1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
|
/*-------------------------------------------------------------------------
Tab.cs -- Symbol Table Management
Compiler Generator Coco/R,
Copyright (c) 1990, 2004 Hanspeter Moessenboeck, University of Linz
extended by M. Loeberbauer & A. Woess, Univ. of Linz
with improvements by Pat Terry, Rhodes University
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
As an exception, it is allowed to write an extension of Coco/R that is
used as a plugin in non-free software.
If not otherwise stated, any source code generated by Coco/R (other than
Coco/R itself) does not fall under the GNU General Public License.
-------------------------------------------------------------------------*/
using System;
using System.IO;
using System.Text;
using System.Collections;
namespace at.jku.ssw.Coco {
public class Position { // position of source code stretch (e.g. semantic action, resolver expressions)
public int beg; // start relative to the beginning of the file
public int len; // length of stretch
public int col; // column number of start position
public Position(int beg, int len, int col) {
this.beg = beg; this.len = len; this.col = col;
}
}
//=====================================================================
// Symbol
//=====================================================================
public class Symbol : IComparable {
// token kinds
public const int fixedToken = 0; // e.g. 'a' ('b' | 'c') (structure of literals)
public const int classToken = 1; // e.g. digit {digit} (at least one char class)
public const int litToken = 2; // e.g. "while"
public const int classLitToken = 3; // e.g. letter {letter} but without literals that have the same structure
public int n; // symbol number
public int typ; // t, nt, pr, unknown, rslv /* ML 29_11_2002 slv added */ /* AW slv --> rslv */
public string name; // symbol name
public Node graph; // nt: to first node of syntax graph
public int tokenKind; // t: token kind (fixedToken, classToken, ...)
public bool deletable; // nt: true if nonterminal is deletable
public bool firstReady; // nt: true if terminal start symbols have already been computed
public BitArray first; // nt: terminal start symbols
public BitArray follow; // nt: terminal followers
public BitArray nts; // nt: nonterminals whose followers have to be added to this sym
public int line; // source text line number of item in this node
public Position attrPos; // nt: position of attributes in source text (or null)
public Position semPos; // pr: pos of semantic action in source text (or null)
// nt: pos of local declarations in source text (or null)
public Symbol(int typ, string name, int line) {
this.typ = typ; this.name = name; this.line = line;
}
public int CompareTo(object x) {
return name.CompareTo(((Symbol)x).name);
}
}
//=====================================================================
// Node
//=====================================================================
public class Node {
// constants for node kinds
public const int t = 1; // terminal symbol
public const int pr = 2; // pragma
public const int nt = 3; // nonterminal symbol
public const int clas = 4; // character class
public const int chr = 5; // character
public const int wt = 6; // weak terminal symbol
public const int any = 7; //
public const int eps = 8; // empty
public const int sync = 9; // synchronization symbol
public const int sem = 10; // semantic action: (. .)
public const int alt = 11; // alternative: |
public const int iter = 12; // iteration: { }
public const int opt = 13; // option: [ ]
public const int rslv = 14; // resolver expr
public const int normalTrans = 0; // transition codes
public const int contextTrans = 1;
public int n; // node number
public int typ; // t, nt, wt, chr, clas, any, eps, sem, sync, alt, iter, opt, rslv
public Node next; // to successor node
public Node down; // alt: to next alternative
public Node sub; // alt, iter, opt: to first node of substructure
public bool up; // true: "next" leads to successor in enclosing structure
public Symbol sym; // nt, t, wt: symbol represented by this node
public int val; // chr: ordinal character value
// clas: index of character class
public int code; // chr, clas: transition code
public BitArray set; // any, sync: the set represented by this node
public Position pos; // nt, t, wt: pos of actual attributes
// sem: pos of semantic action in source text
public int line; // source text line number of item in this node
public State state; // DFA state corresponding to this node
// (only used in DFA.ConvertToStates)
public Node(int typ, Symbol sym, int line) {
this.typ = typ; this.sym = sym; this.line = line;
}
}
//=====================================================================
// Graph
//=====================================================================
public class Graph {
public Node l; // left end of graph = head
public Node r; // right end of graph = list of nodes to be linked to successor graph
public Graph() {
l = null; r = null;
}
public Graph(Node left, Node right) {
l = left; r = right;
}
public Graph(Node p) {
l = p; r = p;
}
}
//=====================================================================
// Sets
//=====================================================================
public class Sets {
public static int Elements(BitArray s) {
int max = s.Count;
int n = 0;
for (int i=0; i<max; i++)
if (s[i]) n++;
return n;
}
public static bool Equals(BitArray a, BitArray b) {
int max = a.Count;
for (int i=0; i<max; i++)
if (a[i] != b[i]) return false;
return true;
}
public static bool Intersect(BitArray a, BitArray b) { // a * b != {}
int max = a.Count;
for (int i=0; i<max; i++)
if (a[i] && b[i]) return true;
return false;
}
public static void Subtract(BitArray a, BitArray b) { // a = a - b
BitArray c = (BitArray) b.Clone();
a.And(c.Not());
}
}
//=====================================================================
// CharClass
//=====================================================================
public class CharClass {
public int n; // class number
public string name; // class name
public CharSet set; // set representing the class
public CharClass(string name, CharSet s) {
this.name = name; this.set = s;
}
}
//=====================================================================
// Tab
//=====================================================================
public class Tab {
public Position semDeclPos; // position of global semantic declarations
public CharSet ignored; // characters ignored by the scanner
public bool[] ddt = new bool[10]; // debug and test switches
public Symbol gramSy; // root nonterminal; filled by ATG
public Symbol eofSy; // end of file symbol
public Symbol noSym; // used in case of an error
public BitArray allSyncSets; // union of all synchronisation sets
public Hashtable literals; // symbols that are used as literals
public string srcName; // name of the atg file (including path)
public string srcDir; // directory path of the atg file
public string nsName; // namespace for generated files
public string frameDir; // directory containing the frame files
public string outDir; // directory for generated files
BitArray visited; // mark list for graph traversals
Symbol curSy; // current symbol in computation of sets
Parser parser; // other Coco objects
TextWriter trace;
Errors errors;
public Tab(Parser parser) {
this.parser = parser;
trace = parser.trace;
errors = parser.errors;
eofSy = NewSym(Node.t, "EOF", 0);
dummyNode = NewNode(Node.eps, null, 0);
literals = new Hashtable();
}
//---------------------------------------------------------------------
// Symbol list management
//---------------------------------------------------------------------
public ArrayList terminals = new ArrayList();
public ArrayList pragmas = new ArrayList();
public ArrayList nonterminals = new ArrayList();
string[] tKind = {"fixedToken", "classToken", "litToken", "classLitToken"};
public Symbol NewSym(int typ, string name, int line) {
if (name.Length == 2 && name[0] == '"') {
parser.SemErr("empty token not allowed"); name = "???";
}
Symbol sym = new Symbol(typ, name, line);
switch (typ) {
case Node.t: sym.n = terminals.Count; terminals.Add(sym); break;
case Node.pr: pragmas.Add(sym); break;
case Node.nt: sym.n = nonterminals.Count; nonterminals.Add(sym); break;
}
return sym;
}
public Symbol FindSym(string name) {
foreach (Symbol s in terminals)
if (s.name == name) return s;
foreach (Symbol s in nonterminals)
if (s.name == name) return s;
return null;
}
int Num(Node p) {
if (p == null) return 0; else return p.n;
}
void PrintSym(Symbol sym) {
trace.Write("{0,3} {1,-14} {2}", sym.n, Name(sym.name), nTyp[sym.typ]);
if (sym.attrPos==null) trace.Write(" false "); else trace.Write(" true ");
if (sym.typ == Node.nt) {
trace.Write("{0,5}", Num(sym.graph));
if (sym.deletable) trace.Write(" true "); else trace.Write(" false ");
} else
trace.Write(" ");
trace.WriteLine("{0,5} {1}", sym.line, tKind[sym.tokenKind]);
}
public void PrintSymbolTable() {
trace.WriteLine("Symbol Table:");
trace.WriteLine("------------"); trace.WriteLine();
trace.WriteLine(" nr name typ hasAt graph del line tokenKind");
foreach (Symbol sym in terminals) PrintSym(sym);
foreach (Symbol sym in pragmas) PrintSym(sym);
foreach (Symbol sym in nonterminals) PrintSym(sym);
trace.WriteLine();
trace.WriteLine("Literal Tokens:");
trace.WriteLine("--------------");
foreach (DictionaryEntry e in literals) {
trace.WriteLine("_" + ((Symbol)e.Value).name + " = " + e.Key + ".");
}
trace.WriteLine();
}
public void PrintSet(BitArray s, int indent) {
int col, len;
col = indent;
foreach (Symbol sym in terminals) {
if (s[sym.n]) {
len = sym.name.Length;
if (col + len >= 80) {
trace.WriteLine();
for (col = 1; col < indent; col++) trace.Write(" ");
}
trace.Write("{0} ", sym.name);
col += len + 1;
}
}
if (col == indent) trace.Write("-- empty set --");
trace.WriteLine();
}
//---------------------------------------------------------------------
// Syntax graph management
//---------------------------------------------------------------------
public ArrayList nodes = new ArrayList();
public string[] nTyp =
{" ", "t ", "pr ", "nt ", "clas", "chr ", "wt ", "any ", "eps ",
"sync", "sem ", "alt ", "iter", "opt ", "rslv"};
Node dummyNode;
public Node NewNode(int typ, Symbol sym, int line) {
Node node = new Node(typ, sym, line);
node.n = nodes.Count;
nodes.Add(node);
return node;
}
public Node NewNode(int typ, Node sub) {
Node node = NewNode(typ, null, 0);
node.sub = sub;
return node;
}
public Node NewNode(int typ, int val, int line) {
Node node = NewNode(typ, null, line);
node.val = val;
return node;
}
public void MakeFirstAlt(Graph g) {
g.l = NewNode(Node.alt, g.l); g.l.line = g.l.sub.line;
g.l.next = g.r;
g.r = g.l;
}
public void MakeAlternative(Graph g1, Graph g2) {
g2.l = NewNode(Node.alt, g2.l); g2.l.line = g2.l.sub.line;
Node p = g1.l; while (p.down != null) p = p.down;
p.down = g2.l;
p = g1.r; while (p.next != null) p = p.next;
p.next = g2.r;
}
public void MakeSequence(Graph g1, Graph g2) {
Node p = g1.r.next; g1.r.next = g2.l; // link head node
while (p != null) { // link substructure
Node q = p.next; p.next = g2.l; p.up = true;
p = q;
}
g1.r = g2.r;
}
public void MakeIteration(Graph g) {
g.l = NewNode(Node.iter, g.l);
Node p = g.r;
g.r = g.l;
while (p != null) {
Node q = p.next; p.next = g.l; p.up = true;
p = q;
}
}
public void MakeOption(Graph g) {
g.l = NewNode(Node.opt, g.l);
g.l.next = g.r;
g.r = g.l;
}
public void Finish(Graph g) {
Node p = g.r;
while (p != null) {
Node q = p.next; p.next = null; p = q;
}
}
public void DeleteNodes() {
nodes = new ArrayList();
dummyNode = NewNode(Node.eps, null, 0);
}
public Graph StrToGraph(string str) {
string s = Unescape(str.Substring(1, str.Length-2));
if (s.Length == 0) parser.SemErr("empty token not allowed");
Graph g = new Graph();
g.r = dummyNode;
for (int i = 0; i < s.Length; i++) {
Node p = NewNode(Node.chr, (int)s[i], 0);
g.r.next = p; g.r = p;
}
g.l = dummyNode.next; dummyNode.next = null;
return g;
}
public void SetContextTrans(Node p) { // set transition code in the graph rooted at p
while (p != null) {
if (p.typ == Node.chr || p.typ == Node.clas) {
p.code = Node.contextTrans;
} else if (p.typ == Node.opt || p.typ == Node.iter) {
SetContextTrans(p.sub);
} else if (p.typ == Node.alt) {
SetContextTrans(p.sub); SetContextTrans(p.down);
}
if (p.up) break;
p = p.next;
}
}
//------------ graph deletability check -----------------
public bool DelGraph(Node p) {
return p == null || DelNode(p) && DelGraph(p.next);
}
public bool DelSubGraph(Node p) {
return p == null || DelNode(p) && (p.up || DelSubGraph(p.next));
}
public bool DelAlt(Node p) {
return p == null || DelNode(p) && (p.up || DelAlt(p.next));
}
public bool DelNode(Node p) {
if (p.typ == Node.nt) return p.sym.deletable;
else if (p.typ == Node.alt) return DelAlt(p.sub) || p.down != null && DelAlt(p.down);
else return p.typ == Node.iter || p.typ == Node.opt || p.typ == Node.sem
|| p.typ == Node.eps || p.typ == Node.rslv || p.typ == Node.sync;
}
//----------------- graph printing ----------------------
int Ptr(Node p, bool up) {
if (p == null) return 0;
else if (up) return -p.n;
else return p.n;
}
string Pos(Position pos) {
if (pos == null) return " "; else return String.Format("{0,5}", pos.beg);
}
public string Name(string name) {
return (name + " ").Substring(0, 12);
// found no simpler way to get the first 12 characters of the name
// padded with blanks on the right
}
public void PrintNodes() {
trace.WriteLine("Graph nodes:");
trace.WriteLine("----------------------------------------------------");
trace.WriteLine(" n type name next down sub pos line");
trace.WriteLine(" val code");
trace.WriteLine("----------------------------------------------------");
foreach (Node p in nodes) {
trace.Write("{0,4} {1} ", p.n, nTyp[p.typ]);
if (p.sym != null)
trace.Write("{0,12} ", Name(p.sym.name));
else if (p.typ == Node.clas) {
CharClass c = (CharClass)classes[p.val];
trace.Write("{0,12} ", Name(c.name));
} else trace.Write(" ");
trace.Write("{0,5} ", Ptr(p.next, p.up));
switch (p.typ) {
case Node.t: case Node.nt: case Node.wt:
trace.Write(" {0,5}", Pos(p.pos)); break;
case Node.chr:
trace.Write("{0,5} {1,5} ", p.val, p.code); break;
case Node.clas:
trace.Write(" {0,5} ", p.code); break;
case Node.alt: case Node.iter: case Node.opt:
trace.Write("{0,5} {1,5} ", Ptr(p.down, false), Ptr(p.sub, false)); break;
case Node.sem:
trace.Write(" {0,5}", Pos(p.pos)); break;
case Node.eps: case Node.any: case Node.sync:
trace.Write(" "); break;
}
trace.WriteLine("{0,5}", p.line);
}
trace.WriteLine();
}
//---------------------------------------------------------------------
// Character class management
//---------------------------------------------------------------------
public ArrayList classes = new ArrayList();
public int dummyName = 'A';
public CharClass NewCharClass(string name, CharSet s) {
if (name == "#") name = "#" + (char)dummyName++;
CharClass c = new CharClass(name, s);
c.n = classes.Count;
classes.Add(c);
return c;
}
public CharClass FindCharClass(string name) {
foreach (CharClass c in classes)
if (c.name == name) return c;
return null;
}
public CharClass FindCharClass(CharSet s) {
foreach (CharClass c in classes)
if (s.Equals(c.set)) return c;
return null;
}
public CharSet CharClassSet(int i) {
return ((CharClass)classes[i]).set;
}
//----------- character class printing
string Ch(int ch) {
if (ch < ' ' || ch >= 127 || ch == '\'' || ch == '\\') return ch.ToString();
else return String.Format("'{0}'", (char)ch);
}
void WriteCharSet(CharSet s) {
for (CharSet.Range r = s.head; r != null; r = r.next)
if (r.from < r.to) { trace.Write(Ch(r.from) + ".." + Ch(r.to) + " "); }
else { trace.Write(Ch(r.from) + " "); }
}
public void WriteCharClasses () {
foreach (CharClass c in classes) {
trace.Write("{0,-10}: ", c.name);
WriteCharSet(c.set);
trace.WriteLine();
}
trace.WriteLine();
}
//---------------------------------------------------------------------
// Symbol set computations
//---------------------------------------------------------------------
/* Computes the first set for the graph rooted at p */
BitArray First0(Node p, BitArray mark) {
BitArray fs = new BitArray(terminals.Count);
while (p != null && !mark[p.n]) {
mark[p.n] = true;
switch (p.typ) {
case Node.nt: {
if (p.sym.firstReady) fs.Or(p.sym.first);
else fs.Or(First0(p.sym.graph, mark));
break;
}
case Node.t: case Node.wt: {
fs[p.sym.n] = true; break;
}
case Node.any: {
fs.Or(p.set); break;
}
case Node.alt: {
fs.Or(First0(p.sub, mark));
fs.Or(First0(p.down, mark));
break;
}
case Node.iter: case Node.opt: {
fs.Or(First0(p.sub, mark));
break;
}
}
if (!DelNode(p)) break;
p = p.next;
}
return fs;
}
public BitArray First(Node p) {
BitArray fs = First0(p, new BitArray(nodes.Count));
if (ddt[3]) {
trace.WriteLine();
if (p != null) trace.WriteLine("First: node = {0}", p.n);
else trace.WriteLine("First: node = null");
PrintSet(fs, 0);
}
return fs;
}
void CompFirstSets() {
foreach (Symbol sym in nonterminals) {
sym.first = new BitArray(terminals.Count);
sym.firstReady = false;
}
foreach (Symbol sym in nonterminals) {
sym.first = First(sym.graph);
sym.firstReady = true;
}
}
void CompFollow(Node p) {
while (p != null && !visited[p.n]) {
visited[p.n] = true;
if (p.typ == Node.nt) {
BitArray s = First(p.next);
p.sym.follow.Or(s);
if (DelGraph(p.next))
p.sym.nts[curSy.n] = true;
} else if (p.typ == Node.opt || p.typ == Node.iter) {
CompFollow(p.sub);
} else if (p.typ == Node.alt) {
CompFollow(p.sub); CompFollow(p.down);
}
p = p.next;
}
}
void Complete(Symbol sym) {
if (!visited[sym.n]) {
visited[sym.n] = true;
foreach (Symbol s in nonterminals) {
if (sym.nts[s.n]) {
Complete(s);
sym.follow.Or(s.follow);
if (sym == curSy) sym.nts[s.n] = false;
}
}
}
}
void CompFollowSets() {
foreach (Symbol sym in nonterminals) {
sym.follow = new BitArray(terminals.Count);
sym.nts = new BitArray(nonterminals.Count);
}
gramSy.follow[eofSy.n] = true;
visited = new BitArray(nodes.Count);
foreach (Symbol sym in nonterminals) { // get direct successors of nonterminals
curSy = sym;
CompFollow(sym.graph);
}
foreach (Symbol sym in nonterminals) { // add indirect successors to followers
visited = new BitArray(nonterminals.Count);
curSy = sym;
Complete(sym);
}
}
Node LeadingAny(Node p) {
if (p == null) return null;
Node a = null;
if (p.typ == Node.any) a = p;
else if (p.typ == Node.alt) {
a = LeadingAny(p.sub);
if (a == null) a = LeadingAny(p.down);
}
else if (p.typ == Node.opt || p.typ == Node.iter) a = LeadingAny(p.sub);
else if (DelNode(p) && !p.up) a = LeadingAny(p.next);
return a;
}
void FindAS(Node p) { // find ANY sets
Node a;
while (p != null) {
if (p.typ == Node.opt || p.typ == Node.iter) {
FindAS(p.sub);
a = LeadingAny(p.sub);
if (a != null) Sets.Subtract(a.set, First(p.next));
} else if (p.typ == Node.alt) {
BitArray s1 = new BitArray(terminals.Count);
Node q = p;
while (q != null) {
FindAS(q.sub);
a = LeadingAny(q.sub);
if (a != null)
Sets.Subtract(a.set, First(q.down).Or(s1));
else
s1.Or(First(q.sub));
q = q.down;
}
}
if (p.up) break;
p = p.next;
}
}
void CompAnySets() {
foreach (Symbol sym in nonterminals) FindAS(sym.graph);
}
public BitArray Expected(Node p, Symbol curSy) {
BitArray s = First(p);
if (DelGraph(p)) s.Or(curSy.follow);
return s;
}
// does not look behind resolvers; only called during LL(1) test and in CheckRes
public BitArray Expected0(Node p, Symbol curSy) {
if (p.typ == Node.rslv) return new BitArray(terminals.Count);
else return Expected(p, curSy);
}
void CompSync(Node p) {
while (p != null && !visited[p.n]) {
visited[p.n] = true;
if (p.typ == Node.sync) {
BitArray s = Expected(p.next, curSy);
s[eofSy.n] = true;
allSyncSets.Or(s);
p.set = s;
} else if (p.typ == Node.alt) {
CompSync(p.sub); CompSync(p.down);
} else if (p.typ == Node.opt || p.typ == Node.iter)
CompSync(p.sub);
p = p.next;
}
}
void CompSyncSets() {
allSyncSets = new BitArray(terminals.Count);
allSyncSets[eofSy.n] = true;
visited = new BitArray(nodes.Count);
foreach (Symbol sym in nonterminals) {
curSy = sym;
CompSync(curSy.graph);
}
}
public void SetupAnys() {
foreach (Node p in nodes)
if (p.typ == Node.any) {
p.set = new BitArray(terminals.Count, true);
p.set[eofSy.n] = false;
}
}
public void CompDeletableSymbols() {
bool changed;
do {
changed = false;
foreach (Symbol sym in nonterminals)
if (!sym.deletable && sym.graph != null && DelGraph(sym.graph)) {
sym.deletable = true; changed = true;
}
} while (changed);
foreach (Symbol sym in nonterminals)
if (sym.deletable) errors.Warning(" " + sym.name + " deletable");
}
public void RenumberPragmas() {
int n = terminals.Count;
foreach (Symbol sym in pragmas) sym.n = n++;
}
public void CompSymbolSets() {
CompDeletableSymbols();
CompFirstSets();
CompFollowSets();
CompAnySets();
CompSyncSets();
if (ddt[1]) {
trace.WriteLine();
trace.WriteLine("First & follow symbols:");
trace.WriteLine("----------------------"); trace.WriteLine();
foreach (Symbol sym in nonterminals) {
trace.WriteLine(sym.name);
trace.Write("first: "); PrintSet(sym.first, 10);
trace.Write("follow: "); PrintSet(sym.follow, 10);
trace.WriteLine();
}
}
if (ddt[4]) {
trace.WriteLine();
trace.WriteLine("ANY and SYNC sets:");
trace.WriteLine("-----------------");
foreach (Node p in nodes)
if (p.typ == Node.any || p.typ == Node.sync) {
trace.Write("{0,4} {1,4}: ", p.n, nTyp[p.typ]);
PrintSet(p.set, 11);
}
}
}
//---------------------------------------------------------------------
// String handling
//---------------------------------------------------------------------
char Hex2Char(string s) {
int val = 0;
for (int i = 0; i < s.Length; i++) {
char ch = s[i];
if ('0' <= ch && ch <= '9') val = 16 * val + (ch - '0');
else if ('a' <= ch && ch <= 'f') val = 16 * val + (10 + ch - 'a');
else if ('A' <= ch && ch <= 'F') val = 16 * val + (10 + ch - 'A');
else parser.SemErr("bad escape sequence in string or character");
}
if (val > char.MaxValue) /* pdt */
parser.SemErr("bad escape sequence in string or character");
return (char)val;
}
string Char2Hex(char ch) {
StringWriter w = new StringWriter();
w.Write("\\u{0:x4}", (int)ch);
return w.ToString();
}
public string Unescape (string s) {
/* replaces escape sequences in s by their Unicode values. */
StringBuilder buf = new StringBuilder();
int i = 0;
while (i < s.Length) {
if (s[i] == '\\') {
switch (s[i+1]) {
case '\\': buf.Append('\\'); i += 2; break;
case '\'': buf.Append('\''); i += 2; break;
case '\"': buf.Append('\"'); i += 2; break;
case 'r': buf.Append('\r'); i += 2; break;
case 'n': buf.Append('\n'); i += 2; break;
case 't': buf.Append('\t'); i += 2; break;
case '0': buf.Append('\0'); i += 2; break;
case 'a': buf.Append('\a'); i += 2; break;
case 'b': buf.Append('\b'); i += 2; break;
case 'f': buf.Append('\f'); i += 2; break;
case 'v': buf.Append('\v'); i += 2; break;
case 'u': case 'x':
if (i + 6 <= s.Length) {
buf.Append(Hex2Char(s.Substring(i+2, 4))); i += 6; break;
} else {
parser.SemErr("bad escape sequence in string or character"); i = s.Length; break;
}
default: parser.SemErr("bad escape sequence in string or character"); i += 2; break;
}
} else {
buf.Append(s[i]);
i++;
}
}
return buf.ToString();
}
public string Escape (string s) {
StringBuilder buf = new StringBuilder();
foreach (char ch in s) {
switch(ch) {
case '\\': buf.Append("\\\\"); break;
case '\'': buf.Append("\\'"); break;
case '\"': buf.Append("\\\""); break;
case '\t': buf.Append("\\t"); break;
case '\r': buf.Append("\\r"); break;
case '\n': buf.Append("\\n"); break;
default:
if (ch < ' ' || ch > '\u007f') buf.Append(Char2Hex(ch));
else buf.Append(ch);
break;
}
}
return buf.ToString();
}
//---------------------------------------------------------------------
// Grammar checks
//---------------------------------------------------------------------
public bool GrammarOk() {
bool ok = NtsComplete()
&& AllNtReached()
&& NoCircularProductions()
&& AllNtToTerm();
if (ok) { CheckResolvers(); CheckLL1(); }
return ok;
}
//--------------- check for circular productions ----------------------
class CNode { // node of list for finding circular productions
public Symbol left, right;
public CNode (Symbol l, Symbol r) {
left = l; right = r;
}
}
void GetSingles(Node p, ArrayList singles) {
if (p == null) return; // end of graph
if (p.typ == Node.nt) {
if (p.up || DelGraph(p.next)) singles.Add(p.sym);
} else if (p.typ == Node.alt || p.typ == Node.iter || p.typ == Node.opt) {
if (p.up || DelGraph(p.next)) {
GetSingles(p.sub, singles);
if (p.typ == Node.alt) GetSingles(p.down, singles);
}
}
if (!p.up && DelNode(p)) GetSingles(p.next, singles);
}
public bool NoCircularProductions() {
bool ok, changed, onLeftSide, onRightSide;
ArrayList list = new ArrayList();
foreach (Symbol sym in nonterminals) {
ArrayList singles = new ArrayList();
GetSingles(sym.graph, singles); // get nonterminals s such that sym-->s
foreach (Symbol s in singles) list.Add(new CNode(sym, s));
}
do {
changed = false;
for (int i = 0; i < list.Count; i++) {
CNode n = (CNode)list[i];
onLeftSide = false; onRightSide = false;
foreach (CNode m in list) {
if (n.left == m.right) onRightSide = true;
if (n.right == m.left) onLeftSide = true;
}
if (!onLeftSide || !onRightSide) {
list.Remove(n); i--; changed = true;
}
}
} while(changed);
ok = true;
foreach (CNode n in list) {
ok = false;
errors.SemErr(" " + n.left.name + " --> " + n.right.name);
}
return ok;
}
//--------------- check for LL(1) errors ----------------------
void LL1Error(int cond, Symbol sym) {
string s = " LL1 warning in " + curSy.name + ": ";
if (sym != null) s += sym.name + " is ";
switch (cond) {
case 1: s += "start of several alternatives"; break;
case 2: s += "start & successor of deletable structure"; break;
case 3: s += "an ANY node that matches no symbol"; break;
case 4: s += "contents of [...] or {...} must not be deletable"; break;
}
errors.Warning(s);
}
void CheckOverlap(BitArray s1, BitArray s2, int cond) {
foreach (Symbol sym in terminals) {
if (s1[sym.n] && s2[sym.n]) LL1Error(cond, sym);
}
}
void CheckAlts(Node p) {
BitArray s1, s2;
while (p != null) {
if (p.typ == Node.alt) {
Node q = p;
s1 = new BitArray(terminals.Count);
while (q != null) { // for all alternatives
s2 = Expected0(q.sub, curSy);
CheckOverlap(s1, s2, 1);
s1.Or(s2);
CheckAlts(q.sub);
q = q.down;
}
} else if (p.typ == Node.opt || p.typ == Node.iter) {
if (DelSubGraph(p.sub)) LL1Error(4, null); // e.g. [[...]]
else {
s1 = Expected0(p.sub, curSy);
s2 = Expected(p.next, curSy);
CheckOverlap(s1, s2, 2);
}
CheckAlts(p.sub);
} else if (p.typ == Node.any) {
if (Sets.Elements(p.set) == 0) LL1Error(3, null);
// e.g. {ANY} ANY or [ANY] ANY
}
if (p.up) break;
p = p.next;
}
}
public void CheckLL1() {
foreach (Symbol sym in nonterminals) {
curSy = sym;
CheckAlts(curSy.graph);
}
}
//------------- check if resolvers are legal --------------------
void ResErr(Node p, string msg) {
errors.Warning(p.line, p.pos.col, msg);
}
void CheckRes(Node p, bool rslvAllowed) {
while (p != null) {
switch (p.typ) {
case Node.alt:
BitArray expected = new BitArray(terminals.Count);
for (Node q = p; q != null; q = q.down)
expected.Or(Expected0(q.sub, curSy));
BitArray soFar = new BitArray(terminals.Count);
for (Node q = p; q != null; q = q.down) {
if (q.sub.typ == Node.rslv) {
BitArray fs = Expected(q.sub.next, curSy);
if (Sets.Intersect(fs, soFar))
ResErr(q.sub, "Warning: Resolver will never be evaluated. " +
"Place it at previous conflicting alternative.");
if (!Sets.Intersect(fs, expected))
ResErr(q.sub, "Warning: Misplaced resolver: no LL(1) conflict.");
} else soFar.Or(Expected(q.sub, curSy));
CheckRes(q.sub, true);
}
break;
case Node.iter: case Node.opt:
if (p.sub.typ == Node.rslv) {
BitArray fs = First(p.sub.next);
BitArray fsNext = Expected(p.next, curSy);
if (!Sets.Intersect(fs, fsNext))
ResErr(p.sub, "Warning: Misplaced resolver: no LL(1) conflict.");
}
CheckRes(p.sub, true);
break;
case Node.rslv:
if (!rslvAllowed)
ResErr(p, "Warning: Misplaced resolver: no alternative.");
break;
}
if (p.up) break;
p = p.next;
rslvAllowed = false;
}
}
public void CheckResolvers() {
foreach (Symbol sym in nonterminals) {
curSy = sym;
CheckRes(curSy.graph, false);
}
}
//------------- check if every nts has a production --------------------
public bool NtsComplete() {
bool complete = true;
foreach (Symbol sym in nonterminals) {
if (sym.graph == null) {
complete = false;
errors.SemErr(" No production for " + sym.name);
}
}
return complete;
}
//-------------- check if every nts can be reached -----------------
void MarkReachedNts(Node p) {
while (p != null) {
if (p.typ == Node.nt && !visited[p.sym.n]) { // new nt reached
visited[p.sym.n] = true;
MarkReachedNts(p.sym.graph);
} else if (p.typ == Node.alt || p.typ == Node.iter || p.typ == Node.opt) {
MarkReachedNts(p.sub);
if (p.typ == Node.alt) MarkReachedNts(p.down);
}
if (p.up) break;
p = p.next;
}
}
public bool AllNtReached() {
bool ok = true;
visited = new BitArray(nonterminals.Count);
visited[gramSy.n] = true;
MarkReachedNts(gramSy.graph);
foreach (Symbol sym in nonterminals) {
if (!visited[sym.n]) {
ok = false;
errors.SemErr(" " + sym.name + " cannot be reached");
}
}
return ok;
}
//--------- check if every nts can be derived to terminals ------------
bool IsTerm(Node p, BitArray mark) { // true if graph can be derived to terminals
while (p != null) {
if (p.typ == Node.nt && !mark[p.sym.n]) return false;
if (p.typ == Node.alt && !IsTerm(p.sub, mark)
&& (p.down == null || !IsTerm(p.down, mark))) return false;
if (p.up) break;
p = p.next;
}
return true;
}
public bool AllNtToTerm() {
bool changed, ok = true;
BitArray mark = new BitArray(nonterminals.Count);
// a nonterminal is marked if it can be derived to terminal symbols
do {
changed = false;
foreach (Symbol sym in nonterminals)
if (!mark[sym.n] && IsTerm(sym.graph, mark)) {
mark[sym.n] = true; changed = true;
}
} while (changed);
foreach (Symbol sym in nonterminals)
if (!mark[sym.n]) {
ok = false;
errors.SemErr(" " + sym.name + " cannot be derived to terminals");
}
return ok;
}
//---------------------------------------------------------------------
// Cross reference list
//---------------------------------------------------------------------
public void XRef() {
SortedList xref = new SortedList();
// collect lines where symbols have been defined
foreach (Symbol sym in nonterminals) {
ArrayList list = (ArrayList)xref[sym];
if (list == null) {list = new ArrayList(); xref[sym] = list;}
list.Add(- sym.line);
}
// collect lines where symbols have been referenced
foreach (Node n in nodes) {
if (n.typ == Node.t || n.typ == Node.wt || n.typ == Node.nt) {
ArrayList list = (ArrayList)xref[n.sym];
if (list == null) {list = new ArrayList(); xref[n.sym] = list;}
list.Add(n.line);
}
}
// print cross reference list
trace.WriteLine();
trace.WriteLine("Cross reference list:");
trace.WriteLine("--------------------"); trace.WriteLine();
foreach (Symbol sym in xref.Keys) {
trace.Write(" {0,-12}", Name(sym.name));
ArrayList list = (ArrayList)xref[sym];
int col = 14;
foreach (int line in list) {
if (col + 5 > 80) {
trace.WriteLine();
for (col = 1; col <= 14; col++) trace.Write(" ");
}
trace.Write("{0,5}", line); col += 5;
}
trace.WriteLine();
}
trace.WriteLine(); trace.WriteLine();
}
public void SetDDT(string s) {
s = s.ToUpper();
foreach (char ch in s) {
if ('0' <= ch && ch <= '9') ddt[ch - '0'] = true;
else switch (ch) {
case 'A' : ddt[0] = true; break; // trace automaton
case 'F' : ddt[1] = true; break; // list first/follow sets
case 'G' : ddt[2] = true; break; // print syntax graph
case 'I' : ddt[3] = true; break; // trace computation of first sets
case 'J' : ddt[4] = true; break; // print ANY and SYNC sets
case 'P' : ddt[8] = true; break; // print statistics
case 'S' : ddt[6] = true; break; // list symbol table
case 'X' : ddt[7] = true; break; // list cross reference table
default : break;
}
}
}
} // end Tab
} // end namespace
|