1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
|
(*
* This file is part of Coccinelle, licensed under the terms of the GPL v2.
* See copyright.txt in the Coccinelle source code for more information.
* The Coccinelle source code can be obtained at http://coccinelle.lip6.fr
*)
(* For each rule return the list of variables that are used after it.
Also augment various parts of each rule with unitary, inherited, and freshness
information *)
(* metavar decls should be better integrated into computations of free
variables in plus code *)
module Ast = Ast_cocci
module V = Visitor_ast
let rec nub = function
[] -> []
| (x::xs) when (List.mem x xs) -> nub xs
| (x::xs) -> x::(nub xs)
(* Collect all variable references in a minirule. For a disj, we collect
the maximum number (2 is enough) of references in any branch. *)
let collect_unitary_nonunitary free_usage =
let free_usage = List.sort compare free_usage in
let rec loop1 todrop = function (* skips multiple occurrences *)
[] -> []
| (x::xs) as all -> if x = todrop then loop1 todrop xs else all in
let rec loop2 = function
[] -> ([],[])
| [x] -> ([x],[])
| x::y::xs ->
if x = y (* occurs more than once in free_usage *)
then
let (unitary,non_unitary) = loop2(loop1 x xs) in
(unitary,x::non_unitary)
else (* occurs only once in free_usage *)
let (unitary,non_unitary) = loop2 (y::xs) in
(x::unitary,non_unitary) in
loop2 free_usage
let collect_refs include_constraints =
let bind x y = x @ y in
let option_default = [] in
let donothing recursor k e = k e in (* just combine in the normal way *)
let donothing_a recursor k e = (* anything is not wrapped *)
k e in (* just combine in the normal way *)
(* the following considers that anything that occurs non-unitarily in one
branch occurs nonunitarily in all branches. This is not optimal, but
doing better seems to require a breadth-first traversal, which is
perhaps better to avoid. Also, unitarily is represented as occurring once,
while nonunitarily is represented as twice - more is irrelevant *)
(* cases for disjs and metavars *)
let bind_disj refs_branches =
let (unitary,nonunitary) =
List.split (List.map collect_unitary_nonunitary refs_branches) in
let unitary = nub (List.concat unitary) in
let nonunitary = nub (List.concat nonunitary) in
let unitary =
List.filter (function x -> not (List.mem x nonunitary)) unitary in
unitary@nonunitary@nonunitary in
let metaid (x,_,_,_) = x in
let astfvident recursor k i =
bind (k i)
(match Ast.unwrap i with
Ast.MetaId(name,idconstraint,_,_) | Ast.MetaFunc(name,idconstraint,_,_)
| Ast.MetaLocalFunc(name,idconstraint,_,_) ->
let metas =
if include_constraints
then Ast.cstr_meta_names idconstraint
else [] in
bind metas [metaid name]
| Ast.DisjId(ids) -> bind_disj (List.map k ids)
| _ -> option_default) in
let type_collect res ty = bind res (Ast.meta_names_of_fullType ty) in
let constraints cstr =
if include_constraints then Ast.cstr_pos_meta_names cstr
else [] in
let listlen l =
match l with
Ast.MetaListLen(lenname,cstr,_,_) ->
bind (constraints cstr) [metaid lenname]
| _ -> [] in
let listlen_option l =
match l with
None -> option_default
| Some l -> listlen l in
let astfvexpr recursor k e =
bind (k e)
(match Ast.unwrap e with
Ast.MetaExpr(name,constraints,_,Some type_list,_,_,bitfield) ->
let types =
(* problem: if there are multiple types, then none in particular
is needed *)
if include_constraints || List.length type_list = 1
then List.fold_left type_collect option_default type_list
else [] in
let extra =
if include_constraints
then Ast.cstr_pos_meta_names constraints
else [] in
let bitfield' = listlen_option bitfield in
bind bitfield' (bind extra (bind [metaid name] types))
| Ast.MetaErr(name,cstr,_,_) ->
bind (constraints cstr) [metaid name]
| Ast.MetaExpr(name,cstr,_,_,_,_,bitfield) ->
let bitfield' = listlen_option bitfield in
bind bitfield' (bind (constraints cstr) [metaid name])
| Ast.MetaExprList(name,len,cstr,_,_) ->
bind (constraints cstr) (bind (listlen len) [metaid name])
| Ast.DisjExpr(exps) -> bind_disj (List.map k exps)
| _ -> option_default) in
let astfvfrag recursor k ft =
bind (k ft)
(match Ast.unwrap ft with
Ast.MetaFormatList
(pct,name,len,cstr,_,_) ->
bind (constraints cstr) (bind (listlen len) [metaid name])
| _ -> option_default) in
let astfvfmt recursor k ft =
bind (k ft)
(match Ast.unwrap ft with
Ast.MetaFormat(name,cstr,_,_) ->
bind (constraints cstr) [metaid name]
| _ -> option_default) in
let rec collect_assign_names aop =
match Ast.unwrap aop with
Ast.MetaAssign(name,cstr,_,_) ->
bind (constraints cstr) [metaid name]
| _ -> option_default in
let astfvassignop recursor k bop =
bind (k bop) (collect_assign_names bop) in
let rec collect_binary_names bop =
match Ast.unwrap bop with
Ast.MetaBinary(name,cstr,_,_) ->
bind (constraints cstr) [metaid name]
| _ -> option_default in
let astfvbinaryop recursor k bop =
bind (k bop) (collect_binary_names bop) in
let astfvdecls recursor k d =
bind (k d)
(match Ast.unwrap d with
Ast.MetaDecl(name,cstr,_,_) ->
bind (constraints cstr) [metaid name]
| Ast.DisjDecl(decls) -> bind_disj (List.map k decls)
| _ -> option_default) in
let astfvfields recursor k d =
bind (k d)
(match Ast.unwrap d with
Ast.MetaField(name,cstr,_,_) ->
bind (constraints cstr) [metaid name]
| Ast.MetaFieldList(name,len,cstr,_,_) ->
bind (constraints cstr) (bind (listlen len) [metaid name])
| Ast.DisjField(decls) -> bind_disj (List.map k decls)
| _ -> option_default) in
let astfvfullType recursor k ty =
bind (k ty)
(match Ast.unwrap ty with
Ast.DisjType(types) -> bind_disj (List.map k types)
| _ -> option_default) in
let astfvtypeC recursor k ty =
bind (k ty)
(match Ast.unwrap ty with
Ast.MetaType(name,cstr,_,_) ->
bind (constraints cstr) [metaid name]
| _ -> option_default) in
let astfvinit recursor k ty =
bind (k ty)
(match Ast.unwrap ty with
Ast.MetaInit(name,cstr,_,_) -> [metaid name]
| Ast.MetaInitList(name,len,cstr,_,_) ->
bind (constraints cstr) (bind (listlen len) [metaid name])
| _ -> option_default) in
let astfvparam recursor k p =
bind (k p)
(match Ast.unwrap p with
Ast.MetaParam(name,cstr,_,_) ->
bind (constraints cstr) [metaid name]
| Ast.MetaParamList(name,len,cstr,_,_) ->
bind (constraints cstr) (bind (listlen len) [metaid name])
| _ -> option_default) in
let astfvdefine_param recursor k p =
bind (k p)
(match Ast.unwrap p with
Ast.MetaDParamList(name,len,cstr,_,_) ->
bind (constraints cstr) (bind (listlen len) [metaid name])
| _ -> option_default) in
let astfvrule_elem recursor k re =
(*within a rule_elem, pattern3 manages the coherence of the bindings*)
bind (k re)
(nub
(match Ast.unwrap re with
Ast.MetaRuleElem(name,cstr,_,_) | Ast.MetaStmt(name,cstr,_,_,_) ->
bind (constraints cstr) [metaid name]
| Ast.MetaStmtList(name,len,cstr,_,_) ->
bind (constraints cstr) (bind (listlen len) [metaid name])
| _ -> option_default)) in
let astfvstatement recursor k s =
bind (k s)
(match Ast.unwrap s with
Ast.Disj(stms) ->
bind_disj (List.map recursor.V.combiner_statement_dots stms)
| _ -> option_default) in
let mcode r mc = (*
if include_constraints
then *)
List.fold_left bind option_default
(List.map
(function
Ast.MetaPos(name,constraints,_,_,_)
| Ast.MetaCom(name,constraints,_,_) ->
bind [metaid name]
(List.fold_left bind option_default
(if include_constraints
then [Ast.cstr_meta_names constraints]
else [])))
(Ast.get_pos_var mc))
(* else option_default *) in
V.combiner bind option_default
mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode
mcode mcode mcode mcode
donothing donothing donothing donothing donothing donothing
astfvident astfvexpr astfvfrag astfvfmt astfvassignop astfvbinaryop
astfvfullType astfvtypeC astfvinit astfvparam astfvdefine_param
astfvdecls donothing astfvfields donothing
astfvrule_elem astfvstatement donothing donothing donothing_a
let collect_all_refs = collect_refs true
let collect_non_constraint_refs = collect_refs false
let collect_all_rule_refs minirules =
List.fold_left (@) []
(List.map collect_all_refs.V.combiner_top_level minirules)
let collect_all_minirule_refs = collect_all_refs.V.combiner_top_level
let collect_pos_positions =
let bind x y = x @ y in
let option_default = [] in
let donothing recursor k e = k e in (* just combine in the normal way *)
let metaid (x,_,_,_) = x in
let mcode r mc =
List.concat
(List.map
(function
Ast.MetaPos(name,_,_,_,_)
| Ast.MetaCom(name,_,_,_) -> [metaid name])
(Ast.get_pos_var mc)) in
let cprule_elem recursor k re =
match Ast.unwrap re with
Ast.DisjRuleElem relist ->
(*take the intersection of the results*)
let subres = List.map k relist in
List.fold_left Common.inter_set (List.hd subres) (List.tl subres)
| _ -> k re in
let cpstmt recursor k s =
match Ast.unwrap s with
Ast.Disj stmlist ->
(*take the intersection of the results*)
let subres =
List.map recursor.V.combiner_statement_dots stmlist in
List.fold_left Common.inter_set (List.hd subres) (List.tl subres)
| _ -> k s in
V.combiner bind option_default
mcode mcode mcode mcode mcode mcode mcode mcode mcode
mcode mcode mcode mcode mcode
donothing donothing donothing donothing donothing
donothing donothing donothing donothing donothing donothing donothing
donothing donothing donothing donothing donothing donothing
donothing donothing donothing
cprule_elem cpstmt donothing donothing donothing
(* ---------------------------------------------------------------- *)
let collect_saved =
let bind = Common.union_set in
let option_default = [] in
let donothing recursor k e = k e in (* just combine in the normal way *)
let metaid (x,_,_,_) = x in
(* cases for metavariables *)
let astfvident recursor k i =
bind (k i)
(match Ast.unwrap i with
Ast.MetaId(name,_,Ast.Saved,_)
| Ast.MetaFunc(name,_,Ast.Saved,_)
| Ast.MetaLocalFunc(name,_,Ast.Saved,_) -> [metaid name]
| _ -> option_default) in
let type_collect res ty =
bind res (Common.set (Ast.meta_names_of_fullType ty)) in
let fvbitfield bitfield =
match bitfield with
Some (Ast.MetaListLen (lenname,_,_,_)) -> [metaid lenname]
| _ -> option_default in
let astfvexpr recursor k e =
let tymetas =
match Ast.unwrap e with
Ast.MetaExpr(name,_,_,Some type_list,_,_,bitfield) ->
List.fold_left type_collect (fvbitfield bitfield) type_list
| _ -> [] in
let vars =
bind (k e)
(match Ast.unwrap e with
Ast.MetaErr(name,_,Ast.Saved,_) -> [metaid name]
| Ast.MetaExpr(name,_,Ast.Saved,_,_,_,bitfield) ->
bind [metaid name] (fvbitfield bitfield)
| Ast.MetaExprList(name,Ast.MetaListLen (lenname,_,ls,_),_,ns,_) ->
let namesaved =
match ns with Ast.Saved -> [metaid name] | _ -> [] in
let lensaved =
match ls with Ast.Saved -> [metaid lenname] | _ -> [] in
lensaved @ namesaved
| Ast.MetaExprList(name,_,_,Ast.Saved,_) -> [metaid name]
| _ -> option_default) in
bind tymetas vars in
let astfvfrag recursor k ft =
bind (k ft)
(match Ast.unwrap ft with
Ast.MetaFormatList(pct,name,Ast.MetaListLen (lenname,_,_,_),_,
Ast.Saved,_) ->
[metaid name;metaid lenname]
| Ast.MetaFormatList(pct,name,_,_,Ast.Saved,_) -> [metaid name]
| _ -> option_default) in
let astfvfmt recursor k ft =
bind (k ft)
(match Ast.unwrap ft with
Ast.MetaFormat(name,_,Ast.Saved,_) -> [metaid name]
| _ -> option_default) in
let astfvassign recursor k aop =
bind (k aop)
(match Ast.unwrap aop with
Ast.MetaAssign(name,_,Ast.Saved,_) -> [metaid name]
| _ -> option_default) in
let astfvbinary recursor k bop =
bind (k bop)
(match Ast.unwrap bop with
Ast.MetaBinary(name,_,Ast.Saved,_) -> [metaid name]
| _ -> option_default) in
let astfvtypeC recursor k ty =
bind (k ty)
(match Ast.unwrap ty with
Ast.MetaType(name,_,Ast.Saved,_) -> [metaid name]
| _ -> option_default) in
let astfvinit recursor k ty =
bind (k ty)
(match Ast.unwrap ty with
Ast.MetaInit(name,_,Ast.Saved,_) -> [metaid name]
| Ast.MetaInitList(name,Ast.MetaListLen (lenname,_,ls,_),_,ns,_) ->
let namesaved =
match ns with Ast.Saved -> [metaid name] | _ -> [] in
let lensaved =
match ls with Ast.Saved -> [metaid lenname] | _ -> [] in
lensaved @ namesaved
| Ast.MetaInitList(name,len,_,ns,_) ->
(match ns with Ast.Saved -> [metaid name] | _ -> [])
| _ -> option_default) in
let astfvparam recursor k p =
bind (k p)
(match Ast.unwrap p with
Ast.MetaParam(name,_,Ast.Saved,_) -> [metaid name]
| Ast.MetaParamList(name,Ast.MetaListLen (lenname,_,ls,_),_,ns,_) ->
let namesaved =
match ns with Ast.Saved -> [metaid name] | _ -> [] in
let lensaved =
match ls with Ast.Saved -> [metaid lenname] | _ -> [] in
lensaved @ namesaved
| Ast.MetaParamList(name,_,_,Ast.Saved,_) -> [metaid name]
| _ -> option_default) in
let astfvdefine_param recursor k p =
bind (k p)
(match Ast.unwrap p with
Ast.MetaDParamList(name,Ast.MetaListLen (lenname,_,ls,_),_,ns,_) ->
let namesaved =
match ns with Ast.Saved -> [metaid name] | _ -> [] in
let lensaved =
match ls with Ast.Saved -> [metaid lenname] | _ -> [] in
lensaved @ namesaved
| Ast.MetaDParamList(name,_,_,Ast.Saved,_) -> [metaid name]
| _ -> option_default) in
let astfvdecls recursor k d =
bind (k d)
(match Ast.unwrap d with
Ast.MetaDecl(name,_,Ast.Saved,_) ->
[metaid name]
| _ -> option_default) in
let astfvfields recursor k d =
bind (k d)
(match Ast.unwrap d with
Ast.MetaField(name,_,Ast.Saved,_) ->
[metaid name]
| Ast.MetaFieldList(name,Ast.MetaListLen (lenname,_,ls,_),_,ns,_) ->
let namesaved =
match ns with Ast.Saved -> [metaid name] | _ -> [] in
let lensaved =
match ls with Ast.Saved -> [metaid lenname] | _ -> [] in
lensaved @ namesaved
| Ast.MetaFieldList(name,_,_,Ast.Saved,_) -> [metaid name]
| _ -> option_default) in
let astfvrule_elem recursor k re =
(*within a rule_elem, pattern3 manages the coherence of the bindings*)
bind (k re)
(nub
(match Ast.unwrap re with
Ast.MetaRuleElem(name,_,Ast.Saved,_)
| Ast.MetaStmt(name,_,Ast.Saved,_,_) -> [metaid name]
| Ast.MetaStmtList(name,Ast.MetaListLen (lenname,_,ls,_),_,ns,_) ->
let namesaved =
match ns with Ast.Saved -> [metaid name] | _ -> [] in
let lensaved =
match ls with Ast.Saved -> [metaid lenname] | _ -> [] in
lensaved @ namesaved
| Ast.MetaStmtList(name,_,_,Ast.Saved,_) -> [metaid name]
| _ -> option_default)) in
let mcode r e =
List.fold_left
(function acc ->
function
Ast.MetaPos(name,_,_,Ast.Saved,_) -> (metaid name) :: acc
| Ast.MetaCom(name,_,Ast.Saved,_) -> (metaid name) :: acc
| _ -> acc)
option_default (Ast.get_pos_var e) in
V.combiner bind option_default
mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode
mcode mcode
donothing donothing donothing donothing donothing donothing
astfvident astfvexpr astfvfrag astfvfmt astfvassign astfvbinary donothing
astfvtypeC astfvinit astfvparam astfvdefine_param astfvdecls donothing
astfvfields donothing astfvrule_elem donothing donothing donothing donothing
(* ---------------------------------------------------------------- *)
(* For the rules under a given metavariable declaration, collect all of the
variables that occur in the plus code *)
let cip_mcodekind r mck =
let process_anything_list_list anythings =
let astfvs = collect_all_refs.V.combiner_anything in
List.fold_left (@) []
(List.map (function l -> List.fold_left (@) [] (List.map astfvs l))
anythings) in
match mck with
Ast.MINUS(_,_,_,replacement) ->
(match replacement with
Ast.REPLACEMENT(anythings,_) -> process_anything_list_list anythings
| Ast.NOREPLACEMENT -> [])
| Ast.CONTEXT(_,befaft) ->
(match befaft with
Ast.BEFORE(ll,_) -> process_anything_list_list ll
| Ast.AFTER(ll,_) -> process_anything_list_list ll
| Ast.BEFOREAFTER(llb,lla,_) ->
(process_anything_list_list lla) @
(process_anything_list_list llb)
| Ast.NOTHING -> [])
| Ast.PLUS _ -> []
let collect_fresh_seed_env metavars l =
let fresh =
List.fold_left
(function prev ->
function
Ast.MetaFreshIdDecl(_,seed) as x ->
((Ast.get_meta_name x),seed)::prev
| _ -> prev)
[] metavars in
let (seed_env,seeds) =
List.fold_left
(function (seed_env,seeds) as prev ->
function x ->
try
(let v = List.assoc x fresh in
match v with
Ast.ListSeed l ->
let ids =
List.fold_left
(function prev ->
function
Ast.SeedId(id) -> id::prev
| _ -> prev)
[] l in
((x,ids)::seed_env,Common.union_set ids seeds)
| _ -> ((x,[])::seed_env,seeds))
with Not_found -> prev)
([],l) l in
(List.rev seed_env,List.rev seeds)
let collect_fresh_seed metavars l =
let (_,seeds) = collect_fresh_seed_env metavars l in seeds
let collect_in_plus_term =
let bind x y = List.rev_append x y in
let option_default = [] in
let donothing r k e = k e in
(* no positions in the + code *)
let mcode r (_,_,mck,_) = cip_mcodekind r mck in
(* case for things with bef/aft mcode *)
let annotated_decl decl =
match Ast.unwrap decl with
Ast.DElem(bef,_,_) -> bef in
let astfvrule_elem recursor k re =
match Ast.unwrap re with
Ast.FunHeader(bef,_,fi,nm,_,params,_,_) ->
bind (cip_mcodekind recursor bef) (k re)
(* no clue why this code is here *) (*
let fi_metas =
List.concat
(List.map
(function
Ast.FType(ty) -> collect_all_refs.V.combiner_fullType ty
| _ -> [])
fi) in
let nm_metas = collect_all_refs.V.combiner_ident nm in
let param_metas =
List.concat
(List.map
(function p ->
match Ast.unwrap p with
Ast.VoidParam(t) | Ast.Param(t,_) ->
collect_all_refs.V.combiner_fullType t
| _ -> [])
(Ast.unwrap params)) in
bind fi_metas
(bind nm_metas
(bind param_metas
(bind (cip_mcodekind recursor bef) (k re)))) *)
| Ast.Decl decl ->
bind (cip_mcodekind recursor (annotated_decl decl)) (k re)
| Ast.ForHeader(fr,lp,Ast.ForDecl(decl),e2,sem2,e3,rp) ->
bind (cip_mcodekind recursor (annotated_decl decl)) (k re)
| _ -> k re in
let astfvstatement recursor k s =
match Ast.unwrap s with
Ast.IfThen(_,_,(_,_,_,aft)) | Ast.IfThenElse(_,_,_,_,(_,_,_,aft))
| Ast.While(_,_,(_,_,_,aft)) | Ast.For(_,_,(_,_,_,aft))
| Ast.Iterator(_,_,(_,_,_,aft)) | Ast.FunDecl(_,_,_,_,(_,_,_,aft)) ->
bind (k s) (cip_mcodekind recursor aft)
| _ -> k s in
V.combiner bind option_default
mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode
mcode mcode donothing donothing
donothing donothing donothing donothing donothing donothing donothing
donothing donothing donothing donothing donothing donothing donothing
donothing donothing donothing donothing donothing astfvrule_elem
astfvstatement donothing donothing donothing
let collect_in_plus metavars minirules =
nub
(collect_fresh_seed metavars
(List.concat
(List.map collect_in_plus_term.V.combiner_top_level minirules)))
(* ---------------------------------------------------------------- *)
(* For the rules under a given metavariable declaration, collect all of the
variables that occur only once and more than once in the minus code *)
let collect_all_multirefs minirules =
let refs = List.map collect_all_refs.V.combiner_top_level minirules in
collect_unitary_nonunitary (List.concat refs)
(* ---------------------------------------------------------------- *)
(* classify as unitary (no binding) or nonunitary (env binding) or saved
(witness binding) *)
let classify_variables metavar_decls minirules used_after =
let metavars = List.map Ast.get_meta_name metavar_decls in
let (unitary,nonunitary) = collect_all_multirefs minirules in
let inplus = collect_in_plus metavar_decls minirules in
let donothing r k e = k e in
let check_unitary name inherited =
if List.mem name inplus || List.mem name used_after
then Ast.Saved
else if not inherited && List.mem name unitary
then Ast.Unitary
else Ast.Nonunitary in
let get_option f = function Some x -> Some (f x) | None -> None in
let classify (name,_,_,_) =
let inherited = not (List.mem name metavars) in
(check_unitary name inherited,inherited) in
let mcode mc =
let p =
List.map
(function
Ast.MetaPos(name,constraints,per,unitary,inherited) ->
let (unitary,inherited) = classify name in
Ast.MetaPos(name,constraints,per,unitary,inherited)
| Ast.MetaCom(name,constraints,unitary,inherited) ->
let (unitary,inherited) = classify name in
Ast.MetaCom(name,constraints,unitary,inherited))
(Ast.get_pos_var mc) in
Ast.set_pos_var p mc in
let ident r k e =
let e = k e in
match Ast.unwrap e with
Ast.MetaId(name,constraints,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e
(Ast.MetaId(name,constraints,unitary,inherited))
| Ast.MetaFunc(name,constraints,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaFunc(name,constraints,unitary,inherited))
| Ast.MetaLocalFunc(name,constraints,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaLocalFunc(name,constraints,unitary,inherited))
| _ -> e in
let rec classify_ident ident =
let new_ident =
match Ast.unwrap ident with
Ast.Id id -> Ast.Id id
| Ast.MetaId (name, constraints, _, _) ->
let (unitary, inherited) =
classify (Ast.unwrap_mcode name, (), (), []) in
Ast.MetaId (name, constraints, unitary, inherited)
| Ast.MetaFunc (name, constraints, _, _) ->
let (unitary, inherited) =
classify (Ast.unwrap_mcode name, (), (), []) in
Ast.MetaFunc (name, constraints, unitary, inherited)
| Ast.MetaLocalFunc (name, constraints, _, _) ->
let (unitary, inherited) =
classify (Ast.unwrap_mcode name, (), (), []) in
Ast.MetaLocalFunc (name, constraints, unitary, inherited)
| Ast.AsIdent (ident0, ident1) ->
Ast.AsIdent (classify_ident ident0, classify_ident ident1)
| Ast.DisjId list -> Ast.DisjId (List.map classify_ident list)
| Ast.ConjId list -> Ast.ConjId (List.map classify_ident list)
| Ast.OptIdent ident' -> Ast.OptIdent (classify_ident ident') in
Ast.rewrap ident new_ident in
let type_infos ty =
Ast.fullType_map { Ast.empty_transformer with
Ast.decimal = Some (fun s0 s1 e1 s2 e2 s3 ->
let e2mv e =
match Ast.unwrap e with
Ast.Ident ident -> Ast.rewrap e (Ast.Ident (classify_ident ident))
| _ -> e in
Ast.Decimal (s0, s1, e2mv e1, s2, Common.map_option e2mv e2, s3));
enumName = Some (fun s0 ident ->
let ident' = Common.map_option classify_ident ident in
Ast.EnumName (s0, ident'));
structUnionName = Some (fun su ident ->
let ident' = Common.map_option classify_ident ident in
Ast.StructUnionName (su, ident'));
metaType = Some (fun name cstr _ _ ->
let (unitary,inherited) = classify (Ast.unwrap_mcode name,(),(),[]) in
Ast.MetaType (name,cstr,unitary,inherited))
} ty in
let expression r k e =
let e = k e in
match Ast.unwrap e with
Ast.MetaErr(name,constraints,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaErr(name,constraints,unitary,inherited))
| Ast.MetaExpr(name,constraints,_,ty,form,_,bitfield) ->
let (unitary,inherited) = classify name in
let ty = get_option (List.map type_infos) ty in
let bitfield' =
match bitfield with
Some (Ast.MetaListLen (lenname, cstr, _, _)) ->
let (lenunitary,leninherited) = classify lenname in
Some (Ast.MetaListLen (lenname, cstr, lenunitary, leninherited))
| _ -> bitfield in
Ast.rewrap e
(Ast.MetaExpr(name,constraints,unitary,ty,form,inherited,bitfield'))
| Ast.MetaExprList(name,Ast.MetaListLen(lenname,cstr,_,_),cstr',_,_) ->
let (unitary,inherited) = classify name in
let (lenunitary,leninherited) = classify lenname in
Ast.rewrap e
(Ast.MetaExprList
(name,
Ast.MetaListLen(lenname,cstr,lenunitary,leninherited),
cstr',unitary,inherited))
| Ast.MetaExprList(name,lenname,cstr,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaExprList(name,lenname,cstr,unitary,inherited))
| _ -> e in
let string_fragment r k ft =
let ft = k ft in
match Ast.unwrap ft with
Ast.MetaFormatList
(pct,name,Ast.MetaListLen (lenname,cstr,_,_),cstr',_,_) ->
let (unitary,inherited) = classify name in
let (lenunitary,leninherited) = classify lenname in
Ast.rewrap ft
(Ast.MetaFormatList
(pct,name,
Ast.MetaListLen(lenname,cstr,lenunitary,leninherited),
cstr',unitary,inherited))
| Ast.MetaFormatList(pct,name,lenname,cstr,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap ft
(Ast.MetaFormatList(pct,name,lenname,cstr,unitary,inherited))
| _ -> ft in
let string_format r k ft =
let ft = k ft in
match Ast.unwrap ft with
Ast.MetaFormat(name,constraints,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap ft (Ast.MetaFormat(name,constraints,unitary,inherited))
| _ -> ft in
let assignop r k ft =
let ft = k ft in
match Ast.unwrap ft with
Ast.MetaAssign(name,constraints,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap ft (Ast.MetaAssign(name,constraints,unitary,inherited))
| _ -> ft in
let binaryop r k ft =
let ft = k ft in
match Ast.unwrap ft with
Ast.MetaBinary(name,constraints,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap ft (Ast.MetaBinary(name,constraints,unitary,inherited))
| _ -> ft in
let typeC r k e =
let e = k e in
match Ast.unwrap e with
Ast.MetaType(name,cstr,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaType(name,cstr,unitary,inherited))
| _ -> e in
let init r k e =
let e = k e in
match Ast.unwrap e with
Ast.MetaInit(name,cstr,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaInit(name,cstr,unitary,inherited))
| Ast.MetaInitList(name,Ast.MetaListLen (lenname,cstr,_,_),cstr',_,_) ->
let (unitary,inherited) = classify name in
let (lenunitary,leninherited) = classify lenname in
Ast.rewrap e
(Ast.MetaInitList
(name,Ast.MetaListLen(lenname,cstr,lenunitary,leninherited),
cstr',unitary,inherited))
| Ast.MetaInitList(name,lenname,cstr,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaInitList(name,lenname,cstr,unitary,inherited))
| _ -> e in
let param r k e =
let e = k e in
match Ast.unwrap e with
Ast.MetaParam(name,cstr,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaParam(name,cstr,unitary,inherited))
| Ast.MetaParamList(name,Ast.MetaListLen (lenname,cstr,_,_),cstr',_,_) ->
let (unitary,inherited) = classify name in
let (lenunitary,leninherited) = classify lenname in
Ast.rewrap e
(Ast.MetaParamList
(name,Ast.MetaListLen(lenname,cstr,lenunitary,leninherited),
cstr',unitary,inherited))
| Ast.MetaParamList(name,lenname,cstr,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaParamList(name,lenname,cstr,unitary,inherited))
| _ -> e in
let define_param r k e =
let e = k e in
match Ast.unwrap e with
Ast.MetaDParamList(name,Ast.MetaListLen (lenname,cstr,_,_),cstr',_,_) ->
let (unitary,inherited) = classify name in
let (lenunitary,leninherited) = classify lenname in
Ast.rewrap e
(Ast.MetaDParamList
(name,Ast.MetaListLen(lenname,cstr,lenunitary,leninherited),
cstr',unitary,inherited))
| Ast.MetaDParamList(name,lenname,cstr,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaDParamList(name,lenname,cstr,unitary,inherited))
| _ -> e in
let decl r k e =
let e = k e in
match Ast.unwrap e with
Ast.MetaDecl(name,cstr,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaDecl(name,cstr,unitary,inherited))
| _ -> e in
let field r k e =
let e = k e in
match Ast.unwrap e with
Ast.MetaField(name,cstr,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaField(name,cstr,unitary,inherited))
| Ast.MetaFieldList(name,Ast.MetaListLen (lenname,cstr,_,_),cstr',_,_) ->
let (unitary,inherited) = classify name in
let (lenunitary,leninherited) = classify lenname in
Ast.rewrap e
(Ast.MetaFieldList
(name,Ast.MetaListLen(lenname,cstr,lenunitary,leninherited),
cstr',unitary,inherited))
| Ast.MetaFieldList(name,lenname,cstr,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaFieldList(name,lenname,cstr,unitary,inherited))
| _ -> e in
let rule_elem r k e =
let e = k e in
match Ast.unwrap e with
Ast.MetaStmt(name,cstr,_,msi,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaStmt(name,cstr,unitary,msi,inherited))
| Ast.MetaStmtList(name,Ast.MetaListLen (lenname,cstr,_,_),cstr',_,_) ->
let (unitary,inherited) = classify name in
let (lenunitary,leninherited) = classify lenname in
Ast.rewrap e
(Ast.MetaStmtList
(name,Ast.MetaListLen(lenname,cstr,lenunitary,leninherited),
cstr',unitary,inherited))
| Ast.MetaStmtList(name,lenname,cstr,_,_) ->
let (unitary,inherited) = classify name in
Ast.rewrap e (Ast.MetaStmtList(name,lenname,cstr,unitary,inherited))
| _ -> e in
let fn = V.rebuilder
mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode
mcode mcode
donothing donothing donothing donothing donothing donothing
ident expression string_fragment string_format assignop binaryop
donothing typeC
init param define_param decl donothing field donothing rule_elem
donothing donothing donothing donothing in
List.map fn.V.rebuilder_top_level minirules
(* ---------------------------------------------------------------- *)
(* For a minirule, collect the set of non-local (not in "bound") variables that
are referenced. Store them in a hash table. *)
(* bound means the metavariable was declared previously, not locally *)
(* Highly inefficient, because we call collect_all_refs on nested code
multiple times. But we get the advantage of not having too many variants
of the same functions. *)
(* Inherited doesn't include negative position constraints. If they are
not bound then there is no constraint. *)
let astfvs metavars bound =
let fresh =
List.fold_left
(function prev ->
function
Ast.MetaFreshIdDecl(_,seed) as x ->
((Ast.get_meta_name x),seed)::prev
| _ -> prev)
[] metavars in
let collect_fresh l =
let (matched,freshvars) =
List.fold_left
(function (matched,freshvars) ->
function x ->
try let v = List.assoc x fresh in (matched,(x,v)::freshvars)
with Not_found -> (x::matched,freshvars))
([],[]) l in
(List.rev matched, List.rev freshvars) in
let refront re =
match Ast.unwrap re with
Ast.FunHeader _ -> "FunHeader"
| Ast.Decl _ -> "Decl"
| Ast.SeqStart _ -> "SeqStart"
| Ast.SeqEnd _ -> "SeqEnd"
| Ast.ExprStatement _ -> "ExprStatement"
| Ast.IfHeader _ -> "IfHeader"
| Ast.Else _ -> "Else"
| Ast.WhileHeader _ -> "WhileHeader"
| Ast.DoHeader _ -> "DoHeader"
| Ast.WhileTail _ -> "WhileTail"
| Ast.ForHeader _ -> "ForHeader"
| Ast.IteratorHeader _ -> "IteratorHeader"
| Ast.SwitchHeader _ -> "SwitchHeader"
| Ast.Break _ -> "Break"
| Ast.Continue _ -> "Continue"
| Ast.Label _ -> "Label"
| Ast.Goto _ -> "Goto"
| Ast.Return _ -> "Return"
| Ast.ReturnExpr _ -> "ReturnExpr"
| Ast.Exec _ -> "Exec"
| Ast.MetaRuleElem _ -> "MetaRuleElem"
| Ast.MetaStmt _ -> "MetaStmt"
| Ast.MetaStmtList _ -> "MetaStmtList"
| Ast.Exp _ -> "Exp"
| Ast.TopExp _ -> "TopExp"
| Ast.Ty _ -> "Ty"
| Ast.TopId _ -> "TopId"
| Ast.TopInit _ -> "TopInit"
| Ast.Include _ -> "Include"
| Ast.MetaInclude _ -> "MetaInclude"
| Ast.Undef _ -> "Undef"
| Ast.DefineHeader _ -> "DefineHeader"
| Ast.Pragma _ -> "Pragma"
| Ast.Case _ -> "Case"
| Ast.Default _ -> "Default"
| Ast.AsRe _ -> "AsRe"
| Ast.DisjRuleElem _ -> "DisjRuleElem" in
(* cases for the elements of anything *)
let simple_setup refront getter k re =
let minus_free = nub (getter collect_all_refs re) in
let minus_nc_free =
nub (getter collect_non_constraint_refs re) in
let minus_pos_free =
nub (getter collect_pos_positions re) in
let plus_free =
collect_fresh_seed metavars (getter collect_in_plus_term re) in
let free = Common.union_set minus_free plus_free in
let nc_free = Common.union_set minus_nc_free plus_free in
let unbound =
List.filter (function x -> not(List.mem x bound)) free in
let inherited =
List.filter (function x -> List.mem x bound) nc_free in
let inherited_pos =
List.filter (function x -> List.mem x bound) minus_pos_free in
let munbound =
List.filter (function x -> not(List.mem x bound)) minus_free in
let (matched,fresh) = collect_fresh unbound in
{(k re) with
Ast.free_vars = matched;
Ast.minus_free_vars = munbound;
Ast.minus_nc_free_vars = minus_nc_free;
Ast.fresh_vars = fresh;
Ast.inherited = inherited;
Ast.positive_inherited_positions = inherited_pos;
Ast.saved_witness = []} in
let astfvrule_elem recursor k re =
simple_setup refront (function x -> x.V.combiner_rule_elem) k re in
let astfvstatement recursor k s =
let minus_free = nub (collect_all_refs.V.combiner_statement s) in
let minus_nc_free =
nub (collect_non_constraint_refs.V.combiner_statement s) in
let plus_free =
collect_fresh_seed metavars
(collect_in_plus_term.V.combiner_statement s) in
let free = Common.union_set minus_free plus_free in
let nc_free = Common.union_set minus_nc_free plus_free in
let classify free minus_free =
let (unbound,inherited) =
List.partition (function x -> not(List.mem x bound)) free in
let munbound =
List.filter (function x -> not(List.mem x bound)) minus_free in
let (matched,fresh) = collect_fresh unbound in
(matched,munbound,fresh,inherited) in
let res = k s in
let s =
let cip_plus aft =
collect_fresh_seed metavars
(cip_mcodekind collect_in_plus_term aft) in
match Ast.unwrap res with
Ast.IfThen(header,branch,(_,_,_,aft)) ->
let (unbound,_,fresh,inherited) = classify (cip_plus aft) [] in
Ast.IfThen(header,branch,(unbound,fresh,inherited,aft))
| Ast.IfThenElse(header,branch1,els,branch2,(_,_,_,aft)) ->
let (unbound,_,fresh,inherited) = classify (cip_plus aft) [] in
Ast.IfThenElse(header,branch1,els,branch2,
(unbound,fresh,inherited,aft))
| Ast.While(header,body,(_,_,_,aft)) ->
let (unbound,_,fresh,inherited) = classify (cip_plus aft) [] in
Ast.While(header,body,(unbound,fresh,inherited,aft))
| Ast.For(header,body,(_,_,_,aft)) ->
let (unbound,_,fresh,inherited) = classify (cip_plus aft) [] in
Ast.For(header,body,(unbound,fresh,inherited,aft))
| Ast.Iterator(header,body,(_,_,_,aft)) ->
let (unbound,_,fresh,inherited) = classify (cip_plus aft) [] in
Ast.Iterator(header,body,(unbound,fresh,inherited,aft))
| Ast.FunDecl(header,lbrace,body,rbrace,(_,_,_,aft)) ->
let (unbound,_,fresh,inherited) = classify (cip_plus aft) [] in
Ast.FunDecl(header,lbrace,body,rbrace,(unbound,fresh,inherited,aft))
| s -> s in
let (matched,munbound,fresh,_) = classify free minus_free in
let inherited =
List.filter (function x -> List.mem x bound) nc_free in
{res with
Ast.node = s;
Ast.free_vars = matched;
Ast.minus_free_vars = munbound;
Ast.fresh_vars = fresh;
Ast.inherited = inherited;
Ast.saved_witness = []} in
let astfvstatement_dots recursor k sd =
simple_setup (fun _ -> "statement")
(function x -> x.V.combiner_statement_dots) k sd in
let astfvcase_line recursor k cl =
simple_setup (fun _ -> "case")
(function x -> x.V.combiner_case_line) k cl in
let astfvtoplevel recursor k tl =
let saved = collect_saved.V.combiner_top_level tl in
{(k tl) with Ast.saved_witness = saved} in
let mcode x = x in
let donothing r k e = k e in
V.rebuilder
mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode
mcode mcode
donothing donothing astfvstatement_dots donothing donothing donothing
donothing donothing donothing donothing donothing donothing donothing
donothing donothing donothing donothing donothing donothing donothing
donothing
astfvrule_elem astfvstatement astfvcase_line astfvtoplevel donothing
(*
let collect_astfvs rules =
let rec loop bound = function
[] -> []
| (metavars,(nm,rule_info,minirules))::rules ->
let bound =
Common.minus_set bound (List.map Ast.get_meta_name metavars) in
(nm,rule_info,
(List.map (astfvs metavars bound).V.rebuilder_top_level minirules))::
(loop ((List.map Ast.get_meta_name metavars)@bound) rules) in
loop [] rules
*)
let collect_astfvs rules =
let rec loop bound = function
[] -> []
| (metavars, rule)::rules ->
match rule with
Ast.ScriptRule (_,_,_,_,script_vars,_,_) ->
(* why are metavars in rule, but outside for cocci rule??? *)
let bound = script_vars @ bound in
rule::(loop bound rules)
| Ast.InitialScriptRule (_,_,_,_,_,_)
| Ast.FinalScriptRule (_,_,_,_,_,_) ->
(* bound stays as is because init/finalize provides no names, so
inheritance by others is not possible *)
rule::(loop bound rules)
| Ast.CocciRule (nm, rule_info, minirules, isexp, ruletype) ->
let bound =
Common.minus_set bound (List.map Ast.get_meta_name metavars) in
(Ast.CocciRule
(nm, rule_info,
(List.map (astfvs metavars bound).V.rebuilder_top_level
minirules),
isexp, ruletype))::
(loop ((List.map Ast.get_meta_name metavars)@bound) rules) in
loop [] rules
(* ---------------------------------------------------------------- *)
(* position variables that appear as a constraint on another position variable.
a position variable also cannot appear both positively and negatively in a
single rule. *)
let get_neg_pos_list (_,rule) used_after_list =
let donothing r k e = k e in
let bind (p1,np1,ap1) (p2,np2,ap2) =
(Common.union_set p1 p2, Common.union_set np1 np2,
Common.union_set ap1 ap2) in
let option_default = ([],[],[]) in
let metaid (x,_,_,_) = x in
let get_neg_pos_constraints =
Ast.cstr_fold_sign
{ Ast.empty_cstr_transformer with
Ast.cstr_meta_name = Some (fun mn (pos, neg) -> (mn :: pos, neg)) }
{ Ast.empty_cstr_transformer with
Ast.cstr_meta_name = Some (fun mn (pos, neg) -> (pos, mn :: neg)) } in
let mcode r mc =
List.fold_left
(function (pos_vars,neg_vars,all_vars) ->
(* pos_vars are position variables that are used in a positive way
neg_vars are position variables that are used in a negative way
all_vars are position variables with the annotation ALL.
These sets can overlap. *)
(function
Ast.MetaPos(name,constraints,collect,_,_) ->
let name' = metaid name in
let pos_vars', neg_vars' =
get_neg_pos_constraints constraints (pos_vars, neg_vars) in
let (pos_vars'', all_vars') =
match collect with
Ast.PER -> (name' :: pos_vars', all_vars)
| Ast.ALL -> (pos_vars', name' :: all_vars) in
(pos_vars'', neg_vars',all_vars')
| _ -> (pos_vars,neg_vars,all_vars)))
option_default (Ast.get_pos_var mc) in
let v =
V.combiner bind option_default
mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode
mcode mcode
donothing donothing donothing donothing donothing donothing donothing
donothing donothing donothing donothing donothing donothing donothing
donothing donothing donothing donothing donothing donothing donothing
donothing donothing donothing donothing donothing in
match rule with
Ast.CocciRule(rule_name,_,minirules,_,_) ->
List.map
(function toplevel ->
let (positions,neg_positions,all_positions) =
v.V.combiner_top_level toplevel in
(try
let (badr,badnm) =
List.find (function p -> List.mem p neg_positions) positions in
failwith
(Printf.sprintf
"Variable %s in %s cannot be used as both a position and a constraint"
(if badr = rule_name
then badnm
else Printf.sprintf "%s.%s" badr badnm)
rule_name)
with Not_found -> ());
(neg_positions, all_positions))
minirules
| Ast.ScriptRule _ | Ast.InitialScriptRule _ | Ast.FinalScriptRule _ ->
(*no negated positions*) []
(* ---------------------------------------------------------------- *)
(* collect used after lists, per minirule *)
(* defined is a list of variables that were declared in a previous metavar
declaration *)
(* Top-level used after: For each rule collect the set of variables that
are inherited, ie used but not defined. These are accumulated back to
their point of definition. *)
let collect_top_level_used_after metavar_rule_list dropped_rules =
let drop_virt = List.filter (function ("virtual",_) -> false | _ -> true) in
let (used_after,used_after_lists) =
List.fold_right
(function (metavar_list,r) ->
function (used_after,used_after_lists) ->
let locally_defined =
match r with
Ast.ScriptRule (_,_,_,_,free_vars,_,_) -> free_vars
| _ -> List.map Ast.get_meta_name metavar_list in
let continue_propagation =
List.filter (function x -> not(List.mem x locally_defined))
used_after in
let free_vars =
match r with
Ast.ScriptRule (_,_,_,mv,_,_,_) ->
drop_virt(List.map (function (_,(r,v),_,_) -> (r,v)) mv)
| Ast.InitialScriptRule (_,_,_,mv,_,_)
| Ast.FinalScriptRule (_,_,_,mv,_,_) ->
(* only virtual identifiers *)
[]
| Ast.CocciRule (_,_,rule,_,_) ->
drop_virt
(Common.union_set (nub (collect_all_rule_refs rule))
(collect_in_plus metavar_list rule)) in
let inherited =
List.filter (function x -> not (List.mem x locally_defined))
free_vars in
(Common.union_set inherited continue_propagation,
used_after::used_after_lists))
metavar_rule_list ([],[]) in
let used_after =
List.filter
(function (rule,_) -> not(List.mem rule dropped_rules))
used_after in
match used_after with
[] -> used_after_lists
| _ ->
failwith
(Printf.sprintf "collect_top_level_used_after: unbound variables %s"
(String.concat " " (List.map (function (_,x) -> x) used_after)))
let collect_local_used_after metavars minirules used_after =
let locally_defined = List.map Ast.get_meta_name metavars in
let rec loop = function
[] -> (used_after,[],[],[],[])
| minirule::rest ->
(* In a rule there are three kinds of local variables:
1. Variables referenced in the minus or context code.
These get a value by matching. This value can be used in
subsequent rules.
2. Fresh variables referenced in the plus code.
3. Variables referenced in the seeds of the fresh variables.
There are also non-local variables. These may either be variables
referenced in the minus, context, or plus code, or they may be
variables referenced in the seeds of the fresh variables. *)
(* Step 1: collect all references in minus/context, plus, seed
code *)
let variables_referenced_in_minus_context_code =
nub (collect_all_minirule_refs minirule) in
let variables_referenced_in_plus_code =
collect_in_plus_term.V.combiner_top_level minirule in
let (env_of_fresh_seeds,seeds_and_plus) =
collect_fresh_seed_env
metavars variables_referenced_in_plus_code in
let all_free_vars =
Common.union_set variables_referenced_in_minus_context_code
seeds_and_plus in
(* Step 2: identify locally defined ones *)
let local_fresh = List.map fst env_of_fresh_seeds in
let is_local =
List.partition (function x -> List.mem x locally_defined) in
let local_env_of_fresh_seeds =
(* these have to be restricted to only one value if the associated
fresh variable is used after *)
List.map (function (f,ss) -> (f,is_local ss)) env_of_fresh_seeds in
let (local_all_free_vars,nonlocal_all_free_vars) =
is_local all_free_vars in
(* Step 3, recurse on the rest of the rules, making available whatever
has been defined in this one *)
let (mini_used_after,fvs_lists,mini_used_after_lists,
mini_fresh_used_after_lists,mini_fresh_used_after_seeds) =
loop rest in
(* Step 4: collect the results. These are:
1. All of the variables used non-locally in the rules starting
with this one
2. All of the free variables to the end of the semantic patch
3. The variables that are used afterwards and defined here by
matching (minus or context code)
4. The variables that are used afterwards and are defined here as
fresh
5. The variables that are used as seeds in computing the bindings
of the variables collected in part 4. *)
let (local_used_after, nonlocal_used_after) =
is_local mini_used_after in
let (fresh_local_used_after(*4*),matched_local_used_after) =
List.partition (function x -> List.mem x local_fresh)
local_used_after in
let matched_local_used_after(*3*) =
Common.union_set matched_local_used_after nonlocal_used_after in
let new_used_after = (*1*)
Common.union_set nonlocal_all_free_vars nonlocal_used_after in
let fresh_local_used_after_seeds =
List.filter
(* no point to keep variables that already are gtd to have only
one value *)
(function x -> not (List.mem x matched_local_used_after))
(List.fold_left (function p -> function c -> Common.union_set c p)
[]
(List.map
(function fua ->
fst (List.assoc fua local_env_of_fresh_seeds))
fresh_local_used_after)) in
(new_used_after,all_free_vars::fvs_lists(*2*),
matched_local_used_after::mini_used_after_lists,
fresh_local_used_after::mini_fresh_used_after_lists,
fresh_local_used_after_seeds::mini_fresh_used_after_seeds) in
let (_,fvs_lists,used_after_lists(*ua*),
fresh_used_after_lists(*fua*),fresh_used_after_lists_seeds(*fuas*)) =
loop minirules in
(fvs_lists,used_after_lists,
fresh_used_after_lists,fresh_used_after_lists_seeds)
let collect_used_after metavar_rule_list dropped_rules =
let used_after_lists =
collect_top_level_used_after metavar_rule_list dropped_rules in
List.map2
(function (metavars,r) ->
function used_after ->
match r with
Ast.ScriptRule (_,_,_,_,_,_,_) (* no minirules, so nothing to do? *)
| Ast.InitialScriptRule (_,_,_,_,_,_)
| Ast.FinalScriptRule (_,_,_,_,_,_) ->
([], [used_after], [[]], [])
| Ast.CocciRule (name, rule_info, minirules, _,_) ->
collect_local_used_after metavars minirules used_after
)
metavar_rule_list used_after_lists
let rec split4 = function
[] -> ([],[],[],[])
| (a,b,c,d)::l -> let (a1,b1,c1,d1) = split4 l in (a::a1,b::b1,c::c1,d::d1)
(* ---------------------------------------------------------------- *)
(* entry point *)
let free_vars rules dropped_rules =
let metavars = List.map (function (mv,rule) -> mv) rules in
let (fvs_lists,used_after_matched_lists,
fresh_used_after_lists,fresh_used_after_lists_seeds) =
split4 (collect_used_after rules dropped_rules) in
let neg_pos_lists =
List.map2 get_neg_pos_list rules used_after_matched_lists in
let positions_list = (* for all rules, assume all positions are used after *)
List.map
(function (mv, r) ->
match r with
Ast.ScriptRule _ (* doesn't declare position variables *)
| Ast.InitialScriptRule _ | Ast.FinalScriptRule _ -> []
| Ast.CocciRule (_,_,rule,_,_) ->
let positions =
List.fold_left
(function prev ->
function
Ast.MetaPosDecl(_,nm) | Ast.MetaComDecl(_,nm) -> nm::prev
| _ -> prev)
[] mv in
List.map (function _ -> positions) rule)
rules in
let new_rules =
List.map2
(function (mv,r) ->
function (ua,fua) ->
match r with
Ast.ScriptRule _
| Ast.InitialScriptRule _ | Ast.FinalScriptRule _ -> r
| Ast.CocciRule (nm, rule_info, r, is_exp,ruletype) ->
Ast.CocciRule
(nm, rule_info,
classify_variables mv r
((List.concat ua) @ (List.concat fua)),
is_exp,ruletype))
rules (List.combine used_after_matched_lists fresh_used_after_lists) in
let new_rules = collect_astfvs (List.combine metavars new_rules) in
(metavars,new_rules,
fvs_lists,neg_pos_lists,
(used_after_matched_lists,
fresh_used_after_lists,fresh_used_after_lists_seeds),
positions_list)
|