1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
|
(*
* This file is part of Coccinelle, licensed under the terms of the GPL v2.
* See copyright.txt in the Coccinelle source code for more information.
* The Coccinelle source code can be obtained at http://coccinelle.lip6.fr
*)
(*external c_counter : unit -> int = "c_counter"*)
let timeout = 800
(* Optimize triples_conj by first extracting the intersection of the two sets,
which can certainly be in the intersection *)
let pTRIPLES_CONJ_OPT = ref true
(* For complement, make NegState for the negation of a single state *)
let pTRIPLES_COMPLEMENT_OPT = ref true
(* For complement, do something special for the case where the environment
and witnesses are empty *)
let pTRIPLES_COMPLEMENT_SIMPLE_OPT = ref true
(* "Double negate" the arguments of the path operators *)
let pDOUBLE_NEGATE_OPT = ref true
(* Only do pre_forall/pre_exists on new elements in fixpoint iteration *)
let pNEW_INFO_OPT = ref true
(* Filter the result of the label function to drop entries that aren't
compatible with any of the available environments *)
let pREQUIRED_ENV_OPT = ref true
(* Memoize the raw result of the label function *)
let pSATLABEL_MEMO_OPT = ref true
(* Filter results according to the required states *)
let pREQUIRED_STATES_OPT = ref true
(* Drop negative witnesses at Uncheck *)
let pUNCHECK_OPT = ref true
let pANY_NEG_OPT = ref true
let pLazyOpt = ref true
(* Nico: This stack is use for graphical traces *)
let graph_stack = ref ([] : string list)
let graph_hash = (Hashtbl.create 101)
(*
let pTRIPLES_CONJ_OPT = ref false
let pTRIPLES_COMPLEMENT_OPT = ref false
let pTRIPLES_COMPLEMENT_SIMPLE_OPT = ref false
let pDOUBLE_NEGATE_OPT = ref false
let pNEW_INFO_OPT = ref false
let pREQUIRED_ENV_OPT = ref false
let pSATLABEL_MEMO_OPT = ref false
let pREQUIRED_STATES_OPT = ref false
let pUNCHECK_OPT = ref false
let pANY_NEG_OPT = ref false
let pLazyOpt = ref false
*)
let step_count = ref 0
exception Steps
let inc_step _ =
if not (!step_count = 0)
then
begin
step_count := !step_count - 1;
if !step_count = 0 then raise Steps
end
let inc cell = cell := !cell + 1
let satEU_calls = ref 0
let satAW_calls = ref 0
let satAU_calls = ref 0
let satEF_calls = ref 0
let satAF_calls = ref 0
let satEG_calls = ref 0
let satAG_calls = ref 0
let triples = ref 0
let ctr = ref 0
(* **********************************************************************
*
* Implementation of a Witness Tree model checking engine for CTL-FVex
*
*
* **********************************************************************)
(* ********************************************************************** *)
(* Module: SUBST (substitutions: meta. vars and values) *)
(* ********************************************************************** *)
module type SUBST =
sig
type value
type mvar
val eq_mvar: mvar -> mvar -> bool
val eq_val: value -> value -> bool
val merge_val: value -> value -> value
val print_mvar : mvar -> unit
val print_value : value -> unit
end
;;
(* ********************************************************************** *)
(* Module: GRAPH (control flow graphs / model) *)
(* ********************************************************************** *)
module type GRAPH =
sig
type node
type cfg
val predecessors: cfg -> node -> node list
val successors: cfg -> node -> node list
val direct_predecessors: cfg -> node -> node list
val direct_successors: cfg -> node -> node list
val extract_is_loop : cfg -> node -> bool
val print_node : node -> unit
val size : cfg -> int
val print_graph : cfg -> string option ->
(node * string) list -> (node * string) list -> string -> unit
end
;;
module OGRAPHEXT_GRAPH =
struct
module Key : Set.OrderedType with type t = int = struct
type t = int
let compare = compare
end
module KeySet : Set.S with type elt = Key.t = Set.Make (Key)
module KeyMap : Map.S with type key = Key.t = Map.Make (Key)
module Edge : Set.OrderedType with type t = unit = struct
type t = unit
let compare = compare
end
module KeyEdgePair : Set.OrderedType with type t = Key.t * Edge.t = struct
type t = Key.t * Edge.t
let compare = compare
end
module KeyEdgeSet : Set.S with type elt = KeyEdgePair.t =
Set.Make (KeyEdgePair)
module G = Ograph_extended.Make (Key) (KeySet) (KeyMap)
(Edge) (KeyEdgePair) (KeyEdgeSet)
type cfg = string G.ograph_mutable;;
type node = Key.t
let predecessors cfg n =
List.map fst (KeyEdgeSet.elements (cfg#predecessors n));;
let print_node i = Format.print_string (string_of_int i)
end
;;
(* ********************************************************************** *)
(* Module: PREDICATE (predicates for CTL formulae) *)
(* ********************************************************************** *)
module type PREDICATE =
sig
type t
val print_predicate : t -> unit
end
(* ********************************************************************** *)
(* ---------------------------------------------------------------------- *)
(* Misc. useful generic functions *)
(* ---------------------------------------------------------------------- *)
let get_graph_files () = !graph_stack
let get_graph_comp_files outfile = Hashtbl.find_all graph_hash outfile
let head = List.hd
let tail l =
match l with
[] -> []
| (x::xs) -> xs
;;
let foldl = List.fold_left;;
let foldl1 f xs = foldl f (head xs) (tail xs)
type 'a esc = ESC of 'a | CONT of 'a
let foldr = List.fold_right;;
let concat = List.concat;;
let map = List.map;;
let filter = List.filter;;
let partition = List.partition;;
let concatmap f l = List.concat (List.map f l);;
let maybe f g opt =
match opt with
| None -> g
| Some x -> f x
;;
let rec groupBy eq l =
match l with
[] -> []
| (x::xs) ->
let (xs1,xs2) = partition (fun x' -> eq x x') xs in
(x::xs1)::(groupBy eq xs2)
;;
let group l = groupBy (=) l;;
let rec memBy eq x l =
match l with
[] -> false
| (y::ys) -> if (eq x y) then true else (memBy eq x ys)
;;
let rec nubBy eq ls =
match ls with
[] -> []
| (x::xs) when (memBy eq x xs) -> nubBy eq xs
| (x::xs) -> x::(nubBy eq xs)
;;
let state_compare (s1,_,_) (s2,_,_) = compare s1 s2
let setify xs = Common.nub xs;;
let inner_setify xs = List.sort compare (Common.nub xs);;
let unionBy compare eq xs = function
[] -> xs
| ys ->
let rec loop = function
[] -> ys
| x::xs -> if memBy eq x ys then loop xs else x::(loop xs) in
List.sort compare (loop xs)
;;
let union xs ys = unionBy state_compare (=) xs ys;;
let setdiff xs ys = filter (fun x -> not (List.mem x ys)) xs;;
let setdiffBy eq xs ys = filter (fun x -> not (memBy eq x ys)) xs;;
let subseteqBy eq xs ys = List.for_all (fun x -> memBy eq x ys) xs;;
let supseteqBy eq xs ys = subseteqBy eq ys xs
let subseteq xs ys = List.for_all (fun x -> List.mem x ys) xs;;
let supseteq xs ys = subseteq ys xs
let setequalBy eq xs ys = (subseteqBy eq xs ys) && (subseteqBy eq ys xs);;
let setequal xs ys = (subseteq xs ys) && (subseteq ys xs);;
(* Fix point calculation *)
let rec fix eq f x =
let x' = f x in if (eq x' x) then x' else fix eq f x'
;;
(* Fix point calculation on set-valued functions *)
let setfix f x = (fix subseteq f x) (*if new is a subset of old, stop*)
let setgfix eq f x = (fix (supseteqBy eq) f x) (*if new is a supset of old, stop*)
let get_states l = Common.nub (List.map (function (s,_,_) -> s) l)
(* ********************************************************************** *)
(* Module: CTL_ENGINE *)
(* ********************************************************************** *)
module CTL_ENGINE =
functor (SUB : SUBST) ->
functor (G : GRAPH) ->
functor (P : PREDICATE) ->
struct
module A = Ast_ctl
type substitution = (SUB.mvar, SUB.value) Ast_ctl.generic_substitution
type ('pred,'anno) witness =
(G.node, substitution,
('pred, SUB.mvar, 'anno) Ast_ctl.generic_ctl list)
Ast_ctl.generic_witnesstree
type ('pred,'anno) triples =
(G.node * substitution * ('pred,'anno) witness list) list
(* ---------------------------------------------------------------------- *)
(* Pretty printing functions *)
(* ---------------------------------------------------------------------- *)
let (print_generic_substitution : substitution -> unit) = fun substxs ->
let print_generic_subst = function
A.Subst (mvar, v) ->
SUB.print_mvar mvar; Format.print_string " --> "; SUB.print_value v
| A.NegSubst (mvar, v) ->
SUB.print_mvar mvar; Format.print_string " -/-> "; SUB.print_value v in
Format.print_string "[";
Common.print_between (fun () -> Format.print_string ";" )
print_generic_subst substxs;
Format.print_string "]"
let rec (print_generic_witness: ('pred, 'anno) witness -> unit) =
function
| A.Wit (state, subst, anno, childrens) ->
Format.print_string "wit ";
G.print_node state;
print_generic_substitution subst;
(match childrens with
[] -> Format.print_string "{}"
| _ ->
Format.force_newline(); Format.print_string " "; Format.open_box 0;
print_generic_witnesstree childrens; Format.close_box())
| A.NegWit(wit) ->
Format.print_string "!";
print_generic_witness wit
and (print_generic_witnesstree: ('pred,'anno) witness list -> unit) =
fun witnesstree ->
Format.open_box 1;
Format.print_string "{";
Common.print_between
(fun () -> Format.print_string ";"; Format.force_newline() )
print_generic_witness witnesstree;
Format.print_string "}";
Format.close_box()
and print_generic_triple (node,subst,tree) =
G.print_node node;
print_generic_substitution subst;
print_generic_witnesstree tree
and (print_generic_algo : ('pred,'anno) triples -> unit) = fun xs ->
Format.print_string "<";
Common.print_between
(fun () -> Format.print_string ";"; Format.force_newline())
print_generic_triple xs;
Format.print_string ">"
;;
let print_state (str : string) (l : ('pred,'anno) triples) =
Printf.printf "%s\n" str;
List.iter (function x ->
print_generic_triple x; Format.print_newline(); flush stdout)
(List.sort compare l);
Printf.printf "\n"
let print_required_states = function
None -> Printf.printf "no required states\n"
| Some states ->
Printf.printf "required states: ";
List.iter
(function x ->
G.print_node x; Format.print_string " "; Format.print_flush())
states;
Printf.printf "\n"
let mkstates states = function
None -> states
| Some states -> states
let print_graph grp required_states res str = function
A.Exists (keep,v,phi) -> ()
| phi ->
if !Flag_ctl.graphical_trace && not !Flag_ctl.checking_reachability
then
match phi with
| A.Exists (keep,v,phi) -> ()
| _ ->
let label =
Printf.sprintf "%s%s"
(String.escaped
(Common.format_to_string
(function _ ->
Pretty_print_ctl.pp_ctl
(P.print_predicate, SUB.print_mvar)
false phi)))
str in
let file =
match !Flag.currentfile with
None -> "graphical_trace"
| Some f ->
(* : should not appear in the name of a pdf file *)
String.concat "___" (Str.split (Str.regexp ":") f) in
(if not (List.mem file !graph_stack)
then graph_stack := file :: !graph_stack);
let filename = Filename.temp_file (file^":") ".dot" in
Hashtbl.add graph_hash file filename;
G.print_graph grp
(if !Flag_ctl.gt_without_label then None else (Some label))
(match required_states with
None -> []
| Some required_states ->
(List.map (function s -> (s,"blue")) required_states))
(List.map (function (s,_,_) -> (s,"\"#FF8080\"")) res) filename
let print_graph_c grp required_states res ctr phi =
let str = "iter: "^(string_of_int !ctr) in
print_graph grp required_states res str phi
(* ---------------------------------------------------------------------- *)
(* *)
(* ---------------------------------------------------------------------- *)
(* ************************* *)
(* Substitutions *)
(* ************************* *)
let dom_sub sub =
match sub with
| A.Subst(x,_) -> x
| A.NegSubst(x,_) -> x
;;
let ran_sub sub =
match sub with
| A.Subst(_,x) -> x
| A.NegSubst(_,x) -> x
;;
let eq_subBy eqx eqv sub sub' =
match (sub,sub') with
| (A.Subst(x,v),A.Subst(x',v')) -> (eqx x x') && (eqv v v')
| (A.NegSubst(x,v),A.NegSubst(x',v')) -> (eqx x x') && (eqv v v')
| _ -> false
;;
(* NOTE: functor *)
let eq_sub sub sub' = eq_subBy SUB.eq_mvar SUB.eq_val sub sub'
let eq_subst th th' = setequalBy eq_sub th th';;
let merge_subBy eqx (===) (>+<) sub sub' =
(* variable part is guaranteed to be the same *)
match (sub,sub') with
(A.Subst (x,v),A.Subst (x',v')) ->
if (v === v')
then Some [A.Subst(x, v >+< v')]
else None
| (A.NegSubst(x,v),A.Subst(x',v')) ->
if (not (v === v'))
then Some [A.Subst(x',v')]
else None
| (A.Subst(x,v),A.NegSubst(x',v')) ->
if (not (v === v'))
then Some [A.Subst(x,v)]
else None
| (A.NegSubst(x,v),A.NegSubst(x',v')) ->
if (v === v')
then
let merged = v >+< v' in
if merged = v && merged = v'
then Some [A.NegSubst(x,v >+< v')]
else
(* positions are compatible, but not identical. keep apart. *)
Some [A.NegSubst(x,v);A.NegSubst(x',v')]
else Some [A.NegSubst(x,v);A.NegSubst(x',v')]
;;
(* NOTE: functor *)
(* How could we accommodate subterm constraints here??? *)
let merge_sub sub sub' =
merge_subBy SUB.eq_mvar SUB.eq_val SUB.merge_val sub sub'
let clean_substBy eq cmp theta = List.sort cmp (nubBy eq theta);;
(* NOTE: we sort by using the generic "compare" on (meta-)variable
* names; we could also require a definition of compare for meta-variables
* or substitutions but that seems like overkill for sorting
*)
let clean_subst theta =
let res =
clean_substBy eq_sub
(fun s s' ->
let res = compare (dom_sub s) (dom_sub s') in
if res = 0
then
match (s,s') with
(A.Subst(_,_),A.NegSubst(_,_)) -> -1
| (A.NegSubst(_,_),A.Subst(_,_)) -> 1
| _ -> compare (ran_sub s) (ran_sub s')
else res)
theta in
let rec loop = function
[] -> []
| (A.Subst(x,v)::A.NegSubst(y,v')::rest) when SUB.eq_mvar x y ->
loop (A.Subst(x,v)::rest)
| x::xs -> x::(loop xs) in
loop res
let top_subst = [];; (* Always TRUE subst. *)
(* Split a theta in two parts: one with (only) "x" and one without *)
(* NOTE: functor *)
let split_subst theta x =
partition (fun sub -> SUB.eq_mvar (dom_sub sub) x) theta;;
exception SUBST_MISMATCH
let conj_subst theta theta' =
match (theta,theta') with
| ([],_) -> Some theta'
| (_,[]) -> Some theta
| _ ->
let rec classify = function
[] -> []
| [x] -> [(dom_sub x,[x])]
| x::xs ->
(match classify xs with
((nm,y)::ys) as res ->
if dom_sub x = nm
then (nm,x::y)::ys
else (dom_sub x,[x])::res
| _ -> failwith "ctl_engine: not possible 1") in
let merge_all theta theta' =
foldl
(function rest ->
function sub ->
foldl
(function rest ->
function sub' ->
match (merge_sub sub sub') with
Some subs -> subs @ rest
| _ -> raise SUBST_MISMATCH)
rest theta')
[] theta in
let rec loop = function
([],ctheta') ->
List.concat (List.map (function (_,ths) -> ths) ctheta')
| (ctheta,[]) ->
List.concat (List.map (function (_,ths) -> ths) ctheta)
| ((x,ths)::xs,(y,ths')::ys) ->
let safe_append l1 l2 =
let l1 = List.rev l1 in
List.fold_left
(fun prev cur -> cur :: prev)
l2 l1 in
(match compare x y with
0 -> safe_append (merge_all ths ths') (loop (xs,ys))
| -1 -> safe_append ths (loop (xs,((y,ths')::ys)))
| 1 -> safe_append ths' (loop (((x,ths)::xs),ys))
| _ -> failwith "ctl_engine: not possible 2") in
try Some (clean_subst(loop (classify theta, classify theta')))
with SUBST_MISMATCH -> None
;;
(* theta' must be a subset of theta *)
let conj_subst_none theta theta' =
match (theta,theta') with
| (_,[]) -> Some theta
| ([],_) -> None
| _ ->
let rec classify = function
[] -> []
| [x] -> [(dom_sub x,[x])]
| x::xs ->
(match classify xs with
((nm,y)::ys) as res ->
if dom_sub x = nm
then (nm,x::y)::ys
else (dom_sub x,[x])::res
| _ -> failwith "ctl_engine: not possible 3") in
let merge_all theta theta' =
foldl
(function rest ->
function sub ->
foldl
(function rest ->
function sub' ->
match (merge_sub sub sub') with
Some subs -> subs @ rest
| _ -> raise SUBST_MISMATCH)
rest theta')
[] theta in
let rec loop = function
(ctheta,[]) ->
List.concat (List.map (function (_,ths) -> ths) ctheta)
| ([],ctheta') -> raise SUBST_MISMATCH
| ((x,ths)::xs,(y,ths')::ys) ->
(match compare x y with
0 -> (merge_all ths ths') @ loop (xs,ys)
| -1 -> ths @ loop (xs,((y,ths')::ys))
| 1 -> raise SUBST_MISMATCH
| _ -> failwith "ctl_engine: not possible 4") in
try Some (clean_subst(loop (classify theta, classify theta')))
with SUBST_MISMATCH -> None
;;
let negate_sub sub =
match sub with
| A.Subst(x,v) -> A.NegSubst (x,v)
| A.NegSubst(x,v) -> A.Subst(x,v)
;;
(* Turn a (big) theta into a list of (small) thetas *)
let negate_subst theta = (map (fun sub -> [negate_sub sub]) theta);;
(* ************************* *)
(* Witnesses *)
(* ************************* *)
(* Always TRUE witness *)
let top_wit = ([] : (('pred, 'anno) witness list));;
let eq_wit wit wit' = wit = wit';;
let union_wit wit wit' = (*List.sort compare (wit' @ wit) for popl*)
let res = unionBy compare (=) wit wit' in
let anynegwit = (* if any is neg, then all are *)
List.exists (function A.NegWit _ -> true | A.Wit _ -> false) in
if anynegwit res
then List.filter (function A.NegWit _ -> true | A.Wit _ -> false) res
else res
let negate_wit wit = A.NegWit wit (*
match wit with
| A.Wit(s,th,anno,ws) -> A.NegWitWit(s,th,anno,ws)
| A.NegWitWit(s,th,anno,ws) -> A.Wit(s,th,anno,ws)*)
;;
let negate_wits wits =
List.sort compare (map (fun wit -> [negate_wit wit]) wits);;
let unwitify trips =
let anynegwit = (* if any is neg, then all are *)
List.exists (function A.NegWit _ -> true | A.Wit _ -> false) in
setify
(List.fold_left
(function prev ->
function (s,th,wit) ->
if anynegwit wit then prev else (s,th,top_wit)::prev)
[] trips)
(* ************************* *)
(* Triples *)
(* ************************* *)
(* Triples are equal when the constituents are equal *)
let eq_trip (s,th,wit) (s',th',wit') =
(s = s') && (eq_wit wit wit') && (eq_subst th th');;
let triples_top states = map (fun s -> (s,top_subst,top_wit)) states;;
let normalize trips =
List.map
(function (st,th,wit) -> (st,List.sort compare th,List.sort compare wit))
trips
(* conj opt doesn't work ((1,[],{{x=3}}) v (1,[],{{x=4}})) & (1,[],{{x=4}}) =
(1,[],{{x=3},{x=4}}), not (1,[],{{x=4}}) *)
let triples_conj trips trips' =
let (trips,shared,trips') =
if false && !pTRIPLES_CONJ_OPT (* see comment above *)
then
let (shared,trips) =
List.partition (function t -> memBy eq_trip t trips') trips in
let trips' =
List.filter (function t -> not(memBy eq_trip t shared)) trips' in
(trips,shared,trips')
else (trips,[],trips') in
foldl (* returns a set - setify inlined *)
(function rest ->
function (s1,th1,wit1) ->
foldl
(function rest ->
function (s2,th2,wit2) ->
if (s1 = s2) then
(match (conj_subst th1 th2) with
Some th ->
let t = (s1,th,union_wit wit1 wit2) in
if memBy eq_trip t rest then rest else t::rest
| _ -> rest)
else rest)
rest trips')
shared trips
;;
(* ignore the state in the right argument. always pretend it is the same as
the left one *)
(* env on right has to be a subset of env on left *)
let triples_conj_none trips trips' =
let (trips,shared,trips') =
if false && !pTRIPLES_CONJ_OPT (* see comment above *)
then
let (shared,trips) =
List.partition (function t -> memBy eq_trip t trips') trips in
let trips' =
List.filter (function t -> not(memBy eq_trip t shared)) trips' in
(trips,shared,trips')
else (trips,[],trips') in
foldl (* returns a set - setify inlined *)
(function rest ->
function (s1,th1,wit1) ->
foldl
(function rest ->
function (s2,th2,wit2) ->
match (conj_subst_none th1 th2) with
Some th ->
let t = (s1,th,union_wit wit1 wit2) in
if memBy eq_trip t rest then rest else t::rest
| _ -> rest)
rest trips')
shared trips
;;
exception AW
let triples_conj_AW trips trips' =
let (trips,shared,trips') =
if false && !pTRIPLES_CONJ_OPT
then
let (shared,trips) =
List.partition (function t -> memBy eq_trip t trips') trips in
let trips' =
List.filter (function t -> not(memBy eq_trip t shared)) trips' in
(trips,shared,trips')
else (trips,[],trips') in
foldl (* returns a set - setify inlined *)
(function rest ->
function (s1,th1,wit1) ->
foldl
(function rest ->
function (s2,th2,wit2) ->
if (s1 = s2) then
(match (conj_subst th1 th2) with
Some th ->
let t = (s1,th,union_wit wit1 wit2) in
if memBy eq_trip t rest then rest else t::rest
| _ -> raise AW)
else rest)
rest trips')
shared trips
;;
(* *************************** *)
(* NEGATION (NegState style) *)
(* *************************** *)
(* Constructive negation at the state level *)
type ('a) state =
PosState of 'a
| NegState of 'a list
;;
let compatible_states = function
(PosState s1, PosState s2) ->
if s1 = s2 then Some (PosState s1) else None
| (PosState s1, NegState s2) ->
if List.mem s1 s2 then None else Some (PosState s1)
| (NegState s1, PosState s2) ->
if List.mem s2 s1 then None else Some (PosState s2)
| (NegState s1, NegState s2) -> Some (NegState (s1 @ s2))
;;
(* Conjunction on triples with "special states" *)
let triples_state_conj trips trips' =
let (trips,shared,trips') =
if !pTRIPLES_CONJ_OPT
then
let (shared,trips) =
List.partition (function t -> memBy eq_trip t trips') trips in
let trips' =
List.filter (function t -> not(memBy eq_trip t shared)) trips' in
(trips,shared,trips')
else (trips,[],trips') in
foldl
(function rest ->
function (s1,th1,wit1) ->
foldl
(function rest ->
function (s2,th2,wit2) ->
match compatible_states(s1,s2) with
Some s ->
(match (conj_subst th1 th2) with
Some th ->
let t = (s,th,union_wit wit1 wit2) in
if memBy eq_trip t rest then rest else t::rest
| _ -> rest)
| _ -> rest)
rest trips')
shared trips
;;
let triple_negate (s,th,wits) =
let negstates = (NegState [s],top_subst,top_wit) in
let negths = map (fun th -> (PosState s,th,top_wit)) (negate_subst th) in
let negwits = map (fun nwit -> (PosState s,th,nwit)) (negate_wits wits) in
negstates :: (negths @ negwits) (* all different *)
(* FIX ME: it is not necessary to do full conjunction *)
let triples_complement states (trips : ('pred, 'anno) triples) =
if !pTRIPLES_COMPLEMENT_OPT
then
(let cleanup (s,th,wit) =
match s with
PosState s' -> [(s',th,wit)]
| NegState ss ->
assert (th=top_subst);
assert (wit=top_wit);
map (fun st -> (st,top_subst,top_wit)) (setdiff states ss) in
let (simple,complex) =
if !pTRIPLES_COMPLEMENT_SIMPLE_OPT
then
let (simple,complex) =
List.partition (function (s,[],[]) -> true | _ -> false) trips in
let simple =
[(NegState(List.map (function (s,_,_) -> s) simple),
top_subst,top_wit)] in
(simple,complex)
else ([(NegState [],top_subst,top_wit)],trips) in
let rec compl trips =
match trips with
[] -> simple
| (t::ts) -> triples_state_conj (triple_negate t) (compl ts) in
let compld = (compl complex) in
let compld = concatmap cleanup compld in
compld)
else
let negstates (st,th,wits) =
map (function st -> (st,top_subst,top_wit)) (setdiff states [st]) in
let negths (st,th,wits) =
map (function th -> (st,th,top_wit)) (negate_subst th) in
let negwits (st,th,wits) =
map (function nwit -> (st,th,nwit)) (negate_wits wits) in
match trips with
[] -> map (function st -> (st,top_subst,top_wit)) states
| x::xs ->
setify
(foldl
(function prev ->
function cur ->
triples_conj (negstates cur @ negths cur @ negwits cur) prev)
(negstates x @ negths x @ negwits x) xs)
;;
let triple_negate (s,th,wits) =
let negths = map (fun th -> (s,th,top_wit)) (negate_subst th) in
let negwits = map (fun nwit -> (s,th,nwit)) (negate_wits wits) in
([s], negths @ negwits) (* all different *)
let triples_complement states (trips : ('pred, 'anno) triples) =
if trips = []
then map (function st -> (st,top_subst,top_wit)) states
else
let cleanup (neg,pos) =
let keep_pos =
List.filter (function (s,_,_) -> List.mem s neg) pos in
(map (fun st -> (st,top_subst,top_wit)) (setdiff states neg)) @
keep_pos in
let trips = List.sort state_compare trips in
let all_negated = List.map triple_negate trips in
let merge_one (neg1,pos1) (neg2,pos2) =
let (pos1conj,pos1keep) =
List.partition (function (s,_,_) -> List.mem s neg2) pos1 in
let (pos2conj,pos2keep) =
List.partition (function (s,_,_) -> List.mem s neg1) pos2 in
(Common.union_set neg1 neg2,
(triples_conj pos1conj pos2conj) @ pos1keep @ pos2keep) in
let rec inner_loop = function
x1::x2::rest -> (merge_one x1 x2) :: (inner_loop rest)
| l -> l in
let rec outer_loop = function
[x] -> x
| l -> outer_loop (inner_loop l) in
cleanup (outer_loop all_negated)
(* ********************************** *)
(* END OF NEGATION (NegState style) *)
(* ********************************** *)
(* now this is always true, so we could get rid of it *)
let something_dropped = ref true
let triples_union trips trips' =
(*unionBy compare eq_trip trips trips';;*)
(* returns -1 is t1 > t2, 1 if t2 >= t1, and 0 otherwise *)
(*
The following does not work. Suppose we have ([x->3],{A}) and ([],{A,B}).
Then, the following says that since the first is a more restrictive
environment and has fewer witnesses, then it should be dropped. But having
fewer witnesses is not necessarily less informative than having more,
because fewer witnesses can mean the absence of the witness-causing thing.
So the fewer witnesses have to be kept around.
subseteq changed to = to make it hopefully work
*)
if !pNEW_INFO_OPT
then
begin
something_dropped := false;
if trips = trips'
then (something_dropped := true; trips)
else
let subsumes (s1,th1,wit1) (s2,th2,wit2) =
if s1 = s2
then
(match conj_subst th1 th2 with
Some conj ->
if conj = th1
then if (*subseteq*) wit1 = wit2 then 1 else 0
else
if conj = th2
then if (*subseteq*) wit2 = wit1 then (-1) else 0
else 0
| None -> 0)
else 0 in
let rec first_loop second = function
[] -> second
| x::xs -> first_loop (second_loop x second) xs
and second_loop x = function
[] -> [x]
| (y::ys) as all ->
match subsumes x y with
1 -> something_dropped := true; all
| (-1) -> second_loop x ys
| _ -> y::(second_loop x ys) in
first_loop trips trips'
end
else unionBy compare eq_trip trips trips'
let triples_witness x unchecked not_keep trips =
let anyneg = (* if any is neg, then all are *)
List.exists (function A.NegSubst _ -> true | A.Subst _ -> false) in
let anynegwit = (* if any is neg, then all are *)
List.exists (function A.NegWit _ -> true | A.Wit _ -> false) in
let allnegwit = (* if any is neg, then all are *)
List.for_all (function A.NegWit _ -> true | A.Wit _ -> false) in
let negtopos =
List.map (function A.NegWit w -> w | A.Wit _ -> failwith "bad wit")in
let res =
List.fold_left
(function prev ->
function (s,th,wit) as t ->
let (th_x,newth) = split_subst th x in
match th_x with
[] ->
(* one consider whether if not not_keep is true, then we should
fail. but it could be that the variable is a used_after and
then it is the later rule that should fail and not this one *)
if not not_keep && !Flag_ctl.verbose_ctl_engine
then
(SUB.print_mvar x; Format.print_flush();
print_state ": empty witness from" [t]);
t::prev
| l when anyneg l && !pANY_NEG_OPT -> prev
(* see tests/nestseq for how neg bindings can come up even
without eg partial matches
(* negated substitution only allowed with negwits.
just dropped *)
if anynegwit wit && allnegwit wit (* nonempty negwit list *)
then prev
else
(print_generic_substitution l; Format.print_newline();
failwith"unexpected negative binding with positive witnesses")*)
| _ ->
let new_triple =
if unchecked || not_keep
then (s,newth,wit)
else
if anynegwit wit && allnegwit wit
then (s,newth,[A.NegWit(A.Wit(s,th_x,[],negtopos wit))])
else (s,newth,[A.Wit(s,th_x,[],wit)]) in
new_triple::prev)
[] trips in
if unchecked || !Flag_ctl.partial_match (* the only way to have a NegWit *)
then setify res
else List.rev res
;;
(* Not yet supported, due to the complexity of adding a new component,
analogous to label, to the interaction between Coccinelle and the CTL
engine *)
(*let interpret_constraints eval_constraint constraints trips =
List.filter (function (s,th,wit) -> List.for_all eval_constraint th)
trips
*)
(* ---------------------------------------------------------------------- *)
(* SAT - Model Checking Algorithm for CTL-FVex *)
(* *)
(* TODO: Implement _all_ operators (directly) *)
(* ---------------------------------------------------------------------- *)
(* ************************************* *)
(* The SAT algorithm and special helpers *)
(* ************************************* *)
let pre_exist dir (grp,_,_) y reqst =
let check s =
match reqst with None -> true | Some reqst -> List.mem s reqst in
let exp (s,th,wit) =
let ss' = match dir with
A.FORWARD -> G.predecessors grp s
| A.BACKWARD -> G.successors grp s
in concatmap (fun s' -> if check s' then [(s',th,wit)] else []) ss'
in setify (concatmap exp y)
;;
let pre_exist_direct dir (grp,_,_) y reqst =
let check s =
match reqst with None -> true | Some reqst -> List.mem s reqst in
let exp (s,th,wit) =
let ss' = match dir with
A.FORWARD -> G.direct_predecessors grp s
| A.BACKWARD -> G.direct_successors grp s
in concatmap (fun s' -> if check s' then [(s',th,wit)] else []) ss'
in setify (concatmap exp y)
;;
exception Empty
let pre_forall dir (grp,_,states) y all reqst =
let check s =
match reqst with
None -> true | Some reqst -> List.mem s reqst in
let pred =
match dir with
A.FORWARD -> G.direct_predecessors | A.BACKWARD -> G.direct_successors in
let succ =
match dir with
A.FORWARD -> G.direct_successors | A.BACKWARD -> G.direct_predecessors in
let neighbors =
List.map
(function p -> (p,succ grp p))
(setify
(concatmap
(function (s,_,_) -> List.filter check (pred grp s)) y)) in
(* would a hash table be more efficient? *)
let all = List.sort state_compare all in
let rec up_nodes child s = function
[] -> []
| (s1,th,wit)::xs ->
(match
compare s1 child with
-1 -> up_nodes child s xs
| 0 -> (s,th,wit)::(up_nodes child s xs)
| _ -> []) in
let neighbor_triples =
List.fold_left
(function rest ->
function (s,children) ->
try
(List.map
(function child ->
match up_nodes child s all with [] -> raise Empty | l -> l)
children) :: rest
with Empty -> rest)
[] neighbors in
match neighbor_triples with
[] -> []
| _ ->
(*normalize*)
(foldl1 (@) (List.map (foldl1 triples_conj) neighbor_triples))
(* drop_negwits will call setify *)
let satEX dir m s reqst = pre_exist dir m s reqst;;
let satAX dir m s reqst = pre_forall dir m s s reqst
;;
(* E[phi1 U phi2] == phi2 \/ (phi1 /\ EXE[phi1 U phi2]) *)
let satEU dir ((_,_,states) as m) s1 s2 reqst print_graph =
(*Printf.printf "EU\n";
let ctr = ref 0 in*)
inc satEU_calls;
if s1 = []
then s2
else
(*let ctr = ref 0 in*)
if !pNEW_INFO_OPT
then
let rec f y new_info =
inc_step();
match new_info with
[] -> y
| new_info ->
(*ctr := !ctr + 1;
print_graph y ctr;*)
let first = triples_conj s1 (pre_exist dir m new_info reqst) in
let res = triples_union first y in
let new_info = setdiffBy eq_trip res y in
(*Printf.printf "iter %d res %d new_info %d\n"
!ctr (List.length res) (List.length new_info);
print_state "res" res;
print_state "new_info" new_info;
flush stdout;*)
f res new_info in
f s2 s2
else
let f y =
inc_step();
(*ctr := !ctr + 1;
print_graph y ctr;*)
let pre = pre_exist dir m y reqst in
triples_union s2 (triples_conj s1 pre) in
setfix f s2
;;
let satEU_forAW dir ((cfg,_,states) as m) s1 s2 reqst print_graph =
if s1 = []
then s2
else
if !pNEW_INFO_OPT
then
let rec f y new_info =
if List.exists (G.extract_is_loop cfg) (get_states new_info)
then raise AW
else
match new_info with
[] -> y
| new_info ->
let first =
triples_conj s1 (pre_exist_direct dir m new_info reqst) in
let res = triples_union first y in
let new_info = setdiffBy eq_trip res y in
f res new_info in
f s2 s2
else
let f y =
let pre = pre_exist_direct dir m y reqst in
triples_union s2 (triples_conj s1 pre) in
setfix f s2
;;
(* EF phi == E[true U phi] *)
let satEF dir m s2 reqst =
inc satEF_calls;
(*let ctr = ref 0 in*)
if !pNEW_INFO_OPT
then
let rec f y new_info =
inc_step();
match new_info with
[] -> y
| new_info ->
(*ctr := !ctr + 1;
print_state (Printf.sprintf "iteration %d\n" !ctr) y;*)
let first = pre_exist dir m new_info reqst in
let res = triples_union first y in
let new_info = setdiffBy eq_trip res y in
(*Printf.printf "EF %s iter %d res %d new_info %d\n"
(if dir = A.BACKWARD then "reachable" else "real ef")
!ctr (List.length res) (List.length new_info);
print_state "new info" new_info;
flush stdout;*)
f res new_info in
f s2 s2
else
let f y =
inc_step();
let pre = pre_exist dir m y reqst in
triples_union s2 pre in
setfix f s2
type ('pred,'anno) auok =
AUok of ('pred,'anno) triples | AUfailed of ('pred,'anno) triples
(* A[phi1 U phi2] == phi2 \/ (phi1 /\ AXA[phi1 U phi2]) *)
let satAU dir ((cfg,_,states) as m) s1 s2 reqst print_graph =
let ctr = ref 0 in
inc satAU_calls;
if s1 = []
then AUok s2
else
(*let ctr = ref 0 in*)
if !pNEW_INFO_OPT
then
let rec f y newinfo =
inc_step();
match newinfo with
[] -> AUok y
| new_info ->
ctr := !ctr + 1;
print_graph y ctr;
let pre = pre_forall dir m new_info y reqst in
match triples_conj s1 pre with
[] -> AUok y
| first ->
let res = triples_union first y in
let new_info =
if not !something_dropped
then first
else setdiffBy eq_trip res y in
f res new_info in
try
(if !Flag_ctl.loop_in_src_code
then
let _ = satEU_forAW dir m s1 s2 reqst print_graph in
());
f s2 s2
with AW -> AUfailed s2
else
if !Flag_ctl.loop_in_src_code
then AUfailed s2
else
(*let setfix =
fix (function s1 -> function s2 ->
let s1 = List.map (function (s,th,w) -> (s,th,nub w)) s1 in
let s2 = List.map (function (s,th,w) -> (s,th,nub w)) s2 in
subseteq s1 s2) in for popl *)
let f y =
inc_step();
ctr := !ctr + 1;
print_graph y ctr;
let pre = pre_forall dir m y y reqst in
triples_union s2 (triples_conj s1 pre) in
AUok (setfix f s2)
;;
(* reqst could be the states of s1 *)
(*
let lstates = mkstates states reqst in
let initial_removed =
triples_complement lstates (triples_union s1 s2) in
let initial_base = triples_conj s1 (triples_complement lstates s2) in
let rec loop base removed =
let new_removed =
triples_conj base (pre_exist dir m removed reqst) in
let new_base =
triples_conj base (triples_complement lstates new_removed) in
if supseteq new_base base
then triples_union base s2
else loop new_base new_removed in
loop initial_base initial_removed *)
let satAW dir ((grp,_,states) as m) s1 s2 reqst =
inc satAW_calls;
if s1 = []
then s2
else
(*
This works extremely badly when the region is small and the end of the
region is very ambiguous, eg free(x) ... x
see free.c
if !pNEW_INFO_OPT
then
let get_states l = setify(List.map (function (s,_,_) -> s) l) in
let ostates = Common.union_set (get_states s1) (get_states s2) in
let succ =
(match dir with
A.FORWARD -> G.successors grp
| A.BACKWARD -> G.predecessors grp) in
let states =
List.fold_left Common.union_set ostates (List.map succ ostates) in
let negphi = triples_complement states s1 in
let negpsi = triples_complement states s2 in
triples_complement ostates
(satEU dir m negpsi (triples_conj negphi negpsi) (Some ostates))
else
*)
(*let ctr = ref 0 in*)
let f y =
inc_step();
(*ctr := !ctr + 1;
Printf.printf "iter %d y %d\n" !ctr (List.length y);
print_state "y" y;
flush stdout;*)
let pre = pre_forall dir m y y reqst in
(*print_state "pre" pre;*)
let conj = triples_conj s1 pre in (* or triples_conj_AW *)
triples_union s2 conj in
let drop_wits =
List.map (function (s,e,_) -> (s,e,[])) in
(* drop wits on s1 represents that we don't want any witnesses from
the case that infinitely loops, only from the case that gets
out of the loop. s1 is like a guard. To see the problem, consider
an example where both s1 and s2 match some code after the loop.
we only want the witness from s2. *)
setgfix eq_trip f (triples_union (nubBy eq_trip (drop_wits s1)) s2)
;;
let satAF dir m s reqst =
inc satAF_calls;
if !pNEW_INFO_OPT
then
let rec f y newinfo =
inc_step();
match newinfo with
[] -> y
| new_info ->
let first = pre_forall dir m new_info y reqst in
let res = triples_union first y in
let new_info = setdiffBy eq_trip res y in
f res new_info in
f s s
else
let f y =
inc_step();
let pre = pre_forall dir m y y reqst in
triples_union s pre in
setfix f s
let satAG dir ((_,_,states) as m) s reqst =
inc satAG_calls;
let f y =
inc_step();
let pre = pre_forall dir m y y reqst in
triples_conj y pre in
setgfix eq_trip f s
let satEG dir ((_,_,states) as m) s reqst =
inc satEG_calls;
let f y =
inc_step();
let pre = pre_exist dir m y reqst in
triples_conj y pre in
setgfix eq_trip f s
(* **************************************************************** *)
(* Inner And - a way of dealing with multiple matches within a node *)
(* **************************************************************** *)
(* applied to the result of matching a node. collect witnesses when the
states and environments are the same *)
(* not a good idea, poses problem for unparsing, because don't realize that
adjacent things come from different matches, leading to loss of newlines etc.
exple struct I { ... - int x; + int y; ...} *)
let inner_and trips = trips (*
let rec loop = function
[] -> ([],[])
| (s,th,w)::trips ->
let (cur,acc) = loop trips in
(match cur with
(s',_,_)::_ when s = s' ->
let rec loop' = function
[] -> [(s,th,w)]
| ((_,th',w') as t')::ts' ->
(match conj_subst th th' with
Some th'' -> (s,th'',union_wit w w')::ts'
| None -> t'::(loop' ts')) in
(loop' cur,acc)
| _ -> ([(s,th,w)],cur@acc)) in
let (cur,acc) =
loop (List.sort state_compare trips) (* is this sort needed? *) in
cur@acc *)
(* *************** *)
(* Partial matches *)
(* *************** *)
let filter_conj states unwanted partial_matches =
let x =
triples_conj (triples_complement states (unwitify unwanted))
partial_matches in
triples_conj (unwitify x) (triples_complement states x)
let strict_triples_conj strict states trips trips' =
let res = triples_conj trips trips' in
if !Flag_ctl.partial_match && strict = A.STRICT
then
let fail_left = filter_conj states trips trips' in
let fail_right = filter_conj states trips' trips in
let ors = triples_union fail_left fail_right in
triples_union res ors
else res
let strict_triples_conj_none strict states trips trips' =
let res = triples_conj_none trips trips' in
if !Flag_ctl.partial_match && strict = A.STRICT
then
let fail_left = filter_conj states trips trips' in
let fail_right = filter_conj states trips' trips in
let ors = triples_union fail_left fail_right in
triples_union res ors
else res
(*
let left_strict_triples_conj strict states trips trips' =
let res = triples_conj trips trips' in
if !Flag_ctl.partial_match && strict = A.STRICT
then
let fail_left = filter_conj states trips trips' in
triples_union res fail_left
else res
*)
let strict_A1 strict op failop dir ((_,_,states) as m) trips required_states =
let res = op dir m trips required_states in
if !Flag_ctl.partial_match && strict = A.STRICT
then
let states = mkstates states required_states in
let fail = filter_conj states res (failop dir m trips required_states) in
triples_union res fail
else res
let strict_A2 strict op failop dir ((_,_,states) as m) trips trips'
required_states =
let res = op dir m trips trips' required_states in
if !Flag_ctl.partial_match && strict = A.STRICT
then
let states = mkstates states required_states in
let fail = filter_conj states res (failop dir m trips' required_states) in
triples_union res fail
else res
let strict_A2au strict op failop dir ((_,_,states) as m) trips trips'
required_states print_graph =
match op dir m trips trips' required_states print_graph with
AUok res ->
if !Flag_ctl.partial_match && strict = A.STRICT
then
let states = mkstates states required_states in
let fail =
filter_conj states res (failop dir m trips' required_states) in
AUok (triples_union res fail)
else AUok res
| AUfailed res -> AUfailed res
(* ********************* *)
(* Environment functions *)
(* ********************* *)
let drop_wits required_states s phi =
match required_states with
None -> s
| Some states -> List.filter (function (s,_,_) -> List.mem s states) s
let print_required required =
List.iter
(function l ->
Format.print_string "{";
List.iter
(function reqd ->
print_generic_substitution reqd; Format.print_newline())
l;
Format.print_string "}";
Format.print_newline())
required
exception Too_long
let extend_required trips required =
if !Flag_ctl.partial_match
then required
else
if !pREQUIRED_ENV_OPT
then
(* make it a set *)
let envs =
List.fold_left
(function rest ->
function (_,t,_) -> if List.mem t rest then rest else t::rest)
[] trips in
let envs = if List.mem [] envs then [] else envs in
match (envs,required) with
([],_) -> required
| (envs,hd::tl) ->
(try
let hdln = List.length hd + 5 (* let it grow a little bit *) in
let (_,merged) =
let add x (ln,y) =
if List.mem x y
then (ln,y)
else if ln + 1 > hdln then raise Too_long else (ln+1,x::y) in
foldl
(function rest ->
function t ->
foldl
(function rest ->
function r ->
match conj_subst t r with
None -> rest | Some th -> add th rest)
rest hd)
(0,[]) envs in
merged :: tl
with Too_long -> envs :: required)
| (envs,_) -> envs :: required
else required
let drop_required v required =
if !pREQUIRED_ENV_OPT
then
let res =
inner_setify
(List.map
(function l ->
inner_setify
(List.map (List.filter (function sub -> not(dom_sub sub = v))) l))
required) in
(* check whether an entry has become useless *)
List.filter (function l -> not (List.exists (function x -> x = []) l)) res
else required
(* no idea how to write this function ... *)
let memo_label =
(Hashtbl.create(101) : (P.t, (G.node * substitution) list) Hashtbl.t)
let satLabel label required p =
let triples =
if !pSATLABEL_MEMO_OPT
then
try
let states_subs = Hashtbl.find memo_label p in
List.map (function (st,th) -> (st,th,[])) states_subs
with
Not_found ->
let triples = setify(label p) in
Hashtbl.add memo_label p
(List.map (function (st,th,_) -> (st,th)) triples);
triples
else setify(label p) in
(* normalize first; conj_subst relies on sorting *)
let ntriples = normalize triples in
if !pREQUIRED_ENV_OPT
then
foldl
(function rest ->
function ((s,th,_) as t) ->
if List.for_all
(List.exists (function th' -> not(conj_subst th th' = None)))
required
then t::rest
else rest)
[] ntriples
else ntriples
let get_required_states l =
if !pREQUIRED_STATES_OPT && not !Flag_ctl.partial_match
then
Some(inner_setify (List.map (function (s,_,_) -> s) l))
else None
let get_children_required_states dir (grp,_,_) required_states =
if !pREQUIRED_STATES_OPT && not !Flag_ctl.partial_match
then
match required_states with
None -> None
| Some states ->
let fn =
match dir with
A.FORWARD -> G.successors
| A.BACKWARD -> G.predecessors in
Some (inner_setify (List.concat (List.map (fn grp) states)))
else None
let reachable_table =
(Hashtbl.create(50) : (G.node * A.direction, G.node list) Hashtbl.t)
(* like satEF, but specialized for get_reachable *)
let reachsatEF dir (grp,_,_) s2 =
let dirop =
match dir with A.FORWARD -> G.successors | A.BACKWARD -> G.predecessors in
let union = unionBy compare (=) in
let rec f y = function
[] -> y
| new_info ->
let (pre_collected,new_info) =
List.partition (function Common.Left x -> true | _ -> false)
(List.map
(function x ->
try Common.Left (Hashtbl.find reachable_table (x,dir))
with Not_found -> Common.Right x)
new_info) in
let y =
List.fold_left
(function rest ->
function Common.Left x -> union x rest
| _ -> failwith "ctl_engine: not possible 5")
y pre_collected in
let new_info =
List.map
(function
Common.Right x -> x
| _ -> failwith "ctl_engine: not possible 6")
new_info in
let first = inner_setify (concatmap (dirop grp) new_info) in
let new_info = setdiff first y in
let res = new_info @ y in
f res new_info in
List.rev(f s2 s2) (* put root first *)
let get_reachable dir m required_states =
match required_states with
None -> None
| Some states ->
Some
(List.fold_left
(function rest ->
function cur ->
if List.mem cur rest
then rest
else
Common.union_set
(try Hashtbl.find reachable_table (cur,dir)
with
Not_found ->
let states = reachsatEF dir m [cur] in
Hashtbl.add reachable_table (cur,dir) states;
states)
rest)
[] states)
(* **************************** *)
(* End of environment functions *)
(* **************************** *)
type ('code,'value) cell = Frozen of 'code | Thawed of 'value
let rec satloop firstand unchecked required required_states
((grp,label,states) as m) phi env =
let rec loop firstand unchecked required required_states phi =
let res =
match phi with
A.False -> []
| A.True -> triples_top states
| A.Pred(p) -> satLabel label required p
| A.Uncheck(phi1) ->
let unchecked = if !pUNCHECK_OPT then true else false in
loop firstand unchecked required required_states phi1
| A.Not(phi) ->
let phires = loop firstand unchecked required required_states phi in
(*let phires =
List.map (function (s,th,w) -> (s,th,[])) phires in*)
triples_complement (mkstates states required_states)
phires
| A.Or(phi1,phi2) ->
triples_union
(loop firstand unchecked required required_states phi1)
(loop firstand unchecked required required_states phi2)
| A.SeqOr(phi1,phi2) ->
let res1 = loop firstand unchecked required required_states phi1 in
let res2 = loop firstand unchecked required required_states phi2 in
let res1neg = unwitify res1 in
let pm = !Flag_ctl.partial_match in
(match (pm,res1,res2) with
(false,res1,[]) -> res1
| (false,[],res2) -> res2
| _ ->
triples_union res1
(triples_conj
(triples_complement (mkstates states required_states) res1neg)
res2))
| A.And(strict,phi1,phi2) ->
(* phi1 is considered to be more likely to be [], because of the
definition of asttoctl. Could use heuristics such as the size of
the term *)
let pm = !Flag_ctl.partial_match in
(match (pm,loop firstand unchecked required required_states phi1) with
(false,[]) when !pLazyOpt -> []
| (_,phi1res) ->
let lenphi1res = List.length phi1res in
let curfirstand = firstand && lenphi1res > 1 in
let newfirstand = firstand && lenphi1res = 1 in
let run phi1res =
let new_required = extend_required phi1res required in
let new_required_states = get_required_states phi1res in
let second =
loop newfirstand unchecked new_required
new_required_states phi2 in
(match (pm,second) with
(false,[]) when !pLazyOpt -> []
| (_,phi2res) ->
strict_triples_conj strict
(mkstates states required_states)
phi1res phi2res) in
if curfirstand
then
List.fold_left
(fun prev cur ->
let curres = run [cur] in
triples_union curres prev)
[] phi1res
else run phi1res)
| A.AndAny(dir,strict,phi1,phi2) ->
(* phi2 can appear anywhere that is reachable *)
let pm = !Flag_ctl.partial_match in
(match (pm,loop firstand unchecked required required_states phi1) with
(false,[]) -> []
| (_,phi1res) ->
let new_required = extend_required phi1res required in
let new_required_states = get_required_states phi1res in
let new_required_states =
get_reachable dir m new_required_states in
(match (pm,loop firstand unchecked new_required new_required_states phi2)
with
(false,[]) -> phi1res
| (_,phi2res) ->
(match phi1res with
[] -> (* !Flag_ctl.partial_match must be true *)
if phi2res = []
then []
else
let s = mkstates states required_states in
List.fold_left
(function a -> function b ->
strict_triples_conj strict s a [b])
[List.hd phi2res] (List.tl phi2res)
| [(state,_,_)] ->
let reachable_states =
match new_required_states with
None ->
failwith
"AndAny makes no sense with no reachable states"
| Some states -> states in
let phi2res_tbl = Hashtbl.create 101 in
List.iter
(function (s1,e,w) ->
(* collect the states with the state number at which
they are found, and then move them back to the
phi1res state for future folding *)
Common.hashadd_notest phi2res_tbl s1 (state,e,w))
phi2res;
let s = mkstates states required_states in
List.fold_left
(fun a st ->
try
let b = Hashtbl.find phi2res_tbl st in
strict_triples_conj strict s a b
with Not_found -> a)
phi1res reachable_states
| _ ->
failwith
"only one result allowed for the left arg of AndAny")))
| A.HackForStmt(dir,strict,phi1,phi2) ->
(* phi2 can appear anywhere that is reachable *)
let pm = !Flag_ctl.partial_match in
(match (pm,loop firstand unchecked required required_states phi1) with
(false,[]) -> []
| (_,phi1res) ->
let new_required = extend_required phi1res required in
let new_required_states = get_required_states phi1res in
let new_required_states =
get_reachable dir m new_required_states in
(match (pm,loop firstand unchecked new_required new_required_states phi2)
with
(false,[]) -> phi1res
| (_,phi2res) ->
(* if there is more than one state, something about the
environment has to ensure that the right triples of
phi2 get associated with the triples of phi1.
the asttoctl2 has to ensure that that is the case.
these should thus be structural properties.
env of phi2 has to be a proper subset of env of phi1
to ensure all end up being consistent. no new triples
should be generated. strict_triples_conj_none takes
care of this.
*)
let s = mkstates states required_states in
List.fold_left
(function acc ->
function (st,th,_) as phi2_elem ->
let inverse =
triples_complement [st] [(st,th,[])] in
strict_triples_conj_none strict s acc
(phi2_elem::inverse))
phi1res phi2res))
| A.InnerAnd(phi) ->
inner_and(loop firstand unchecked required required_states phi)
| A.EX(dir,phi) ->
let new_required_states =
get_children_required_states dir m required_states in
satEX dir m (loop firstand unchecked required new_required_states phi)
required_states
| A.AX(dir,strict,phi) ->
let new_required_states =
get_children_required_states dir m required_states in
let res = loop firstand unchecked required new_required_states phi in
strict_A1 strict satAX satEX dir m res required_states
| A.EF(dir,phi) ->
let new_required_states = get_reachable dir m required_states in
satEF dir m (loop firstand unchecked required new_required_states phi)
new_required_states
| A.AF(dir,strict,phi) ->
if !Flag_ctl.loop_in_src_code
then
loop firstand unchecked required required_states
(A.AU(dir,strict,A.True,phi))
else
let new_required_states = get_reachable dir m required_states in
let res = loop firstand unchecked required new_required_states phi in
strict_A1 strict satAF satEF dir m res new_required_states
| A.EG(dir,phi) ->
let new_required_states = get_reachable dir m required_states in
satEG dir m (loop firstand unchecked required new_required_states phi)
new_required_states
| A.AG(dir,strict,phi) ->
let new_required_states = get_reachable dir m required_states in
let res = loop firstand unchecked required new_required_states phi in
strict_A1 strict satAG satEF dir m res new_required_states
| A.EU(dir,phi1,phi2) ->
let new_required_states = get_reachable dir m required_states in
(match loop firstand unchecked required new_required_states phi2 with
[] when !pLazyOpt -> []
| s2 ->
let new_required = extend_required s2 required in
let s1 = loop firstand unchecked new_required new_required_states phi1 in
satEU dir m s1 s2 new_required_states
(fun y ctr -> print_graph_c grp new_required_states y ctr phi))
| A.AW(dir,strict,phi1,phi2) ->
let new_required_states = get_reachable dir m required_states in
(match loop firstand unchecked required new_required_states phi2 with
[] when !pLazyOpt -> []
| s2 ->
let new_required = extend_required s2 required in
let s1 = loop firstand unchecked new_required new_required_states phi1 in
strict_A2 strict satAW satEF dir m s1 s2 new_required_states)
| A.AU(dir,strict,phi1,phi2) ->
(*Printf.printf "using AU\n"; flush stdout;*)
let new_required_states = get_reachable dir m required_states in
(match loop firstand unchecked required new_required_states phi2 with
[] when !pLazyOpt -> []
| s2 ->
let new_required = extend_required s2 required in
let s1 = loop firstand unchecked new_required new_required_states phi1 in
let res =
strict_A2au strict satAU satEF dir m s1 s2 new_required_states
(fun y ctr ->
print_graph_c grp new_required_states y ctr phi) in
match res with
AUok res -> res
| AUfailed tmp_res ->
(* found a loop firstand, have to try AW *)
(* the formula is
A[E[phi1 U phi2] & phi1 W phi2]
the and is nonstrict *)
(* tmp_res is bigger than s2, so perhaps closer to s1 *)
(*Printf.printf "using AW\n"; flush stdout;*)
let s1 =
triples_conj
(satEU dir m s1 tmp_res new_required_states
(* no graph, for the moment *)
(fun y str -> ()))
s1 in
(*Printf.printf "got s1\n"; flush stdout;*)
strict_A2 strict satAW satEF dir m s1 s2 new_required_states
)
| A.Implies(phi1,phi2) ->
loop firstand unchecked required required_states (A.Or(A.Not phi1,phi2))
| A.Exists (keep,v,phi) ->
let new_required = drop_required v required in
triples_witness v unchecked (not keep)
(loop firstand unchecked new_required required_states phi)
| A.Let(v,phi1,phi2) ->
(* should only be used when the properties unchecked, required,
and required_states are known to be the same or at least
compatible between all the uses. this is not checked. *)
let res = loop firstand unchecked required required_states phi1 in
satloop firstand unchecked required required_states m phi2 ((v,res) :: env)
| A.LetR(dir,v,phi1,phi2) ->
(* should only be used when the properties unchecked, required,
and required_states are known to be the same or at least
compatible between all the uses. this is not checked. *)
(* doesn't seem to be used any more *)
let new_required_states = get_reachable dir m required_states in
let res = loop firstand unchecked required new_required_states phi1 in
satloop firstand unchecked required required_states m phi2 ((v,res) :: env)
| A.Ref(v) ->
let res = List.assoc v env in
if unchecked
then List.map (function (s,th,_) -> (s,th,[])) res
else res
| A.XX(phi) -> failwith "should have been removed" in
if !Flag_ctl.bench > 0 then triples := !triples + (List.length res);
let res = drop_wits required_states res phi (* ) *) in
print_graph grp required_states res "" phi;
res in
loop firstand unchecked required required_states phi
;;
(* SAT with tracking *)
let output str =
Printf.printf "%s\n" str
let rec sat_verbose_loop firstand unchecked required required_states annot maxlvl lvl
((_,label,states) as m) phi env =
let anno res children = (annot lvl phi res children,res) in
let satv firstand unchecked required required_states phi0 env =
sat_verbose_loop firstand unchecked required required_states annot maxlvl (lvl+1)
m phi0 env in
if (lvl > maxlvl) && (maxlvl > -1) then
anno (satloop firstand unchecked required required_states m phi env) []
else
let (child,res) =
match phi with
A.False -> anno [] []
| A.True -> anno (triples_top states) []
| A.Pred(p) ->
output "label";
anno (satLabel label required p) []
| A.Uncheck(phi1) ->
let unchecked = if !pUNCHECK_OPT then true else false in
let (child1,res1) = satv firstand unchecked required required_states phi1 env in
output "uncheck";
anno res1 [child1]
| A.Not(phi1) ->
let (child,res) =
satv firstand unchecked required required_states phi1 env in
output "not";
anno (triples_complement (mkstates states required_states) res) [child]
| A.Or(phi1,phi2) ->
let (child1,res1) =
satv firstand unchecked required required_states phi1 env in
let (child2,res2) =
satv firstand unchecked required required_states phi2 env in
output "or";
anno (triples_union res1 res2) [child1; child2]
| A.SeqOr(phi1,phi2) ->
let (child1,res1) =
satv firstand unchecked required required_states phi1 env in
let (child2,res2) =
satv firstand unchecked required required_states phi2 env in
let res1neg =
List.map (function (s,th,_) -> (s,th,[])) res1 in
output "seqor";
let pm = !Flag_ctl.partial_match in
(match (pm,res1,res2) with
(false,res1,[]) -> anno res1 [child1; child2]
| (false,[],res2) -> anno res2 [child1; child2]
| _ ->
anno (triples_union res1
(triples_conj
(triples_complement (mkstates states required_states)
res1neg)
res2))
[child1; child2])
| A.And(strict,phi1,phi2) ->
let pm = !Flag_ctl.partial_match in
(match (pm,satv firstand unchecked required required_states phi1 env) with
(false,(child1,[])) ->
output "and"; anno [] [child1]
| (_,(child1,res1)) ->
let lenphi1res = List.length res1 in
let curfirstand = firstand && lenphi1res > 1 in
let newfirstand = firstand && lenphi1res = 1 in
let run res1 =
let new_required = extend_required res1 required in
let new_required_states = get_required_states res1 in
let second =
satv newfirstand unchecked new_required new_required_states
phi2 env in
(match (pm,second) with
(false,(child2,[])) -> (child2,[])
| (_,(child2,res2)) ->
(child2,
strict_triples_conj strict
(mkstates states required_states)
res1 res2)) in
output "and";
let (child2,res) =
if curfirstand
then
List.fold_left
(fun (_,prev) cur ->
let (child2,curres) = run [cur] in
(child2,triples_union curres prev))
(child1 (*dummy value*),[]) res1
else run res1 in
anno res [child1; child2])
| A.AndAny(dir,strict,phi1,phi2) ->
let pm = !Flag_ctl.partial_match in
(match (pm,satv firstand unchecked required required_states phi1 env) with
(false,(child1,[])) ->
output "and"; anno [] [child1]
| (_,(child1,res1)) ->
let new_required = extend_required res1 required in
let new_required_states = get_required_states res1 in
let new_required_states =
get_reachable dir m new_required_states in
(match (pm,satv firstand unchecked new_required new_required_states phi2
env) with
(false,(child2,[])) ->
output "andany1";
anno res1 [child1;child2]
| (_,(child2,res2)) ->
(match res1 with
[] -> (* !Flag_ctl.partial_match must be true *)
if res2 = []
then anno [] [child1; child2]
else
let res =
let s = mkstates states required_states in
List.fold_left
(function a -> function b ->
strict_triples_conj strict s a [b])
[List.hd res2] (List.tl res2) in
anno res [child1; child2]
| [(state,_,_)] ->
let reachable_states =
match new_required_states with
None ->
failwith
"AndAny makes no sense with no reachable states"
| Some states -> states in
let res2_tbl = Hashtbl.create 101 in
List.iter
(function (s1,e,w) ->
(* collect the states with the state number at which
they are found, and then move them back to the
res1 state for future folding *)
Common.hashadd_notest res2_tbl s1 (state,e,w))
res2;
output "andany2";
let s = mkstates states required_states in
let res =
List.fold_left
(fun a st ->
try
let b = Hashtbl.find res2_tbl st in
strict_triples_conj strict s a b
with Not_found -> a)
res1 reachable_states in
anno res [child1; child2]
| _ ->
failwith
"only one result allowed for the left arg of AndAny")))
| A.HackForStmt(dir,strict,phi1,phi2) ->
let pm = !Flag_ctl.partial_match in
(match (pm,satv firstand unchecked required required_states phi1 env) with
(false,(child1,[])) ->
output "and"; anno [] [child1]
| (_,(child1,res1)) ->
let new_required = extend_required res1 required in
let new_required_states = get_required_states res1 in
let new_required_states =
get_reachable dir m new_required_states in
(match (pm,satv firstand unchecked new_required new_required_states phi2
env) with
(false,(child2,[])) ->
output "andany3";
anno res1 [child1;child2]
| (_,(child2,res2)) ->
let res =
let s = mkstates states required_states in
List.fold_left
(function acc ->
function (st,th,_) as phi2_elem ->
let inverse =
triples_complement [st] [(st,th,[])] in
strict_triples_conj_none strict s acc
(phi2_elem::inverse))
res1 res2 in
anno res [child1; child2]))
| A.InnerAnd(phi1) ->
let (child1,res1) = satv firstand unchecked required required_states phi1 env in
output "uncheck";
anno (inner_and res1) [child1]
| A.EX(dir,phi1) ->
let new_required_states =
get_children_required_states dir m required_states in
let (child,res) =
satv firstand unchecked required new_required_states phi1 env in
output "EX";
anno (satEX dir m res required_states) [child]
| A.AX(dir,strict,phi1) ->
let new_required_states =
get_children_required_states dir m required_states in
let (child,res) =
satv firstand unchecked required new_required_states phi1 env in
output "AX";
let res = strict_A1 strict satAX satEX dir m res required_states in
anno res [child]
| A.EF(dir,phi1) ->
let new_required_states = get_reachable dir m required_states in
let (child,res) =
satv firstand unchecked required new_required_states phi1 env in
output "EF";
anno (satEF dir m res new_required_states) [child]
| A.AF(dir,strict,phi1) ->
if !Flag_ctl.loop_in_src_code
then
satv firstand unchecked required required_states
(A.AU(dir,strict,A.True,phi1))
env
else
(let new_required_states = get_reachable dir m required_states in
let (child,res) =
satv firstand unchecked required new_required_states phi1 env in
output "AF";
let res =
strict_A1 strict satAF satEF dir m res new_required_states in
anno res [child])
| A.EG(dir,phi1) ->
let new_required_states = get_reachable dir m required_states in
let (child,res) =
satv firstand unchecked required new_required_states phi1 env in
output "EG";
anno (satEG dir m res new_required_states) [child]
| A.AG(dir,strict,phi1) ->
let new_required_states = get_reachable dir m required_states in
let (child,res) =
satv firstand unchecked required new_required_states phi1 env in
output "AG";
let res = strict_A1 strict satAG satEF dir m res new_required_states in
anno res [child]
| A.EU(dir,phi1,phi2) ->
let new_required_states = get_reachable dir m required_states in
(match satv firstand unchecked required new_required_states phi2 env with
(child2,[]) ->
output "EU";
anno [] [child2]
| (child2,res2) ->
let new_required = extend_required res2 required in
let (child1,res1) =
satv firstand unchecked new_required new_required_states phi1 env in
output "EU";
anno (satEU dir m res1 res2 new_required_states (fun y str -> ()))
[child1; child2])
| A.AW(dir,strict,phi1,phi2) ->
failwith "should not be used" (*
let new_required_states = get_reachable dir m required_states in
(match satv firstand unchecked required new_required_states phi2 env with
(child2,[]) ->
output (Printf.sprintf "AW %b" unchecked); anno [] [child2]
| (child2,res2) ->
let new_required = extend_required res2 required in
let (child1,res1) =
satv firstand unchecked new_required new_required_states phi1 env in
output (Printf.sprintf "AW %b" unchecked);
let res =
strict_A2 strict satAW satEF dir m res1 res2
new_required_states in
anno res [child1; child2]) *)
| A.AU(dir,strict,phi1,phi2) ->
let new_required_states = get_reachable dir m required_states in
(match satv firstand unchecked required new_required_states phi2 env with
(child2,[]) ->
output "AU"; anno [] [child2]
| (child2,s2) ->
let new_required = extend_required s2 required in
let (child1,s1) =
satv firstand unchecked new_required new_required_states phi1 env in
output "AU";
let res =
strict_A2au strict satAU satEF dir m s1 s2 new_required_states
(fun y str -> ()) in
(match res with
AUok res ->
anno res [child1; child2]
| AUfailed tmp_res ->
(* found a loop, have to try AW *)
(* the formula is
A[E[phi1 U phi2] & phi1 W phi2]
the and is nonstrict *)
(* tmp_res is bigger than s2, so perhaps closer to s1 *)
output "AW"; ignore (anno [] [child1; child2]);
let s1 =
triples_conj
(satEU dir m s1 tmp_res new_required_states
(* no graph, for the moment *)
(fun y str -> ()))
s1 in
let res =
strict_A2 strict satAW satEF dir m s1 s2 new_required_states in
anno res [child1; child2]))
| A.Implies(phi1,phi2) ->
satv firstand unchecked required required_states
(A.Or(A.Not phi1,phi2))
env
| A.Exists (keep,v,phi1) ->
let new_required = drop_required v required in
let (child,res) =
satv firstand unchecked new_required required_states phi1 env in
output "exists";
anno (triples_witness v unchecked (not keep) res) [child]
| A.Let(v,phi1,phi2) ->
let (child1,res1) =
satv firstand unchecked required required_states phi1 env in
let (child2,res2) =
satv firstand unchecked required required_states phi2 ((v,res1) :: env) in
anno res2 [child1;child2]
| A.LetR(dir,v,phi1,phi2) ->
let new_required_states = get_reachable dir m required_states in
let (child1,res1) =
satv firstand unchecked required new_required_states phi1 env in
let (child2,res2) =
satv firstand unchecked required required_states phi2 ((v,res1) :: env) in
anno res2 [child1;child2]
| A.Ref(v) ->
output "Ref";
let res = List.assoc v env in
let res =
if unchecked
then List.map (function (s,th,_) -> (s,th,[])) res
else res in
anno res []
| A.XX(phi) -> failwith "should have been removed" in
let res1 = drop_wits required_states res phi in
if not(res1 = res)
then
begin
print_required_states required_states;
print_state "after drop_wits" res1 end;
(child,res1)
;;
let sat_verbose annotate maxlvl lvl m phi =
sat_verbose_loop true false [] None annotate maxlvl lvl m phi []
(* Type for annotations collected in a tree *)
type ('a) witAnnoTree = WitAnno of ('a * ('a witAnnoTree) list);;
let sat_annotree annotate m phi =
let tree_anno l phi res chld = WitAnno(annotate l phi res,chld) in
sat_verbose_loop true false [] None tree_anno (-1) 0 m phi []
;;
(*
let sat m phi = satloop m phi []
;;
*)
let simpleanno l phi res =
let pp s =
Format.print_string ("\n" ^ s ^ "\n------------------------------\n");
print_generic_algo (List.sort compare res);
Format.print_string "\n------------------------------\n\n" in
let pp_dir = function
A.FORWARD -> ()
| A.BACKWARD -> pp "^" in
match phi with
| A.False -> pp "False"
| A.True -> pp "True"
| A.Pred(p) -> pp ("Pred" ^ (Dumper.dump p))
| A.Not(phi) -> pp "Not"
| A.Exists(_,v,phi) -> pp ("Exists " ^ (Dumper.dump(v)))
| A.And(_,phi1,phi2) -> pp "And"
| A.AndAny(dir,_,phi1,phi2) -> pp "AndAny"
| A.HackForStmt(dir,_,phi1,phi2) -> pp "HackForStmt"
| A.Or(phi1,phi2) -> pp "Or"
| A.SeqOr(phi1,phi2) -> pp "SeqOr"
| A.Implies(phi1,phi2) -> pp "Implies"
| A.AF(dir,_,phi1) -> pp "AF"; pp_dir dir
| A.AX(dir,_,phi1) -> pp "AX"; pp_dir dir
| A.AG(dir,_,phi1) -> pp "AG"; pp_dir dir
| A.AW(dir,_,phi1,phi2)-> pp "AW"; pp_dir dir
| A.AU(dir,_,phi1,phi2)-> pp "AU"; pp_dir dir
| A.EF(dir,phi1) -> pp "EF"; pp_dir dir
| A.EX(dir,phi1) -> pp "EX"; pp_dir dir
| A.EG(dir,phi1) -> pp "EG"; pp_dir dir
| A.EU(dir,phi1,phi2) -> pp "EU"; pp_dir dir
| A.Let (x,phi1,phi2) -> pp ("Let"^" "^x)
| A.LetR (dir,x,phi1,phi2) -> pp ("LetR"^" "^x); pp_dir dir
| A.Ref(s) -> pp ("Ref("^s^")")
| A.Uncheck(s) -> pp "Uncheck"
| A.InnerAnd(s) -> pp "InnerAnd"
| A.XX(phi1) -> pp "XX"
;;
(* pad: Rene, you can now use the module pretty_print_ctl.ml to
print a ctl formula more accurately if you want.
Use the print_xxx provided in the different module to call
Pretty_print_ctl.pp_ctl.
*)
let simpleanno2 l phi res =
begin
Pretty_print_ctl.pp_ctl (P.print_predicate, SUB.print_mvar) false phi;
Format.print_newline ();
Format.print_string "----------------------------------------------------";
Format.print_newline ();
print_generic_algo (List.sort compare res);
Format.print_newline ();
Format.print_string "----------------------------------------------------";
Format.print_newline ();
Format.print_newline ();
end
(* ---------------------------------------------------------------------- *)
(* Benchmarking *)
(* ---------------------------------------------------------------------- *)
type optentry = bool ref * string
type options = {label : optentry; unch : optentry;
conj : optentry; compl1 : optentry; compl2 : optentry;
newinfo : optentry;
reqenv : optentry; reqstates : optentry}
let options =
{label = (pSATLABEL_MEMO_OPT,"satlabel_memo_opt");
unch = (pUNCHECK_OPT,"uncheck_opt");
conj = (pTRIPLES_CONJ_OPT,"triples_conj_opt");
compl1 = (pTRIPLES_COMPLEMENT_OPT,"triples_complement_opt");
compl2 = (pTRIPLES_COMPLEMENT_SIMPLE_OPT,"triples_complement_simple_opt");
newinfo = (pNEW_INFO_OPT,"new_info_opt");
reqenv = (pREQUIRED_ENV_OPT,"required_env_opt");
reqstates = (pREQUIRED_STATES_OPT,"required_states_opt")}
let baseline =
[("none ",[]);
("label ",[options.label]);
("unch ",[options.unch]);
("unch and label ",[options.label;options.unch])]
let conjneg =
[("conj ", [options.conj]);
("compl1 ", [options.compl1]);
("compl12 ", [options.compl1;options.compl2]);
("conj/compl12 ", [options.conj;options.compl1;options.compl2]);
("conj unch satl ", [options.conj;options.unch;options.label]);
(*
("compl1 unch satl ", [options.compl1;options.unch;options.label]);
("compl12 unch satl ",
[options.compl1;options.compl2;options.unch;options.label]); *)
("conj/compl12 unch satl ",
[options.conj;options.compl1;options.compl2;options.unch;options.label])]
let path =
[("newinfo ", [options.newinfo]);
("newinfo unch satl ", [options.newinfo;options.unch;options.label])]
let required =
[("reqenv ", [options.reqenv]);
("reqstates ", [options.reqstates]);
("reqenv/states ", [options.reqenv;options.reqstates]);
(* ("reqenv unch satl ", [options.reqenv;options.unch;options.label]);
("reqstates unch satl ",
[options.reqstates;options.unch;options.label]);*)
("reqenv/states unch satl ",
[options.reqenv;options.reqstates;options.unch;options.label])]
let all_options =
[options.label;options.unch;options.conj;options.compl1;options.compl2;
options.newinfo;options.reqenv;options.reqstates]
let all =
[("all ",all_options)]
let all_options_but_path =
[options.label;options.unch;options.conj;options.compl1;options.compl2;
options.reqenv;options.reqstates]
let all_but_path = ("all but path ",all_options_but_path)
let counters =
[(satAW_calls, "satAW", ref 0);
(satAU_calls, "satAU", ref 0);
(satEF_calls, "satEF", ref 0);
(satAF_calls, "satAF", ref 0);
(satEG_calls, "satEG", ref 0);
(satAG_calls, "satAG", ref 0);
(satEU_calls, "satEU", ref 0)]
let perms =
map
(function (opt,x) ->
(opt,x,ref 0.0,ref 0,
List.map (function _ -> (ref 0, ref 0, ref 0)) counters))
[List.hd all;all_but_path]
(*(all@baseline@conjneg@path@required)*)
exception Out
let rec iter fn = function
1 -> fn()
| n -> let _ = fn() in
(Hashtbl.clear reachable_table;
Hashtbl.clear memo_label;
triples := 0;
iter fn (n-1))
let bench_sat (_,_,states) fn =
List.iter (function (opt,_) -> opt := false) all_options;
let answers =
concatmap
(function (name,options,time,trips,counter_info) ->
let iterct = !Flag_ctl.bench in
if !time > float_of_int timeout then time := -100.0;
if not (!time = -100.0)
then
begin
Hashtbl.clear reachable_table;
Hashtbl.clear memo_label;
List.iter (function (opt,_) -> opt := true) options;
List.iter (function (calls,_,save_calls) -> save_calls := !calls)
counters;
triples := 0;
let res =
let bef = Sys.time() in
try
Common.timeout_function "bench" timeout
(fun () ->
let bef = Sys.time() in
let res = iter fn iterct in
let aft = Sys.time() in
time := !time +. (aft -. bef);
trips := !trips + !triples;
List.iter2
(function (calls,_,save_calls) ->
function (current_calls,current_cfg,current_max_cfg) ->
current_calls :=
!current_calls + (!calls - !save_calls);
if (!calls - !save_calls) > 0
then
(let st = List.length states in
current_cfg := !current_cfg + st;
if st > !current_max_cfg
then current_max_cfg := st))
counters counter_info;
[res])
with
Common.Timeout ->
begin
let aft = Sys.time() in
time := -100.0;
Printf.fprintf stderr "Timeout at %f on: %s\n"
(aft -. bef) name;
[]
end in
List.iter (function (opt,_) -> opt := false) options;
res
end
else [])
perms in
Printf.fprintf stderr "\n";
match answers with
[] -> []
| res::rest ->
(if not(List.for_all (function x -> x = res) rest)
then
(List.iter (print_state "a state") answers;
Printf.printf "something doesn't work\n");
res)
let print_bench _ =
let iterct = !Flag_ctl.bench in
if iterct > 0
then
(List.iter
(function (name,options,time,trips,counter_info) ->
Printf.fprintf stderr "%s Numbers: %f %d "
name (!time /. (float_of_int iterct)) !trips;
List.iter
(function (calls,cfg,max_cfg) ->
Printf.fprintf stderr "%d %d %d " (!calls / iterct) !cfg !max_cfg)
counter_info;
Printf.fprintf stderr "\n")
perms)
(* ---------------------------------------------------------------------- *)
(* preprocessing: ignore irrelevant functions *)
let preprocess (cfg,label,preproc,_) = function
[] -> true (* no information, try everything *)
| l ->
let sz = G.size cfg in
let verbose_output pred = function
false ->
Printf.printf "did not find:\n";
P.print_predicate pred; Format.print_newline()
| true ->
Printf.printf "found:\n";
P.print_predicate pred; Format.print_newline();
Printf.printf "but it was not enough\n" in
let get_any verbose x =
let res = preproc x in
(if verbose then verbose_output x res);
res in
let get_all l =
(* don't bother testing when there are more patterns than nodes *)
if List.length l > sz-2
then false
else List.for_all (get_any false) l in
if List.exists get_all l
then true
else
(if !Flag_ctl.verbose_match
then
List.iter (List.iter (function x -> let _ = get_any true x in ()))
l;
false)
let filter_partial_matches trips =
if !Flag_ctl.partial_match
then
let anynegwit = (* if any is neg, then all are *)
List.exists (function A.NegWit _ -> true | A.Wit _ -> false) in
let (bad,good) =
List.partition (function (s,th,wit) -> anynegwit wit) trips in
(match bad with
[] -> ()
| _ -> print_state "partial matches" bad; Format.print_newline());
good
else trips
(* ---------------------------------------------------------------------- *)
(* Main entry point for engine *)
let sat m phi reqopt =
try
(match !Flag_ctl.steps with
None -> step_count := 0
| Some x -> step_count := x);
Hashtbl.clear reachable_table;
Hashtbl.clear memo_label;
let (x,label,preproc,states) = m in
if (!Flag_ctl.bench > 0) || preprocess m reqopt
then
((* to drop when Yoann initialized this flag *)
if List.exists (G.extract_is_loop x) states
then Flag_ctl.loop_in_src_code := true;
let m = (x,label,List.sort compare states) in
let res =
if(!Flag_ctl.verbose_ctl_engine)
then
let fn _ = snd (sat_annotree simpleanno2 m phi) in
if !Flag_ctl.bench > 0
then bench_sat m fn
else fn()
else
let fn _ = satloop true false [] None m phi [] in
if !Flag_ctl.bench > 0
then bench_sat m fn
else Common.profile_code "ctl" (fun _ -> fn()) in
let res = filter_partial_matches res in
(*
Printf.printf "steps: start %d, stop %d\n"
(match !Flag_ctl.steps with Some x -> x | _ -> 0)
!step_count;
Printf.printf "triples: %d\n" !triples;
print_state "final result" res;
*)
List.sort compare res)
else
(if !Flag_ctl.verbose_ctl_engine
then Common.pr2 "missing something required";
[])
with Steps -> []
(* ********************************************************************** *)
(* End of Module: CTL_ENGINE *)
(* ********************************************************************** *)
end
;;
|