1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
(*
* This file is part of Coccinelle, licensed under the terms of the GPL v2.
* See copyright.txt in the Coccinelle source code for more information.
* The Coccinelle source code can be obtained at http://coccinelle.lip6.fr
*)
(* find unitary metavariables *)
module Ast0 = Ast0_cocci
module Ast = Ast_cocci
module V0 = Visitor_ast0
module VT0 = Visitor_ast0_types
let set_minus s minus = List.filter (function n -> not (List.mem n minus)) s
let rec nub = function
[] -> []
| (x::xs) when (List.mem x xs) -> nub xs
| (x::xs) -> x::(nub xs)
(* ----------------------------------------------------------------------- *)
(* Find the variables that occur free and occur free in a unitary way *)
(* take everything *)
let minus_checker name = let id = Ast0.unwrap_mcode name in [id]
(* take only what is in the plus code *)
let plus_checker (nm,_,_,mc,_,_) =
match mc with Ast0.PLUS _ -> [nm] | _ -> []
let get_free checker t =
let bind x y = x @ y in
let option_default = [] in
let donothing r k e = k e in
(* considers a single list *)
let collect_unitary_nonunitary free_usage =
let free_usage = List.sort compare free_usage in
let rec loop1 todrop = function
[] -> []
| (x::xs) as all -> if x = todrop then loop1 todrop xs else all in
let rec loop2 = function
[] -> ([],[])
| [x] -> ([x],[])
| x::y::xs ->
if x = y
then
let (unitary,non_unitary) = loop2(loop1 x xs) in
(unitary,x::non_unitary)
else
let (unitary,non_unitary) = loop2 (y::xs) in
(x::unitary,non_unitary) in
loop2 free_usage in
(* considers a list of lists *)
let detect_unitary_frees l =
let (unitary,nonunitary) =
List.split (List.map collect_unitary_nonunitary l) in
let unitary = nub (List.concat unitary) in
let nonunitary = nub (List.concat nonunitary) in
let unitary =
List.filter (function x -> not (List.mem x nonunitary)) unitary in
unitary@nonunitary@nonunitary in
let whencode afn bfn expression = function
Ast0.WhenNot(_,_,a) -> afn a
| Ast0.WhenAlways(_,_,b) -> bfn b
| Ast0.WhenModifier(_,_) -> option_default
| Ast0.WhenNotTrue(_,_,a) -> expression a
| Ast0.WhenNotFalse(_,_,a) -> expression a in
let ident r k i =
match Ast0.unwrap i with
Ast0.MetaId(name,_,_,_) | Ast0.MetaFunc(name,_,_)
| Ast0.MetaLocalFunc(name,_,_) -> bind (k i) (checker name)
| Ast0.DisjId(starter,id_list,mids,ender) ->
detect_unitary_frees(List.map r.VT0.combiner_rec_ident id_list)
| _ -> k i in
let type_collect res ty = bind res (Ast0.meta_names_of_typeC ty) in
let mcode mc =
List.fold_left
(fun accu e ->
match e with
Ast0.MetaPosTag(Ast0.MetaPos(name,constraints,_)) ->
Ast.cstr_fold
{ Ast.empty_cstr_transformer with
Ast.cstr_script =
Some (fun (_,(name,lang,params,_pos,body)) accu ->
(* It seems that position variables are not relevant
for unitaryness, so drop them *)
bind (List.map fst
(List.filter
(function
(_,Ast.MetaPosDecl _) -> false
| _ -> true)
params)) accu) } constraints accu
| Ast0.MetaPosTag(Ast0.MetaCom(name,constraints)) ->
bind (checker name)
(Ast.cstr_fold
{ Ast.empty_cstr_transformer with
Ast.cstr_script =
Some (fun (_,(name,lang,params,_pos,body)) accu ->
(* It seems that position variables are not relevant
for unitaryness, so drop them *)
bind (List.map fst
(List.filter
(function
(_,Ast.MetaPosDecl _) -> false
| _ -> true)
params)) accu) } constraints accu)
| _ -> accu)
option_default (Ast0.get_pos mc) in
let constraints_collect r res c =
let cstr_expr =
Some (fun e res -> bind res (r.VT0.combiner_rec_expression e)) in
let cstr_meta_name = Some (fun mn res -> bind [mn] res) in
let transformer =
{ Ast.empty_cstr_transformer with Ast.cstr_expr; Ast.cstr_meta_name } in
Ast.cstr_fold transformer c res in
let expression r k e =
match Ast0.unwrap e with
Ast0.MetaErr(name,constraints,_) ->
let constraints =
constraints_collect r option_default constraints in
bind (k e) (bind (checker name) constraints)
| Ast0.MetaExpr(name,constraints,type_list,_,_,_bitfield) ->
let types =
match type_list with
Some type_list ->
List.fold_left type_collect option_default type_list
| None -> option_default in
let constraints =
constraints_collect r types constraints in
bind (k e) (bind (checker name) constraints)
| Ast0.MetaExprList(name,_,_,_) -> bind (k e) (checker name)
| Ast0.DisjExpr(starter,expr_list,mids,ender) ->
detect_unitary_frees(List.map r.VT0.combiner_rec_expression expr_list)
| _ -> k e in
let typeC r k t =
match Ast0.unwrap t with
Ast0.MetaType(name,_,_) -> bind (k t) (checker name)
| Ast0.DisjType(starter,types,mids,ender) ->
detect_unitary_frees(List.map r.VT0.combiner_rec_typeC types)
| _ -> k t in
let parameter r k p =
match Ast0.unwrap p with
Ast0.MetaParam(name,_,_) | Ast0.MetaParamList(name,_,_,_) ->
bind (k p) (checker name)
| _ -> option_default in
let declaration r k d =
match Ast0.unwrap d with
Ast0.MetaDecl(name,_,_) -> bind (k d) (checker name)
| Ast0.DisjDecl(starter,decls,mids,ender) ->
detect_unitary_frees(List.map r.VT0.combiner_rec_declaration decls)
| _ -> k d in
let field r k d =
match Ast0.unwrap d with
Ast0.MetaField(name,_,_)
| Ast0.MetaFieldList(name,_,_,_) -> bind (k d) (checker name)
| Ast0.DisjField(starter,decls,mids,ender) ->
detect_unitary_frees(List.map r.VT0.combiner_rec_field decls)
| _ -> k d in
let case_line r k c =
match Ast0.unwrap c with
Ast0.DisjCase(starter,case_lines,mids,ender) ->
detect_unitary_frees(List.map r.VT0.combiner_rec_case_line case_lines)
| _ -> k c in
let statement r k s =
match Ast0.unwrap s with
Ast0.MetaStmt(name,_,_) | Ast0.MetaStmtList(name,_,_,_) ->
bind (k s) (checker name)
| Ast0.Disj(starter,stmt_list,mids,ender) ->
detect_unitary_frees
(List.map r.VT0.combiner_rec_statement_dots stmt_list)
| Ast0.Nest(starter,stmt_dots,ender,whn,multi) ->
bind (r.VT0.combiner_rec_statement_dots stmt_dots)
(detect_unitary_frees
(List.map
(whencode
r.VT0.combiner_rec_statement_dots
r.VT0.combiner_rec_statement
r.VT0.combiner_rec_expression)
whn))
| Ast0.Dots(d,whn) ->
detect_unitary_frees
(List.map
(whencode
r.VT0.combiner_rec_statement_dots r.VT0.combiner_rec_statement
r.VT0.combiner_rec_expression)
whn)
| _ -> k s in
let res =
V0.flat_combiner bind option_default
mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode
mcode mcode mcode mcode
donothing donothing donothing donothing donothing donothing donothing
donothing
ident expression donothing donothing typeC donothing parameter
declaration field statement donothing case_line donothing donothing in
collect_unitary_nonunitary
(List.concat (List.map res.VT0.combiner_rec_top_level t))
(* ----------------------------------------------------------------------- *)
(* update the variables that are unitary *)
let update_unitary unitary =
let is_unitary name =
match (List.mem (Ast0.unwrap_mcode name) unitary,
!Flag.sgrep_mode2, Ast0.get_mcode_mcodekind name) with
(true,true,_) | (true,_,Ast0.CONTEXT(_)) -> Ast0.PureContext
| (true,_,_) -> Ast0.Pure
| (false,true,_) | (false,_,Ast0.CONTEXT(_)) -> Ast0.Context
| (false,_,_) -> Ast0.Impure in
let mcode mc =
List.iter
(function
Ast0.MetaPosTag(Ast0.MetaCom(name,constraints)) ->
if not (List.mem (Ast0.unwrap_mcode name) unitary)
then
failwith
(Printf.sprintf "line %d: comment variable %s must be used only once"
(Ast0.get_mcode_line name) (snd (Ast0.unwrap_mcode name)))
| _ -> ())
(Ast0.get_pos mc);
mc in
let ident r k i =
let i = k i in
match Ast0.unwrap i with
Ast0.MetaId(name,constraints,seed,_) ->
Ast0.rewrap i (Ast0.MetaId(name,constraints,seed,is_unitary name))
| Ast0.MetaFunc(name,constraints,_) ->
Ast0.rewrap i (Ast0.MetaFunc(name,constraints,is_unitary name))
| Ast0.MetaLocalFunc(name,constraints,_) ->
Ast0.rewrap i (Ast0.MetaLocalFunc(name,constraints,is_unitary name))
| _ -> i in
let expression r k e =
let e = k e in
match Ast0.unwrap e with
Ast0.MetaErr(name,constraints,_) ->
Ast0.rewrap e (Ast0.MetaErr(name,constraints,is_unitary name))
| Ast0.MetaExpr(name,constraints,ty,form,_,bitfield) ->
Ast0.rewrap e
(Ast0.MetaExpr(name,constraints,ty,form,is_unitary name,bitfield))
| Ast0.MetaExprList(name,lenname,cstr,_) ->
Ast0.rewrap e (Ast0.MetaExprList(name,lenname,cstr,is_unitary name))
| _ -> e in
let typeC r k t =
let t = k t in
match Ast0.unwrap t with
Ast0.MetaType(name,cstr,_) ->
Ast0.rewrap t (Ast0.MetaType(name,cstr,is_unitary name))
| _ -> t in
let parameter r k p =
let p = k p in
match Ast0.unwrap p with
Ast0.MetaParam(name,cstr,_) ->
Ast0.rewrap p (Ast0.MetaParam(name,cstr,is_unitary name))
| Ast0.MetaParamList(name,lenname,cstr,_) ->
Ast0.rewrap p (Ast0.MetaParamList(name,lenname,cstr,is_unitary name))
| _ -> p in
let declaration r k d =
let d = k d in
match Ast0.unwrap d with
Ast0.MetaDecl(name,cstr,_) ->
Ast0.rewrap d (Ast0.MetaDecl(name,cstr,is_unitary name))
| _ -> d in
let statement r k s =
let s = k s in
match Ast0.unwrap s with
Ast0.MetaStmt(name,cstr,_) ->
Ast0.rewrap s (Ast0.MetaStmt(name,cstr,is_unitary name))
| Ast0.MetaStmtList(name,lenname,cstr,_) ->
Ast0.rewrap s (Ast0.MetaStmtList(name,lenname,cstr,is_unitary name))
| _ -> s in
let res = V0.rebuilder
{V0.rebuilder_functions with
VT0.rebuilder_meta_mcode = mcode;
VT0.rebuilder_string_mcode = mcode;
VT0.rebuilder_const_mcode = mcode;
VT0.rebuilder_simpleAssign_mcode = mcode;
VT0.rebuilder_opAssign_mcode = mcode;
VT0.rebuilder_fix_mcode = mcode;
VT0.rebuilder_unary_mcode = mcode;
VT0.rebuilder_arithOp_mcode = mcode;
VT0.rebuilder_logicalOp_mcode = mcode;
VT0.rebuilder_cv_mcode = mcode;
VT0.rebuilder_sign_mcode = mcode;
VT0.rebuilder_struct_mcode = mcode;
VT0.rebuilder_storage_mcode = mcode;
VT0.rebuilder_inc_mcode = mcode;
VT0.rebuilder_identfn = ident;
VT0.rebuilder_exprfn = expression;
VT0.rebuilder_tyfn = typeC;
VT0.rebuilder_paramfn = parameter;
VT0.rebuilder_stmtfn = statement;
VT0.rebuilder_declfn = declaration} in
List.map res.VT0.rebuilder_rec_top_level
(* ----------------------------------------------------------------------- *)
let rec split3 = function
[] -> ([],[],[])
| (a,b,c)::xs -> let (l1,l2,l3) = split3 xs in (a::l1,b::l2,c::l3)
let rec combine3 = function
([],[],[]) -> []
| (a::l1,b::l2,c::l3) -> (a,b,c) :: combine3 (l1,l2,l3)
| _ -> failwith "not possible"
(* ----------------------------------------------------------------------- *)
(* process all rules *)
let do_unitary rules =
let rec loop = function
[] -> ([],[])
| (r::rules) ->
match r with
Ast0.ScriptRule (_,_,_,_,_,_,_)
| Ast0.InitialScriptRule (_,_,_,_,_,_)
| Ast0.FinalScriptRule (_,_,_,_,_,_) ->
let (x,rules) = loop rules in
(x, r::rules)
| Ast0.CocciRule((minus,metavars,chosen_isos),((plus,_) as plusz),inh,rt) ->
let mm1 = List.map Ast.get_meta_name metavars in
let (used_after, rest) = loop rules in
let (m_unitary, m_nonunitary) = get_free minus_checker minus in
let (p_unitary, p_nonunitary) = get_free plus_checker plus in
let p_free =
if !Flag.sgrep_mode2 then []
else p_unitary @ p_nonunitary in
let (in_p, m_unitary) =
List.partition (function x -> List.mem x p_free) m_unitary in
let m_nonunitary = in_p @ m_nonunitary in
let (m_unitary, not_local) =
List.partition (function x -> List.mem x mm1) m_unitary in
let m_unitary =
List.filter (function x -> not (List.mem x used_after))
m_unitary in
let rebuilt = update_unitary m_unitary minus in
(set_minus (m_nonunitary @ used_after) mm1,
(Ast0.CocciRule
((rebuilt, metavars, chosen_isos),plusz,inh,rt))::rest) in
let (_,rules) = loop rules in
rules
(*
let do_unitary minus plus =
let (minus,metavars,chosen_isos) = split3 minus in
let (plus,_) = List.split plus in
let rec loop = function
([],[],[]) -> ([],[])
| (mm1::metavars,m1::minus,p1::plus) ->
let mm1 = List.map Ast.get_meta_name mm1 in
let (used_after,rest) = loop (metavars,minus,plus) in
let (m_unitary,m_nonunitary) = get_free minus_checker m1 in
let (p_unitary,p_nonunitary) = get_free plus_checker p1 in
let p_free =
if !Flag.sgrep_mode2
then []
else p_unitary @ p_nonunitary in
let (in_p,m_unitary) =
List.partition (function x -> List.mem x p_free) m_unitary in
let m_nonunitary = in_p@m_nonunitary in
let (m_unitary,not_local) =
List.partition (function x -> List.mem x mm1) m_unitary in
let m_unitary =
List.filter (function x -> not(List.mem x used_after)) m_unitary in
let rebuilt = update_unitary m_unitary m1 in
(set_minus (m_nonunitary @ used_after) mm1,
rebuilt::rest)
| _ -> failwith "not possible" in
let (_,rules) = loop (metavars,minus,plus) in
combine3 (rules,metavars,chosen_isos)
*)
|