode sem1 sem2
| (Ast0.TyDecl(_,sem1),Ast0.TyDecl(_,sem2)) -> equal_mcode sem1 sem2
| (Ast0.OptDecl(_),Ast0.OptDecl(_)) -> true
| (Ast0.DisjDecl(starter1,_,mids1,ender1),
Ast0.DisjDecl(starter2,_,mids2,ender2))
| (Ast0.ConjDecl(starter1,_,mids1,ender1),
Ast0.ConjDecl(starter2,_,mids2,ender2)) ->
equal_mcode starter1 starter2 &&
List.for_all2 equal_mcode mids1 mids2 &&
equal_mcode ender1 ender2
| _ -> false
let equal_field d1 d2 =
match (Ast0.unwrap d1,Ast0.unwrap d2) with
(Ast0.MetaField(name1,_,_),Ast0.MetaField(name2,_,_))
| (Ast0.MetaFieldList(name1,_,_,_),Ast0.MetaFieldList(name2,_,_,_)) ->
equal_mcode name1 name2
| (Ast0.Field(_,_,_bf1,sem1),Ast0.Field(_,_,_bf2,sem2)) ->
equal_mcode sem1 sem2
| (Ast0.Fdots(dots1,_),Ast0.Fdots(dots2,_)) -> equal_mcode dots1 dots2
| (Ast0.OptField(_),Ast0.OptField(_)) -> true
| (Ast0.DisjField(starter1,_,mids1,ender1),
Ast0.DisjField(starter2,_,mids2,ender2))
| (Ast0.ConjField(starter1,_,mids1,ender1),
Ast0.ConjField(starter2,_,mids2,ender2)) ->
equal_mcode starter1 starter2 &&
List.for_all2 equal_mcode mids1 mids2 &&
equal_mcode ender1 ender2
| _ -> false
let equal_designator d1 d2 =
match (d1,d2) with
(Ast0.DesignatorField(dot1,_),Ast0.DesignatorField(dot2,_)) ->
equal_mcode dot1 dot2
| (Ast0.DesignatorIndex(lb1,_,rb1),Ast0.DesignatorIndex(lb2,_,rb2)) ->
(equal_mcode lb1 lb2) && (equal_mcode rb1 rb2)
| (Ast0.DesignatorRange(lb1,_,dots1,_,rb1),
Ast0.DesignatorRange(lb2,_,dots2,_,rb2)) ->
(equal_mcode lb1 lb2) && (equal_mcode dots1 dots2) &&
(equal_mcode rb1 rb2)
| _ -> false
let equal_initialiser i1 i2 =
match (Ast0.unwrap i1,Ast0.unwrap i2) with
(Ast0.MetaInit(name1,_,_),Ast0.MetaInit(name2,_,_)) ->
equal_mcode name1 name2
| (Ast0.MetaInitList(name1,_,_,_),Ast0.MetaInitList(name2,_,_,_)) ->
equal_mcode name1 name2
| (Ast0.InitExpr(_),Ast0.InitExpr(_)) -> true
| (Ast0.InitList(lb1,_,rb1,o1),Ast0.InitList(lb2,_,rb2,o2)) ->
(* can't compare orderedness, because this can differ between -
and + code *)
(equal_mcode lb1 lb2) && (equal_mcode rb1 rb2)
| (Ast0.InitGccExt(designators1,eq1,_),
Ast0.InitGccExt(designators2,eq2,_)) ->
(List.for_all2 equal_designator designators1 designators2) &&
(equal_mcode eq1 eq2)
| (Ast0.InitGccName(_,eq1,_),Ast0.InitGccName(_,eq2,_)) ->
equal_mcode eq1 eq2
| (Ast0.IComma(cm1),Ast0.IComma(cm2)) -> equal_mcode cm1 cm2
| (Ast0.Idots(d1,_),Ast0.Idots(d2,_)) -> equal_mcode d1 d2
| (Ast0.OptIni(_),Ast0.OptIni(_)) -> true
| _ -> false
let equal_parameterTypeDef p1 p2 =
match (Ast0.unwrap p1,Ast0.unwrap p2) with
(Ast0.VoidParam(_),Ast0.VoidParam(_)) -> true
| (Ast0.Param(_,_),Ast0.Param(_,_)) -> true
| (Ast0.MetaParam(name1,_,_),Ast0.MetaParam(name2,_,_))
| (Ast0.MetaParamList(name1,_,_,_),Ast0.MetaParamList(name2,_,_,_)) ->
equal_mcode name1 name2
| (Ast0.PComma(cm1),Ast0.PComma(cm2)) -> equal_mcode cm1 cm2
| (Ast0.Pdots(dots1),Ast0.Pdots(dots2)) -> equal_mcode dots1 dots2
| (Ast0.OptParam(_),Ast0.OptParam(_)) -> true
| _ -> false
let equal_statement s1 s2 =
match (Ast0.unwrap s1,Ast0.unwrap s2) with
(Ast0.FunDecl(_,fninfo1,_,lp1,_,_,rp1,lbrace1,_,rbrace1,_),
Ast0.FunDecl(_,fninfo2,_,lp2,_,_,rp2,lbrace2,_,rbrace2,_)) ->
(List.length fninfo1) = (List.length fninfo2) &&
List.for_all2 equal_fninfo fninfo1 fninfo2 &&
equal_mcode lp1 lp2 && equal_mcode rp1 rp2 &&
equal_mcode lbrace1 lbrace2 && equal_mcode rbrace1 rbrace2
| (Ast0.Decl(_,_),Ast0.Decl(_,_)) -> true
| (Ast0.Seq(lbrace1,_,rbrace1),Ast0.Seq(lbrace2,_,rbrace2)) ->
equal_mcode lbrace1 lbrace2 && equal_mcode rbrace1 rbrace2
| (Ast0.ExprStatement(_,sem1),Ast0.ExprStatement(_,sem2)) ->
equal_mcode sem1 sem2
| (Ast0.IfThen(iff1,lp1,_,rp1,_,_),Ast0.IfThen(iff2,lp2,_,rp2,_,_)) ->
equal_mcode iff1 iff2 && equal_mcode lp1 lp2 && equal_mcode rp1 rp2
| (Ast0.IfThenElse(iff1,lp1,_,rp1,_,els1,_,_),
Ast0.IfThenElse(iff2,lp2,_,rp2,_,els2,_,_)) ->
equal_mcode iff1 iff2 &&
equal_mcode lp1 lp2 && equal_mcode rp1 rp2 && equal_mcode els1 els2
| (Ast0.While(whl1,lp1,_,rp1,_,_),Ast0.While(whl2,lp2,_,rp2,_,_)) ->
equal_mcode whl1 whl2 && equal_mcode lp1 lp2 && equal_mcode rp1 rp2
| (Ast0.Do(d1,_,whl1,lp1,_,rp1,sem1),Ast0.Do(d2,_,whl2,lp2,_,rp2,sem2)) ->
equal_mcode whl1 whl2 && equal_mcode d1 d2 &&
equal_mcode lp1 lp2 && equal_mcode rp1 rp2 && equal_mcode sem1 sem2
| (Ast0.For(fr1,lp1,first1,_,sem21,_,rp1,_,_),
Ast0.For(fr2,lp2,first2,_,sem22,_,rp2,_,_)) ->
let first =
match (Ast0.unwrap first1,Ast0.unwrap first2) with
(Ast0.ForExp(_,sem1),Ast0.ForExp(_,sem2)) ->
equal_mcode sem1 sem2
| (Ast0.ForDecl _,Ast0.ForDecl _) -> true
| _ -> false in
equal_mcode fr1 fr2 && equal_mcode lp1 lp2 &&
first && equal_mcode sem21 sem22 &&
equal_mcode rp1 rp2
| (Ast0.Iterator(nm1,lp1,_,rp1,_,_),Ast0.Iterator(nm2,lp2,_,rp2,_,_)) ->
equal_mcode lp1 lp2 && equal_mcode rp1 rp2
| (Ast0.Switch(switch1,lp1,_,rp1,lb1,_,_,rb1),
Ast0.Switch(switch2,lp2,_,rp2,lb2,_,_,rb2)) ->
equal_mcode switch1 switch2 && equal_mcode lp1 lp2 &&
equal_mcode rp1 rp2 && equal_mcode lb1 lb2 &&
equal_mcode rb1 rb2
| (Ast0.Break(br1,sem1),Ast0.Break(br2,sem2)) ->
equal_mcode br1 br2 && equal_mcode sem1 sem2
| (Ast0.Continue(cont1,sem1),Ast0.Continue(cont2,sem2)) ->
equal_mcode cont1 cont2 && equal_mcode sem1 sem2
| (Ast0.Label(_,dd1),Ast0.Label(_,dd2)) ->
equal_mcode dd1 dd2
| (Ast0.Goto(g1,_,sem1),Ast0.Goto(g2,_,sem2)) ->
equal_mcode g1 g2 && equal_mcode sem1 sem2
| (Ast0.Return(ret1,sem1),Ast0.Return(ret2,sem2)) ->
equal_mcode ret1 ret2 && equal_mcode sem1 sem2
| (Ast0.ReturnExpr(ret1,_,sem1),Ast0.ReturnExpr(ret2,_,sem2)) ->
equal_mcode ret1 ret2 && equal_mcode sem1 sem2
| (Ast0.Exec(exec1,lang1,_,sem1),Ast0.Exec(exec2,lang2,_,sem2)) ->
equal_mcode exec1 exec2 && equal_mcode lang1 lang2 &&
equal_mcode sem1 sem2
| (Ast0.MetaStmt(name1,_,_),Ast0.MetaStmt(name2,_,_))
| (Ast0.MetaStmtList(name1,_,_,_),Ast0.MetaStmtList(name2,_,_,_)) ->
equal_mcode name1 name2
| (Ast0.Disj(starter1,_,mids1,ender1),Ast0.Disj(starter2,_,mids2,ender2))
| (Ast0.Conj(starter1,_,mids1,ender1),Ast0.Conj(starter2,_,mids2,ender2)) ->
equal_mcode starter1 starter2 &&
List.for_all2 equal_mcode mids1 mids2 &&
equal_mcode ender1 ender2
| (Ast0.Nest(starter1,_,ender1,_,m1),Ast0.Nest(starter2,_,ender2,_,m2)) ->
equal_mcode starter1 starter2 && equal_mcode ender1 ender2 && m1 = m2
| (Ast0.Exp(_),Ast0.Exp(_)) -> true
| (Ast0.TopExp(_),Ast0.TopExp(_)) -> true
| (Ast0.Ty(_),Ast0.Ty(_)) -> true
| (Ast0.TopId(_),Ast0.TopId(_)) -> true
| (Ast0.TopInit(_),Ast0.TopInit(_)) -> true
| (Ast0.Dots(d1,_),Ast0.Dots(d2,_)) -> equal_mcode d1 d2
| (Ast0.Include(inc1,name1),Ast0.Include(inc2,name2)) ->
equal_mcode inc1 inc2 && equal_mcode name1 name2
| (Ast0.MetaInclude(inc1,name1),Ast0.MetaInclude(inc2,name2)) ->
equal_mcode inc1 inc2
| (Ast0.Undef(def1,_),Ast0.Undef(def2,_)) ->
equal_mcode def1 def2
| (Ast0.Define(def1,_,_,_),Ast0.Define(def2,_,_,_)) ->
equal_mcode def1 def2
| (Ast0.Pragma(prg1,_,_),Ast0.Pragma(prg2,_,_)) ->
equal_mcode prg1 prg2
| (Ast0.OptStm(_),Ast0.OptStm(_)) -> true
| _ -> false
let equal_case_line c1 c2 =
match (Ast0.unwrap c1,Ast0.unwrap c2) with
(Ast0.Default(def1,colon1,_),Ast0.Default(def2,colon2,_)) ->
equal_mcode def1 def2 && equal_mcode colon1 colon2
| (Ast0.Case(case1,_,colon1,_),Ast0.Case(case2,_,colon2,_)) ->
equal_mcode case1 case2 && equal_mcode colon1 colon2
| (Ast0.DisjCase(starter1,_,mids1,ender1),
Ast0.DisjCase(starter2,_,mids2,ender2)) ->
equal_mcode starter1 starter2 &&
List.for_all2 equal_mcode mids1 mids2 &&
equal_mcode ender1 ender2
| (Ast0.OptCase(_),Ast0.OptCase(_)) -> true
| _ -> false
let equal_define_param d1 d2 =
match (Ast0.unwrap d1,Ast0.unwrap d2) with
(Ast0.DParam _,Ast0.DParam _) -> true
| (Ast0.MetaDParamList(name1,_,_,_),Ast0.MetaDParamList(name2,_,_,_)) ->
equal_mcode name1 name2
| (Ast0.DPComma cm1,Ast0.DPComma cm2) -> equal_mcode cm1 cm2
| (Ast0.DPdots d1,Ast0.DPdots d2) -> equal_mcode d1 d2
| (Ast0.OptDParam(_),Ast0.OptDParam(_)) -> true
| _ -> false
let equal_top_level t1 t2 =
match (Ast0.unwrap t1,Ast0.unwrap t2) with
(Ast0.NONDECL(_),Ast0.NONDECL(_)) -> true
| (Ast0.FILEINFO(old_file1,new_file1),Ast0.FILEINFO(old_file2,new_file2)) ->
equal_mcode old_file1 old_file2 && equal_mcode new_file1 new_file2
| (Ast0.CODE(_),Ast0.CODE(_)) -> true
| (Ast0.ERRORWORDS(_),Ast0.ERRORWORDS(_)) -> true
| _ -> false
let root_equal e1 e2 =
match (e1,e2) with
(Ast0.DotsExprTag(d1),Ast0.DotsExprTag(d2)) -> dots equal_expression d1 d2
| (Ast0.DotsParamTag(d1),Ast0.DotsParamTag(d2)) ->
dots equal_parameterTypeDef d1 d2
| (Ast0.DotsStmtTag(d1),Ast0.DotsStmtTag(d2)) -> dots equal_statement d1 d2
| (Ast0.DotsDeclTag(d1),Ast0.DotsDeclTag(d2)) -> dots equal_declaration d1 d2
| (Ast0.DotsFieldTag(d1),Ast0.DotsFieldTag(d2)) -> dots equal_field d1 d2
| (Ast0.DotsCaseTag(d1),Ast0.DotsCaseTag(d2)) -> dots equal_case_line d1 d2
| (Ast0.DotsDefParamTag(d1),Ast0.DotsDefParamTag(d2)) ->
dots equal_define_param d1 d2
| (Ast0.IdentTag(i1),Ast0.IdentTag(i2)) -> equal_ident i1 i2
| (Ast0.ExprTag(e1),Ast0.ExprTag(e2)) -> equal_expression e1 e2
| (Ast0.AssignOpTag(e1),Ast0.AssignOpTag(e2)) -> assignOp_equal e1 e2
| (Ast0.BinaryOpTag(e1),Ast0.BinaryOpTag(e2)) -> binaryOp_equal e1 e2
| (Ast0.ArgExprTag(d),_) -> failwith "not possible - iso only"
| (Ast0.TypeCTag(t1),Ast0.TypeCTag(t2)) -> equal_typeC t1 t2
| (Ast0.ParamTag(p1),Ast0.ParamTag(p2)) -> equal_parameterTypeDef p1 p2
| (Ast0.InitTag(d1),Ast0.InitTag(d2)) -> equal_initialiser d1 d2
| (Ast0.DeclTag(d1),Ast0.DeclTag(d2)) -> equal_declaration d1 d2
| (Ast0.FieldTag(d1),Ast0.FieldTag(d2)) -> equal_field d1 d2
| (Ast0.StmtTag(s1),Ast0.StmtTag(s2)) -> equal_statement s1 s2
| (Ast0.TopTag(t1),Ast0.TopTag(t2)) -> equal_top_level t1 t2
| (Ast0.IsoWhenTag(_),_) | (_,Ast0.IsoWhenTag(_))
| (Ast0.IsoWhenTTag(_),_) | (_,Ast0.IsoWhenTTag(_))
| (Ast0.IsoWhenFTag(_),_) | (_,Ast0.IsoWhenFTag(_)) ->
failwith "only within iso phase"
| _ -> false
let default_context _ =
Ast0.CONTEXT(ref(Ast.NOTHING,
Ast0.default_token_info,Ast0.default_token_info))
let traverse minus_table plus_table =
Hashtbl.iter
(function key ->
function (e,l) ->
try
let (plus_e,plus_l) = Hashtbl.find plus_table key in
if root_equal e plus_e &&
List.for_all (function x -> x)
(List.map2 Common.equal_set l plus_l)
then
let i = Ast0.fresh_index() in
(set_index e i; set_index plus_e i;
set_mcodekind e (default_context());
set_mcodekind plus_e (default_context()))
with Not_found -> ())
minus_table
(* --------------------------------------------------------------------- *)
(* contextify the whencode *)
let contextify_all =
let bind x y = () in
let option_default = () in
let mcode x = () in
let donothing r k e = Ast0.set_mcodekind e (default_context()); k e in
V0.flat_combiner bind option_default
mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode
mcode mcode
donothing donothing donothing donothing donothing donothing donothing
donothing donothing donothing donothing donothing donothing donothing
donothing donothing donothing donothing donothing donothing donothing
donothing
let contextify_whencode =
let bind x y = () in
let option_default = () in
let expression r k e =
k e;
match Ast0.unwrap e with
Ast0.NestExpr(_,_,_,Some (_,_,whencode),_)
| Ast0.Edots(_,Some (_,_,whencode)) ->
contextify_all.VT0.combiner_rec_expression whencode
| _ -> () in
let initialiser r k i =
match Ast0.unwrap i with
Ast0.Idots(dots,Some (_,_,whencode)) ->
contextify_all.VT0.combiner_rec_initialiser whencode
| _ -> k i in
let whencode = function
Ast0.WhenNot (_,_,sd) ->
contextify_all.VT0.combiner_rec_statement_dots sd
| Ast0.WhenAlways (_,_,s) -> contextify_all.VT0.combiner_rec_statement s
| Ast0.WhenModifier _ -> ()
| Ast0.WhenNotTrue(_,_,e) -> contextify_all.VT0.combiner_rec_expression e
| Ast0.WhenNotFalse(_,_,e) -> contextify_all.VT0.combiner_rec_expression e
in
let statement r k (s : Ast0.statement) =
k s;
match Ast0.unwrap s with
Ast0.Nest(_,_,_,whn,_)
| Ast0.Dots(_,whn) -> List.iter whencode whn
| _ -> () in
let combiner =
V0.combiner bind option_default
{V0.combiner_functions with
VT0.combiner_exprfn = expression;
VT0.combiner_initfn = initialiser;
VT0.combiner_stmtfn = statement} in
combiner.VT0.combiner_rec_top_level
(* --------------------------------------------------------------------- *)
(* the first int list is the tokens in the node, the second is the tokens
in the descendants *)
let minus_table =
(Hashtbl.create(50) : (int list, Ast0.anything * int list list) Hashtbl.t)
let plus_table =
(Hashtbl.create(50) : (int list, Ast0.anything * int list list) Hashtbl.t)
let iscode t =
match Ast0.unwrap t with
Ast0.NONDECL(_) -> true
| Ast0.FILEINFO(_) -> true
| Ast0.ERRORWORDS(_) -> false
| Ast0.CODE(_) -> true
| Ast0.TOPCODE(_)
| Ast0.OTHER(_) -> failwith "unexpected top level code"
(* ------------------------------------------------------------------- *)
(* alignment of minus and plus *)
let concat = function
[] -> []
| [s] -> [s]
| l ->
let rec loop = function
[] -> []
| x::rest ->
(match Ast0.unwrap x with
Ast0.NONDECL(s) -> let stms = loop rest in s::stms
| Ast0.CODE(ss) ->
let stms = loop rest in
(Ast0.unwrap ss)@stms
| _ -> failwith "plus code is being discarded") in
let res =
Compute_lines.compute_statement_dots_lines false
(Ast0.rewrap (List.hd l) (loop l)) in
[Ast0.rewrap res (Ast0.CODE res)]
let collect_up_to m plus =
let minfo = Ast0.get_info m in
let mend = minfo.Ast0.pos_info.Ast0.logical_end in
let rec loop = function
[] -> ([],[])
| p::plus ->
let pinfo = Ast0.get_info p in
let pstart = pinfo.Ast0.pos_info.Ast0.logical_start in
if pstart > mend
then ([],p::plus)
else let (plus,rest) = loop plus in (p::plus,rest) in
let (plus,rest) = loop plus in
(concat plus,rest)
let realign minus plus =
let rec loop = function
([],_) -> failwith "not possible, some context required"
| ([m],p) -> ([m],concat p)
| (m::minus,plus) ->
let (p,plus) = collect_up_to m plus in
let (minus,plus) = loop (minus,plus) in
(m::minus,p@plus) in
loop (minus,plus)
(* ------------------------------------------------------------------- *)
(* check compatible: check that at the top level the minus and plus code is
of the same kind. Could go further and make the correspondence between the
code between ...s. *)
let isonly f l = match Ast0.unwrap l with [s] -> f s | _ -> false
let isall f l = List.for_all (isonly f) l
let isany f l = List.exists (isonly f) l
let rec is_exp s =
match Ast0.unwrap s with
Ast0.Exp(e) -> true
| Ast0.Disj(_,stmts,_,_) -> isall is_exp stmts
| Ast0.Conj(_,stmts,_,_) -> isany is_exp stmts
| _ -> false
let rec is_ty s =
match Ast0.unwrap s with
Ast0.Ty(e) -> true
| Ast0.Disj(_,stmts,_,_) -> isall is_ty stmts
| Ast0.Conj(_,stmts,_,_) -> isany is_ty stmts
| _ -> false
let rec is_init s =
match Ast0.unwrap s with
Ast0.TopInit(e) -> true
| Ast0.Disj(_,stmts,_,_) -> isall is_init stmts
| Ast0.Conj(_,stmts,_,_) -> isany is_init stmts
| _ -> false
let rec is_decl s =
match Ast0.unwrap s with
Ast0.Decl(_,e) -> true
| Ast0.FunDecl(_,_,_,_,_,_,_,_,_,_,_) -> true
| Ast0.Disj(_,stmts,_,_) -> isall is_decl stmts
| Ast0.Conj(_,stmts,_,_) -> isany is_decl stmts
| _ -> false
let rec is_fndecl s =
match Ast0.unwrap s with
Ast0.FunDecl(_,_,_,_,_,_,_,_,_,_,_) -> true
| Ast0.Disj(_,stmts,_,_) -> isall is_fndecl stmts
| Ast0.Conj(_,stmts,_,_) -> isany is_fndecl stmts
| _ -> false
let rec is_toplevel s =
match Ast0.unwrap s with
Ast0.Decl(_,e) -> true
| Ast0.FunDecl(_,_,_,_,_,_,_,_,_,_,_) -> true
| Ast0.Disj(_,stmts,_,_) -> isall is_toplevel stmts
| Ast0.Conj(_,stmts,_,_) -> isany is_toplevel stmts
| Ast0.ExprStatement(Some fc,_) ->
(match Ast0.unwrap fc with
Ast0.FunCall(_,_,_,_) -> true
| _ -> false)
| Ast0.Include(_,_) -> true
| Ast0.Undef(_,_) -> true
| Ast0.Pragma(_,_,_) -> true
| Ast0.Define(_,_,_,_) -> true
| _ -> false
(* consider code and topcode to be the same; difference handled
in top_level.ml *)
let check_compatible m p =
let fail _ =
failwith
(Printf.sprintf
"incompatible minus and plus code starting on lines %d and %d"
(Ast0.get_line m) (Ast0.get_line p)) in
match (Ast0.unwrap m, Ast0.unwrap p) with
(Ast0.NONDECL(decl1),Ast0.NONDECL(decl2)) ->
if not (is_decl decl1 && is_decl decl2)
then fail()
| (Ast0.NONDECL(decl1),Ast0.CODE(code2)) ->
(* This is probably the only important case. We don't want to
replace top-level declarations by arbitrary code. *)
let v1 = is_decl decl1 in
let v2 = List.for_all is_toplevel (Ast0.unwrap code2) in
if !Flag.make_hrule = None && v1 && not v2
then fail()
| (Ast0.CODE(code1),Ast0.NONDECL(decl2)) ->
let v1 = List.for_all is_toplevel (Ast0.unwrap code1) in
let v2 = is_decl decl2 in
if v1 && not v2
then fail()
| (Ast0.CODE(code1),Ast0.CODE(code2)) ->
let v1 = isonly is_init code1 in
let v2a = isonly is_init code2 in
let v2b = isonly is_exp code2 in
if v1
then (if not (v2a || v2b) then fail())
else
let testers = [is_exp;is_ty] in
List.iter
(function tester ->
let v1 = isonly tester code1 in
let v2 = isonly tester code2 in
if (v1 && not v2) || (!Flag.make_hrule = None && v2 && not v1)
then fail())
testers;
let v1 = isonly is_fndecl code1 in
let v2 = List.for_all is_toplevel (Ast0.unwrap code2) in
if !Flag.make_hrule = None && v1 && not v2
then fail()
| (Ast0.FILEINFO(_,_),Ast0.FILEINFO(_,_)) -> ()
| (Ast0.OTHER(_),Ast0.OTHER(_)) -> ()
| _ -> fail()
(* can't just remove expressions or types, not sure if all cases are needed. *)
let check_complete m =
match Ast0.unwrap m with
Ast0.NONDECL(code) ->
if is_exp code || is_ty code
then
failwith
(Printf.sprintf "invalid minus starting on line %d"
(Ast0.get_line m))
| Ast0.CODE(code) ->
if isonly is_exp code || isonly is_ty code
then
failwith
(Printf.sprintf "invalid minus starting on line %d"
(Ast0.get_line m))
| _ -> ()
(* ------------------------------------------------------------------- *)
(* returns a list of corresponding minus and plus trees *)
let context_neg minus plus =
Hashtbl.clear minus_table;
Hashtbl.clear plus_table;
List.iter contextify_whencode minus;
let (minus,plus) = realign minus plus in
let rec loop = function
([],[]) -> []
| ([],l) ->
failwith (Printf.sprintf "%d plus things remaining" (List.length l))
| (minus,[]) ->
List.iter check_complete minus;
plus_lines := [];
let _ =
List.map
(function m ->
classify true
(function _ ->
Ast0.MINUS(ref(Ast.NOREPLACEMENT,Ast0.default_token_info)))
minus_table m)
minus in
[]
| (((m::minus) as mall),((p::plus) as pall)) ->
let minfo = Ast0.get_info m in
let pinfo = Ast0.get_info p in
let mstart = minfo.Ast0.pos_info.Ast0.logical_start in
let mend = minfo.Ast0.pos_info.Ast0.logical_end in
let pstart = pinfo.Ast0.pos_info.Ast0.logical_start in
let pend = pinfo.Ast0.pos_info.Ast0.logical_end in
if (iscode m || iscode p) &&
(mend + 1 = pstart || pend + 1 = mstart || (* adjacent *)
(mstart <= pstart && mend >= pstart) ||
(pstart <= mstart && pend >= mstart)) (* overlapping or nested *)
then
begin
(* ensure that the root of each tree has a unique index,
although it might get overwritten if the node is a context
node *)
let i = Ast0.fresh_index() in
Ast0.set_index m i; Ast0.set_index p i;
check_compatible m p;
collect_plus_lines p;
let _ =
classify true
(function _ ->
Ast0.MINUS(ref(Ast.NOREPLACEMENT,Ast0.default_token_info)))
minus_table m in
let _ = classify false (function c -> Ast0.PLUS c) plus_table p in
traverse minus_table plus_table;
(m,p)::loop(minus,plus)
end
else
if not(iscode m || iscode p)
then loop(minus,plus)
else
if mstart < pstart
then
begin
plus_lines := [];
let _ =
classify true
(function _ ->
Ast0.MINUS(ref(Ast.NOREPLACEMENT,
Ast0.default_token_info)))
minus_table m in
loop(minus,pall)
end
else loop(mall,plus) in
loop(minus,plus)
|