1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
|
#! /bin/sh
#!perl -w # --*- Perl -*--
eval 'exec perl -x $0 ${1+"$@"}'
if 0;
#------------------------------------------------------------------------------
#$Author: antanas $
#$Date: 2022-08-23 15:49:44 +0300 (Tue, 23 Aug 2022) $
#$Revision: 9388 $
#$URL: svn+ssh://www.crystallography.net/home/coder/svn-repositories/cod-tools/tags/v3.7.0/scripts/cif_molecule $
#------------------------------------------------------------------------------
#*
#* Restore molecules from a CIF file.
#*
#* USAGE:
#* $0 --options input1.cif input*.cif
#**
# Note: this script assumes that atoms have unique labels in the input
# CIF file; most often these are labels given by the _atom_site_label
# tag. If the assumption of uniqueness does not hold, the script
# attempts by default to create unique labels itself, appending numeric
# prefixes to the duplicate labels.
#
# The uniqueness of the labels is assumed in checks for atoms at
# special positions, and most importantly in the code removing
# duplicate molecules.
#
# Although there is an option to switch off this diversification of
# labels, the algorithms employed in this script will most probably
# break and give incorrect results (e.g. some atoms, namely ones with
# duplicate labels, will be missing from the output). Thus, use option
# '--dont-uniquify-atoms' with caution.
#
# Atom identification.
# Atoms will be identified within this program using three components:
#
# a) the original label, as found in the input CIF (the "site_label",
# taken from the _atom_site_label data item). This label must be
# unique; it it is not, it will be uniquified by adding a serial
# number upon reading in;
#
# b) a rotation operator (unity operator if no rotation is applied);
# upon any rotation or when atoms are read in, their fractional
# coordinates are truncated modulo 1, i.e. moved to the first octant
# [0..1)x[0..1)x[0..1).
#
# c) a translation vector from the first octant to the actual atom
# position; translation names will use IUCr convention shift +5 (555
# is 0,0,0 translation). For larger translations, ":" character
# separator will be used, e.g. 10:5:-11.
#
# These three components, concatenated with underscores ("_"), will be
# used as unique atom names (the "name" key in the $atom_info hash).
use strict;
use File::Basename qw( basename );
use Clone qw( clone );
use COD::Algebra qw( gcd );
use COD::Algebra::Vector qw( distance vector_sub );
use COD::AtomBricks qw( build_bricks get_atom_index get_search_span );
use COD::AtomNeighbours qw(
get_max_covalent_radius
get_max_vdw_radius
make_neighbour_list
);
use COD::AtomProperties;
use COD::CIF::Data qw( get_cell
get_space_group_number
get_symmetry_operators );
use COD::CIF::Data::AtomList qw( atom_array_from_cif
atom_groups
atoms_are_alternative
datablock_from_atom_array
generate_cod_molecule_data_block
dump_atoms_as_cif );
use COD::CIF::Data::SymmetryGenerator qw( apply_shifts
atoms_coincide
chemical_formula_sum
symop_apply
symops_apply_modulo1
test_bond
test_bump
translate_atom
translation
trim_polymer );
use COD::CIF::Parser qw( parse_cif );
use COD::CIF::Tags::CanonicalNames qw( canonicalize_all_names );
use COD::CIF::Tags::Manage qw( contains_data_item
exclude_tag
rename_tags
set_loop_tag
set_tag );
use COD::CIF::Tags::Merge qw( merge_datablocks );
use COD::CIF::Tags::Print qw( print_cif );
use COD::ErrorHandler qw( process_errors process_warnings
process_parser_messages report_message );
use COD::MorganFingerprints qw( make_morgan_fingerprint );
use COD::Spacegroups::Builder;
use COD::Spacegroups::SimpleBuilder;
use COD::Spacegroups::Lookup qw( make_symop_hash );
use COD::Spacegroups::Lookup::COD;
use COD::Spacegroups::Symop::Algebra qw( symop_mul
symop_invert
symop_is_unity
symop_vector_mul );
use COD::Spacegroups::Symop::Parse qw( symop_from_string
string_from_symop
symop_string_canonical_form
modulo_1 );
use COD::SOptions qw( getOptions );
use COD::SUsage qw( usage options );
use COD::ToolsVersion qw( get_version_string );
## use COD::Algebra::GaussJordan qw( gj_elimination_non_zero_elements );
use COD::Algebra::GaussJordanBigRat qw( gj_elimination_non_zero_elements );
no warnings 'recursion';
my $Id = '$Id: cif_molecule 9388 2022-08-23 12:49:44Z antanas $';
my $debug;
my $symdebug;
my $verbose = 0;
my $total_nbumps = 0;
my $sort_molecules = 1; # A flag indicating whether molecules should
# be sorted in the output (descending by atom
# number)
my $dump_atoms = 0;
my $format = "%8.6f";
my $continue_on_errors = 0;
my $covalent_sensitivity = 0.35;
my $audit = 1;
my $uniquify_atoms = 1;
my $exclude_zero_occupancies = 1; # Do not use atoms with zero occupancies
my $exclude_dummy_atoms = 1; # Do not use atoms with the 'dum' calc flag
my $force_unit_occupancies = 0; # Forcibly set occupancies to 1.0.
# A fraction of covalent bond radii used to determine when atoms are
# too close and are considered a bump:
my $bump_distance_factor = 0.75;
# A fraction of vdW radii used to determine when atoms are too close
# and are considered as overlapping; used, for instance, to determine
# whether an atom group that is disordered around special position is
# mapped onto itself by a symmetry operator:
my $vdw_distance_factor = 1.2;
my $ignore_bumps = 0; # detect and warn about close atom "bumps"
# but do not stop processing.
# A span, in +/- unit cells, in which polymeric molecules (repeating
# units) will be constructed:
my $max_polymer_span = 4;
# A maximum allowed count of polymer example atoms: more than this
# amount of symmetry (translational) equivalent atoms, for each AU
# atom, will not be written to the output file:
my $max_polymer_atoms = 100;
my $cif_header_file; # Comments from the beginning of this file will be
# prepended to the output.
my $use_parser = "c"; # Used CIF parser
my $use_morgan_fingerprints = 0; # Use Morgan fingerprints to identify
# duplicated moieties
my $use_atom_classes = 1; # Use COD AtomClassifier to sort atoms for
# generation of Morgan fingerprints
# Used for atom classification via AtomClassifier:
my $flat_planarity = 0.10;
my $classification_level = 3;
my $max_ring_size = 7; # maximum size of detected rings
my $use_one_output_datablock = 0; # Put all molecules, and all
# disorder groups, into a single
# data block in the output.
my $merge_disorder_groups = 0; # Put all alternative conformations
# into one data block.
my $preserve_stoichiometry = 0; # If true (1), apply symmetry
# operators from cosets of a point
# group in each molecule to all other
# molecules, to preserve molecular
# stoichiometry (charge balance,
# etc.).
my $largest_molecule_only = 0; # Output only the largest (having the
# greatest number of atoms) molecule.
my $output_geom_bond = 0; # Compute and output the _geom_bond_... data
# items (bond lengths, valencies, etc.)
my $expand_to_p1 = 0; # Do we want a full P1 unit cell that can be used
# to re-create the whole crystal using only the
# lattice translations?
# Random seed to be used for rand() function:
my $random_seed;
# If true, generates symmetry equivalent sites for disorder groups
# with negative indices.
my $use_special_position_disorder = 1;
my $special_position_operator_set = 0;
# The simpler and slower space group builder algorithm
# (COD::Spacegroup::SimpleBuilder) is mostly intended for debugging.
# Ideally, it should give results identical to the space group builder
# algorithm optimised for speed (COD::Spacegroup::SimpleBuilder). It
# is also expected that the optimised algorithm outperforms the simple one.
my $space_group_builder_type = 'optimised';
# 'optimised' => 'use COD::Spacegroups::Builder'
# 'simple' => 'use COD::Spacegroups::SimpleBuilder'
my $die_on_errors = 1;
my $die_on_warnings = 0;
my $die_on_notes = 0;
my $machine_epsilon = get_machine_epsilon();
my %SYMOP_LOOKUP_HASH = make_symop_hash( [
\@COD::Spacegroups::Lookup::COD::table,
\@COD::Spacegroups::Lookup::COD::extra_settings
] );
#* OPTIONS:
#* --use-optimised-spacegroup-builder
#* Use the space group builder algorithm optimised
#* for speed as implemented in the
#* COD::Spacegroups::Builder module (default).
#* --use-simple-spacegroup-builder
#* Use the simpler and slower space group builder
#* algorithm as implemented in the
#* COD::Spacegroups::SimpleBuilder module.
#*
#* -1, --one-datablock-output
#* Output all moieties to a single output data block.
#*
#* However, if the --split-disorder-groups option is
#* enabled all generated alternative conformations will
#* be put into separate data blocks starting with the
#* most likely one (disorder group occupancy wise) and
#* ending with the least likely one. In order to retrieve
#* only the most likely one, the --largest-molecule-only
#* option should be used in combination with the
#* --one-datablock-output option.
#*
#* -1-, --multiple-datablocks-output
#* Separate each molecule and each example of an alternative
#* conformation into a separate data block (default).
#*
#* -c, --covalent-sensitivity
#* Set a new covalent sensitivity value (default: 0.35).
#*
#* -g, --geom-bond-output
#* Output _geom_bond_... data items (bond lengths,
#* valencies, etc.).
#*
#* -g-, --no-geom-bond-output
#* Do not output _geom_bond_... information (default).
#*
#* -h, --add-cif-header input_header.txt
#* Comments from the beginning of this file will be
#* prepended to the output.
#*
#* -i, --ignore-bumps
#* Detect and warn about close atom "bumps" but do not
#* stop processing.
#*
#* --dont-ignore-bumps, --no-ignore-bumps
#* Stop processing immediately if bumps are
#* detected (default).
#*
#* -s, --sort-molecules
#* Sort molecules in descending order by their atom count
#* and overall occupancy before outputting them. Atom count
#* takes precedence over overall occupancy (default).
#*
#* --dont-sort-molecules, --no-sort-molecules
#* Do not sort molecules, print them out in the order they
#* are detected.
#*
#* --expand-to-P1, --P1-expand, --p1-expand
#* Expand all atoms to the P1 unit cell, so that the
#* translation operators can be used to restore the whole
#* crystal.
#*
#* --dont-expand-to-P1, --no-expand-to-P1
#* --dont-P1-expand, --no-p1-expand
#* Do not expand to P1, output only the minimal molecule
#* list (default).
#*
#* --uniquify-atoms
#* Makes unique the labels of atoms (default).
#*
#* --no-uniquify-atoms, --dont-uniquify-atoms
#* Do not makes unique labels for atoms,
#* exclude duplicates.
#*
#* --use-morgan-fingerprints
#* Use Morgan fingerprints to identify and skip
#* duplicated moieties.
#*
#* --no-use-morgan-fingerprints, --dont-use-morgan-fingerprints
#* Use atom labels to identify and skip duplicated
#* moieties. This method is default, however under
#* certain circumstances it leaves duplicate moieties,
#* as asymmetric unit can initially contain more than
#* one copy of a single moiety (default).
#*
#* --use-atom-classes
#* Use COD atom classes, generated by AtomClassifier
#* module from 'atomclasses' repository, for the
#* generation of Morgan fingerprints. Requires the
#* external AtomClassifier module (default).
#*
#* --no-use-atom-classes, --dont-use-atom-classes
#* Use atom chemical types for generation of Morgan
#* fingerprints instead of COD atom classes.
#*
#* --bump-distance-factor 0.75
#* A fraction of covalent bond radii sum used to
#* determine when atoms are too close and are
#* considered a bump (default: 0.75).
#*
#* --vdw-distance-factor 1.2
#* A factor for the vdW radii sum used to
#* determine when atoms are too close and are
#* considered a vdW clash (default: 1.2).
#*
#* --continue-on-errors
#* Do not stop if errors such as unrecognised atoms are
#* encountered; the output may be incorrect and missing
#* some atoms if this option is used!
#*
#* --dont-continue-on-errors, --no-continue-on-errors
#* Stop immediately when an error is encountered.
#*
#* --exclude-zero-occupancies
#* Do not use atoms with 0 occupancies in calculations
#* (default).
#*
#* --dont-exclude-zero-occupancies, --no-exclude-zero-occupancies
#* Use atoms with 0 occupancies in calculations.
#*
#* --exclude-dummy-atoms
#* Do not use dummy atoms (marked by the 'dum' calc flag)
#* in calculations (default).
#*
#* --dont-exclude-dummy-atoms, --no-exclude-dummy-atoms
#* Use dummy atoms (marked by the 'dum' calc flag)
#* in calculations. Dummy atoms can be used to mark
#* interesting positions within the unit cell
#* (e.g. geometric centers of coordinated atom rings),
#* but they are not considered as part of the molecule.
#* As a result, the occupancies of all output dummy atoms
#* are set to '.'. It should also be noted that dummy atoms
#* with non-numeric coordinates will still be excluded.
#*
#* --preserve-stoichiometry
#* Apply necessary symmetry operators to preserve molecular
#* stoichiometry (charges, etc.).
#*
#* --dont-preserve-stoichiometry, --no-preserve-stoichiometry
#* Do not apply any more symmetry operators than needed to
#* reconstruct covalently connected networks; may
#* break stoichiometry of salts and complexes (default).
#*
#* --force-unit-occupancies
#* Set occupancies of all output atoms to 1.0. Unit
#* occupancies are only set when outputting the atoms
#* and do not affect the flow of the algorithm
#* (disorder group processing, molecule sorting, etc.).
#* Dummy atoms are excluded from the effects of this option
#* and are always output with the '.' occupancy.
#*
#* Some programs, notably Jumbo converter's cif2cml,
#* assume unresolved disorder and do not recognize
#* aromatic rings if occupancies are not unities.
#* Obviously, this flag has only sense in combination
#* with --split-disorder-groups.
#*
#* --dont-force-unit-occupancies, --do-not-force-unit-occupancies,
#* --no-force-unit-occupancies
#* Leave occupancies as they are (default).
#*
#* --dump-atoms
#* Dump atoms (including symmetry-equivalent) in CIF
#* format for inspection with some graphics program.
#*
#* --dont-dump-atoms, --no-dump-atoms
#* Do not dump atoms (default).
#*
#* --max-polymer-span 4
#* A span, in +/- unit cells, in which polymeric
#* molecules (repeating units) will be constructed.
#*
#* --max-polymer-atoms 100
#* A maximum allowed count of polymer example atoms:
#* more than this amount of symmetry (translational)
#* equivalent atoms, for each AU atom, will not be
#* written to the output:
#*
#* Using --max-polymer-span=0 --max-polymer-atoms=1
#* essentially switches off the polymer detection.
#*
#* --split-disorder-groups, --dont-merge-disorder-groups
#* Put examples of disorder group conformations into
#* separate data blocks (default).
#*
#* --merge-disorder-groups, --dont-split-disorder-groups
#* Put all disorder groups into one data block.
#*
#* --use-special-disorder-symmetry
#* Generate symmetry equivalents for disorder groups
#* with negative indices (default).
#*
#* --random-seed 123456
#* Use the provided seed to initialise the random
#* number generator. Use "" (empty string) as a seed
#* to revert back to the default seed.
#*
#* --special-disorder-operator-set 0
#* --special-disorder-operator-set random
#* Indicates which operator set to apply to atom groups
#* that are disordered around a special position. Can be
#* an integer (0, 1, 2, ...) or as special value "random",
#* in which case a random operator is selected for each
#* special position image.
#*
#* --no-use-special-disorder-symmetry,
#* --dont-use-special-disorder-symmetry,
#* --do-not-use-special-disorder-symmetry,
#* Do not generate symmetry equivalents for disorder
#* groups with negative indices.
#*
#* --largest, --largest-molecule-only
#* Output only the largest molecule. The largest molecule
#* is selected based on two criteria in the given order:
#* atom count and overall occupancy of the molecule.
#* When the combination of the --one-datablock-output and
#* --split-disorder-groups options is in effect the
#* molecule with the most likely disorder conformation
#* (occupancy wise) is returned.
#*
#* NOTE: if there is more than one disorder assembly
#* and the --split-disorder-groups option is in effect,
#* the conformation with the highest atom count might not
#* be generated at all. In this case, a molecule that best
#* fits the previously defined criteria out of the generated
#* conformation subset will be returned.
#*
#* --all, --all-molecules
#* Output all molecules (default).
#*
#* --use-perl-parser
#* --use-c-parser
#* Specify parser to parse CIF files. C parser is default.
#*
#* --symdebug
#* Print debug output for symmetry reconstruction.
#* --no-symdebug
#* Do not print any symmetry debug output (default).
#* --debug
#* Print some human-readable debug output.
#* --no-debug
#* Suppress any debug output (default).
#*
#* --format "%8.6f"
#* Use the specified format for output coordinate printout.
#*
#* --audit
#* Print audit information to the generated CIF file (default).
#* --no-audit
#* Do not print audit information to the generated CIF file.
#*
#* --verbose
#* Print warning messages in long format.
#* --no-verbose
#* Print warning messages in concise format (default).
#*
#* --help, --usage
#* Output a short usage message (this message) and exit.
#* --version
#* Output version information and exit.
#**
@ARGV = getOptions(
'--use-simple-spacegroup-builder' =>
sub { $space_group_builder_type = 'simple' },
'--use-optimised-spacegroup-builder' =>
sub { $space_group_builder_type = 'optimised' },
"-1,--one-datablock-output" => sub { $use_one_output_datablock = 1; },
"-1-,--multiple-datablocks-output" =>
sub { $use_one_output_datablock = 0; },
"--expand-to-P1,--P1-expand,--p1-expand" => sub { $expand_to_p1 = 1 },
"--no-expand-to-P1,--no-P1-expand,--no-p1-expand" =>
sub { $expand_to_p1 = 0 },
"--dont-expand-to-P1,--dont-P1-expand,--dont-p1-expand" =>
sub { $expand_to_p1 = 0 },
"--do-not-expand-to-P1,--do-not-P1-expand,--do-not-p1-expand" =>
sub { $expand_to_p1 = 0 },
"--uniquify-atoms" => sub { $uniquify_atoms = 1; },
"--no-uniquify-atoms" => sub { $uniquify_atoms = 0; },
"--dont-uniquify-atoms" => sub { $uniquify_atoms = 0; },
"--use-morgan-fingerprints" =>
sub { $use_morgan_fingerprints = 1 },
"--no-use-morgan-fingerprints" =>
sub { $use_morgan_fingerprints = 0 },
"--dont-use-morgan-fingerprints" =>
sub { $use_morgan_fingerprints = 0 },
"--use-atom-classes" => sub { $use_atom_classes = 1 },
"--no-use-atom-classes" => sub { $use_atom_classes = 0 },
"--dont-use-atom-classes" => sub { $use_atom_classes = 0 },
"-c,--covalent-sensitivity" => \$covalent_sensitivity,
"-g,--geom-bond-output" => sub { $output_geom_bond = 1 },
"-g-,--no-geom-bond-output" => sub { $output_geom_bond = 0 },
"-h,--add-cif-header" => \$cif_header_file,
"-i,--ignore-bumps" => sub{ $ignore_bumps = 1 },
"--no-ignore-bumps" => sub{ $ignore_bumps = 0 },
"--dont-ignore-bumps" => sub{ $ignore_bumps = 0 },
"-s,--sort-molecules" => sub{ $sort_molecules = 1 },
"--no-sort-molecules" => sub{ $sort_molecules = 0 },
"--dont-sort-molecules" => sub{ $sort_molecules = 0 },
"--exclude-zero-occupancies" => sub { $exclude_zero_occupancies = 1; },
"--no-exclude-zero-occupancies" => sub { $exclude_zero_occupancies = 0; },
"--dont-exclude-zero-occupancies" => sub { $exclude_zero_occupancies = 0; },
"--exclude-dummy-atoms" => sub { $exclude_dummy_atoms = 1; },
"--no-exclude-dummy-atoms" => sub { $exclude_dummy_atoms = 0; },
"--dont-exclude-dummy-atoms" => sub { $exclude_dummy_atoms = 0; },
"--preserve-stoichiometry" => sub { $preserve_stoichiometry = 1 },
"--dont-preserve-stoichiometry, --no-preserve-stoichiometry" =>
sub { $preserve_stoichiometry = 0 },
"--bump-distance-factor" => \$bump_distance_factor,
"--vdw-distance-factor" => \$vdw_distance_factor,
"--max-polymer-span" => \$max_polymer_span,
"--max-polymer-atoms" => \$max_polymer_atoms ,
"--symdebug" => sub { $symdebug = 1 },
"--no-symdebug" => sub { $symdebug = 0 },
"--debug" => sub { $debug = 1 },
"--no-debug" => sub { $debug = 0 },
"--format" => \$format,
"--force-unit-occupancies" => sub { $force_unit_occupancies = 1 },
"--no-force-unit-occupancies" => sub { $force_unit_occupancies = 0 },
"--dont-force-unit-occupancies" => sub { $force_unit_occupancies = 0 },
"--do-not-force-unit-occupancies" => sub { $force_unit_occupancies = 0 },
"--dump-atoms" => sub{ $dump_atoms = 1 },
"--dont-dump-atoms" => sub{ $dump_atoms = 0 },
"--no-dump-atoms" => sub{ $dump_atoms = 0 },
"--split-disorder-groups,--dont-merge-disorder-groups," .
"--do-not-merge-disorder-groups,--no-merge-disorder-groups"
=> sub { $merge_disorder_groups = 0 },
"--merge-disorder-groups,--dont-split-disorder-groups" .
"--do-not-split-disorder-groups,--no-split-disorder-groups"
=> sub { $merge_disorder_groups = 1 },
"--random-seed" => \$random_seed,
"--special-disorder-operator-set" => \$special_position_operator_set,
"--use-special-disorder-symmetry"
=> sub { $use_special_position_disorder = 1 },
"--no-use-special-disorder-symmetry," .
"--dont-use-special-disorder-symmetry," .
"--do-not-use-special-disorder-symmetry"
=> sub { $use_special_position_disorder = 0 },
"--largest,--largest-molecule-only"
=> sub { $largest_molecule_only = 1 },
"--all,--all-molecules"
=> sub { $largest_molecule_only = 0 },
"--always-continue" => sub { $die_on_errors = 0;
$die_on_warnings = 0;
$die_on_notes = 0 },
"-c-,--always-die" => sub { $die_on_errors = 1;
$die_on_warnings = 1;
$die_on_notes = 1 },
"--continue-on-errors" => sub { $die_on_errors = 0 },
"--dont-continue-on-errors" => sub { $die_on_errors = 1 },
"--die-on-errors" => sub { $die_on_errors = 1 },
"--no-continue-on-errors" => sub { $die_on_errors = 1 },
"--continue-on-warnings" => sub { $die_on_warnings = 0 },
"--die-on-warnings" => sub { $die_on_warnings = 1 },
"--continue-on-notes" => sub { $die_on_notes = 0 },
"--die-on-notes" => sub { $die_on_notes = 1 },
"--use-perl-parser" => sub{ $use_parser = "perl" },
"--use-c-parser" => sub{ $use_parser = "c" },
"--audit" => sub { $audit = 1; },
"--no-audit" => sub { $audit = 0; },
"--verbose" => sub { $verbose = 1; },
"--no-verbose" => sub { $verbose = 0; },
'--options' => sub { options; exit },
'--help,--usage' => sub { usage; exit },
'--version' => sub { print get_version_string(), "\n"; exit },
# The following options are left only for compatibility with historic
# version of the script:
# The '--remove-duplicate-molecules' is no longer necessary since the
# new algorithm (after changing order of molecule generation and
# disorder group representative generation) never produces duplicate
# molecules:
"--remove-duplicate-molecules" => sub { },
"--no-remove-duplicate-molecules" => sub { },
"--dont-remove-duplicate-molecules" => sub { },
);
my $die_on_error_level = {
ERROR => $die_on_errors,
WARNING => $die_on_warnings,
NOTE => $die_on_notes
};
# Initialise the Perl random number generator:
if( defined $random_seed && $random_seed ne "" ) {
srand($random_seed);
}
# Covalent radii taken from Kitaigorodskij 1955, "Organicheskaja
# kristallochimija", p. 11.
#==============================================================================#
my %atom_radii = (
"C" => [
# bond order name, bond order, covalent radius in ångströms:
[ "single", 1.0, 0.77 ],
[ "one-and-a-half", 1.5, 0.70 ],
[ "double", 2.0, 0.67 ],
[ "triple", 3.0, 0.60 ],
],
"Si" => [
[ "single", 1.0, 1.17 ],
[ "double", 2.0, 1.07 ],
[ "triple", 3.0, 1.00 ],
],
"Ge" => [
[ "single", 1.0, 1.17 ],
[ "double", 2.0, 1.07 ],
[ "triple", 3.0, 1.00 ],
],
"Sn" => [
[ "single", 1.0, 1.22 ],
[ "double", 2.0, 1.20 ],
],
"O" => [
[ "single", 1.0, 0.66 ],
[ "double", 2.0, 0.55 ],
],
"S" => [
[ "single", 1.0, 1.04 ],
[ "double", 2.0, 0.94 ],
],
"Se" => [
[ "single", 1.0, 1.17 ],
[ "double", 2.0, 1.07 ],
],
"Te" => [
[ "single", 1.0, 1.37 ],
[ "double", 2.0, 1.27 ],
],
"B" => [
[ "single", 1.0, 0.88 ],
[ "double", 2.0, 0.76 ],
[ "triple", 3.0, 0.68 ],
],
"N" => [
[ "single", 1.0, 0.70 ],
[ "double", 2.0, 0.60 ],
[ "triple", 3.0, 0.55 ],
],
"P" => [
[ "single", 1.0, 1.10 ],
[ "double", 2.0, 1.00 ],
[ "triple", 3.0, 0.93 ],
],
"As" => [
[ "single", 1.0, 1.21 ],
[ "double", 2.0, 1.11 ],
],
"Sb" => [
[ "single", 1.0, 1.41 ],
[ "double", 2.0, 1.31 ],
],
"H" => [
[ "single", 1.0, 0.30 ],
],
"F" => [
[ "single", 1.0, 0.64 ],
],
"Cl" => [
[ "single", 1.0, 1.00 ],
],
"Br" => [
[ "single", 1.0, 1.14 ],
],
"I" => [
[ "single", 1.0, 1.33 ],
],
"Hg" => [
[ "single", 1.0, 1.50 ],
],
);
#==============================================================================#
# Forward subroutine definitions:
sub symgen_atom( $$ );
sub symgen_all_atoms( $$$ );
sub find_molecules( $$$$$$ );
sub find_molecule( $$$$$$$$$ );
binmode STDOUT, ':encoding(UTF-8)';
binmode STDERR, ':encoding(UTF-8)';
my $cif_header;
eval {
if( $cif_header_file ) {
open( my $header, '<',"$cif_header_file" ) or die "ERROR, "
. "could not open header file for input -- ". lcfirst($!) . "\n";
$cif_header = "";
while( <$header> ) {
last unless /^#/;
$cif_header .= $_;
};
close( $header ) or die "ERROR, "
. "error while closing header file after reading -- "
. lcfirst($!) . "\n";
# The header must not contain CIF 2.0 magic code. For CIF 2.0
# files the magic code is printed explicitly before the header.
$cif_header =~ s/^#\\#CIF_2\.0[ \t]*\n//;
}
};
if ($@) {
process_errors( {
'message' => $@,
'program' => $0,
'filename' => $cif_header_file,
}, $die_on_errors )
};
@ARGV = ("-") unless @ARGV;
# Choose an appropriate space group builder class as specified in the
# options:
sub make_spacegroup_builder
{
my ($builder_type) = @_;
return COD::Spacegroups::Builder->new
if $builder_type eq 'optimised';
return COD::Spacegroups::SimpleBuilder->new
if $builder_type eq 'simple';
die "unknown spacegroup builder type '$builder_type'" . "\n";
}
for my $filename (@ARGV) {
my $options = { 'parser' => $use_parser, 'no_print' => 1 };
my ( $data, $err_count, $messages ) = parse_cif( $filename, $options );
process_parser_messages( $messages, $die_on_error_level );
# Is this line necessary?
# next if ( $err_count > 0 );
if( !ref $data ||
!@$data || !defined $data->[0] || !defined $data->[0]{name} ) {
report_message( {
'filename' => $filename,
'program' => $0,
'err_level' => 'WARNING',
'message' => 'file seems to be empty'
}, $die_on_warnings );
next;
}
canonicalize_all_names( $data );
if( $cif_header ) {
# Ensure that for CIF v2.0 the magic code comes
# before the CIF comment header:
if( grep { exists $_->{cifversion} &&
$_->{cifversion}{major} == 2 } @$data ) {
print "#\\#CIF_2.0\n";
}
print $cif_header;
}
for my $dataset (@$data) {
my $dataname = 'data_' . $dataset->{name};
local $SIG{__WARN__} = sub { process_warnings( {
'message' => @_,
'program' => $0,
'filename' => $filename,
'add_pos' => $dataname
}, {
WARNING => $die_on_warnings,
NOTE => $die_on_notes,
} ) };
my $values = $dataset->{values};
my $sym_data;
eval {
# Extracts symmetry operators.
# Raises warnings upon unrecognised symmetry information.
# Raises die if unable to find symmetry information.
$sym_data = get_symmetry_operators( $dataset );
my $unity_operator_found = 0;
for my $symop (@$sym_data) {
if( symop_is_unity( symop_from_string( $symop ) ) ) {
$unity_operator_found = 1;
last;
}
}
if( !$unity_operator_found ) {
warn "WARNING, unity symmetry operation ('x,y,z') is not "
. "found in the symmetry operation list -- results may "
. "be incorrect\n";
} elsif ( !symop_is_unity( symop_from_string( $sym_data->[0] ) ) ) {
# TODO: the symmetry operation position is currently only
# determined from the string position in a CIF loop.
# Technically, the appropriate looped list key data item
# (i.e. _space_group_symop_id) should also be examined
warn "WARNING, unity symmetry operation ('x,y,z') is not "
. "the first symmetry operation in the symmetry operation "
. "list -- results may be incorrect\n";
}
};
if ( $@ ) {
process_errors( {
'message' => $@,
'program' => $0,
'filename' => $filename,
'add_pos' => $dataname
}, $die_on_errors )
}
next if !defined $sym_data || !@{$sym_data};
my $original_sg_number = get_space_group_number(
$sym_data,
\%SYMOP_LOOKUP_HASH,
$dataset
);
my $unique_molecules;
eval {
$unique_molecules = get_molecules( $covalent_sensitivity,
$sym_data,
$dataset,
\%COD::AtomProperties::atoms,
$uniquify_atoms );
};
if ( $@ ) {
process_errors( {
'message' => $@,
'program' => $0,
'filename' => $filename,
'add_pos' => $dataname
}, $die_on_errors )
}
next if !defined $unique_molecules || !@{$unique_molecules};
eval {
if( $preserve_stoichiometry && $expand_to_p1 ) {
warn "NOTE, option '--expand-to-P1' implies " .
"'--preserve-stoichiometry'" . "\n";
}
if( $preserve_stoichiometry && ! $expand_to_p1 ) {
my $molecular_symmetry =
make_spacegroup_builder( $space_group_builder_type );
print STDERR "Start building molecule symmetry groups:\n"
if $symdebug;
foreach my $molecule (@$unique_molecules) {
# Build molecule point group here...
my $sg =
make_spacegroup_builder( $space_group_builder_type );
print STDERR "\nProcessing molecule "
. "'$molecule->{chemical_formula_sum}':\n"
if( $symdebug );
my %original_atoms = ();
for my $atom (@{$molecule->{atoms}}) {
my $atom_label = $atom->{site_label};
if( exists $atom->{site_symops} ) {
$sg->insert_symops( $atom->{site_symops} );
do {
for (@{$atom->{site_symops}}) {
print STDERR "<<<< inserting symop: ", string_from_symop($_),"\n";
}
} if $symdebug;
}
if( !exists $original_atoms{$atom_label} ) {
$original_atoms{$atom_label} = $atom;
} else {
my $symop1 = $original_atoms{$atom_label}{symop};
my $inverted_symop1 = symop_invert( $symop1 );
$sg->insert_symop( symop_mul( $atom->{symop},
$inverted_symop1 ));
do {
print( STDERR "<<<< inserting symop (inversion): ",
string_from_symop(
symop_mul(
$atom->{symop},
$inverted_symop1
)
), "\n" );
} if $symdebug;
}
}
$molecule->{symmetry} = $sg;
$molecular_symmetry->insert_symops( $sg->all_symops_ref() );
if( $symdebug ) {
print STDERR "\nMolecule symmetry for molecule "
. "'$molecule->{chemical_formula_sum}':\n";
$sg->print( \*STDERR );
print STDERR "\nMolecule cluster symmetry after insertion:\n";
$molecular_symmetry->print( \*STDERR );
}
}
if( $symdebug ) {
print STDERR "\nMolecule cluster symmetry:\n";
$molecular_symmetry->print( \*STDERR );
print STDERR "\nFinished building molecule symmetry groups:\n";
}
my @stoichiometric_molecules;
foreach my $molecule (@$unique_molecules) {
use COD::Spacegroups::Cosets qw( find_left_cosets
canonical_string_from_symop );
if( $symdebug ) {
print STDERR "\nMolecule cluster symmetry:\n";
$molecular_symmetry->print( \*STDERR );
print STDERR "\nMolecule symmetry for molecule "
. "'$molecule->{chemical_formula_sum}':\n";
$molecule->{symmetry}->print( \*STDERR );
}
my @cosets = find_left_cosets(
$molecular_symmetry->all_symops_ref(),
$molecule->{symmetry}->all_symops_ref()
);
if( $symdebug ) {
print STDERR "Cosets for '$molecule->{chemical_formula_sum}':\n";
## serialiseRef( \@cosets, "", \*STDERR );
my $indent = " ";
my $n = 1;
for my $coset (@cosets) {
print STDERR $indent, "Coset ", $n++, ": \n";
for my $symop (@$coset) {
print( STDERR $indent x 2,
string_from_symop( $symop ), "\n" );
}
}
}
push( @stoichiometric_molecules, $molecule );
for my $coset (@cosets[1..$#cosets]) {
## use COD::Serialise qw( serialiseRef ); serialiseRef( [@cosets[1..$#cosets]] );
my $symop = $coset->[0];
my $symop_key = canonical_string_from_symop( $symop );
my %additional_molecule = (
atoms =>
symop_apply_to_atoms( $molecule->{atoms},
$symop ),
chemical_formula_sum =>
$molecule->{chemical_formula_sum},
is_polymer => $molecule->{is_polymer},
polymer_dimension => $molecule->{polymer_dimension},
polymer_basis => $molecule->{polymer_basis},
);
push( @stoichiometric_molecules,
\%additional_molecule );
## use COD::Serialise; serialiseRef( \%additional_molecule );
}
}
# Find molecular Z value:
my %molecules;
for my $molecule (@stoichiometric_molecules) {
my $molecule_key;
if( $use_morgan_fingerprints ) {
my $neighbours =
make_neighbour_list(
$molecule->{atoms},
$covalent_sensitivity,
$bump_distance_factor,
\%COD::AtomProperties::atoms,
1 );
$molecule_key =
make_morgan_fingerprint(
$neighbours,
$use_atom_classes,
$classification_level,
$max_ring_size,
$flat_planarity );
} else {
$molecule_key =
join( "\0", sort map {$_->{site_label}}
@{$molecule->{atoms}} );
}
push( @{$molecules{$molecule_key}}, $molecule );
}
my $Z = gcd( map { int(@$_) } values %molecules );
## print STDERR ">>> Z = $Z\n";
# Simplify molecular formula:
if( $Z > 1 ) {
@stoichiometric_molecules = ();
for my $molecule_key (keys %molecules) {
my $N = int(@{$molecules{$molecule_key}});
for my $i (0 .. $N/$Z - 1) {
push( @stoichiometric_molecules,
$molecules{$molecule_key}[$i] );
}
}
}
$unique_molecules = \@stoichiometric_molecules;
}
# Trim polymers
for my $moiety (@$unique_molecules) {
next if !$moiety->{is_polymer};
$moiety->{atoms} = trim_polymer( $moiety->{atoms},
$max_polymer_span );
##print STDERR ">>>> trimmed: \$moiety_key = " .
##join( "\0", sort map {$_->{site_label}} @{$moiety->{atoms}} ) . "\n";
}
my $Z = 1;
if( $use_one_output_datablock ) {
my @all_atoms = map { @{$_->{atoms}} } @$unique_molecules;
if( @all_atoms > 0 ) {
# Find molecular Z value, once more:
my %moieties;
for my $moiety (@$unique_molecules) {
my $moiety_key;
if( $use_morgan_fingerprints ) {
my $neighbours =
make_neighbour_list(
$moiety->{atoms},
$covalent_sensitivity,
$bump_distance_factor,
\%COD::AtomProperties::atoms,
1 );
$moiety_key =
make_morgan_fingerprint(
$neighbours,
$use_atom_classes,
$classification_level,
$max_ring_size,
$flat_planarity );
} else {
$moiety_key =
join( "\0", sort map {$_->{site_label}}
@{$moiety->{atoms}} );
##print STDERR ">>>> \$moiety_key = $moiety_key\n";
}
push( @{$moieties{$moiety_key}}, $moiety );
}
$Z = gcd( map { int(@$_) } values %moieties );
}
}
# Merge all molecules to one if requested.
if( $use_one_output_datablock ) {
my @all_atoms = map { @{$_->{atoms}} } @$unique_molecules;
if( @all_atoms > 0 ) {
my @all_bases;
for my $moiety (@$unique_molecules) {
next if !$moiety->{polymer_dimension};
push @all_bases,
basis_string_to_matrix( $moiety->{polymer_basis} );
}
# Once @all_bases matrix is full, deref components and
# calculate cumulative rank and basis.
my $m = [map { @{$_} } @all_bases];
my ( $rank, $basis ) = get_rank_and_basis( $m );
$unique_molecules = [{
atoms =>
\@all_atoms,
chemical_formula_sum =>
chemical_formula_sum( \@all_atoms, $Z ),
is_polymer => ((grep { $_->{is_polymer} == 1 }
@$unique_molecules) > 0),
polymer_dimension => $rank,
polymer_basis => $basis
}];
}
}
## use COD::Serialise qw( serialiseRef ); serialiseRef( $unique_molecules );
# Split init atoms into assemblies and groups, if requested.
if( !$merge_disorder_groups ) {
my @split_molecules;
my $n = 1;
for my $molecule (@$unique_molecules) {
## print ">>> molecule No. ", $n++, "\n";
my $atom_list = $molecule->{atoms};
my $disorder_groups = atom_groups($atom_list);
## print ">>> ngroups = ", int(@$disorder_groups), "\n";
## use COD::Serialise qw( serialiseRef ); serialiseRef( $disorder_groups );
for my $disorder_representative (@$disorder_groups) {
push( @split_molecules,
{
atoms =>
$disorder_representative,
chemical_formula_sum =>
chemical_formula_sum
( $disorder_representative, $Z ),
is_polymer => $molecule->{is_polymer},
polymer_dimension =>
$molecule->{polymer_dimension},
polymer_basis => $molecule->{polymer_basis},
}
);
}
}
$unique_molecules = \@split_molecules;
}
# There is no need to sort the molecules if the single data block
# output is required since:
# a) there is only one molecule (no disorder);
# b) there are several disorder configurations, but the
# best one (occupancy wise) is already at the beginning
# of the array
if( !$use_one_output_datablock &&
( $sort_molecules || $largest_molecule_only ) ) {
my @molecule_sum_occupancy;
for (my $i = 0; $i < @{$unique_molecules}; $i++ ) {
$molecule_sum_occupancy[$i] = 0;
my $atoms = $unique_molecules->[$i]{'atoms'};
next if ( !defined $atoms->[0]{'atom_site_occupancy'} );
for my $atom (@{$atoms}) {
my $occupancy = (
$atom->{'atom_site_occupancy'} eq '.' ||
$atom->{'atom_site_occupancy'} eq '?' )
? 0 : $atom->{'atom_site_occupancy'};
$occupancy =~ s/[(][0-9]+[)]$//; # remove precision
$molecule_sum_occupancy[$i] += $occupancy;
}
};
my @sorted_indexes = sort {
@{$unique_molecules->[$b]{atoms}} <=>
@{$unique_molecules->[$a]{atoms} ||
$molecule_sum_occupancy[$b] <=>
$molecule_sum_occupancy[$a] }
} 0..$#$unique_molecules;
@{$unique_molecules} = @{$unique_molecules}[@sorted_indexes];
}
my $molecule_id = 0;
my $dataset_name = $dataset->{name};
foreach my $molecule (@$unique_molecules) {
my $id;
unless( ($use_one_output_datablock &&
$merge_disorder_groups) ||
$largest_molecule_only ) {
$id = $molecule_id;
} else {
$id = undef;
}
if( $output_geom_bond ) {
$molecule->{bonds} = atom_bonds( $molecule->{atoms},
\%COD::AtomProperties::atoms,
$covalent_sensitivity );
}
print_molecule( $id, $audit, $molecule, $Id,
$dataset, $dataset_name, $filename,
$sym_data, $Z, $original_sg_number );
last if $largest_molecule_only;
$molecule_id++;
}
};
if ( $@ ) {
process_errors( {
'message' => $@,
'program' => $0,
'filename' => $filename,
'add_pos' => $dataname
}, $die_on_errors )
}
}
}
#==============================================================================#
# Check whether an atom belongs to a group which is disordered around
# a special position. The $atom is a reference to a hash returned by
# atom_array_from_cif() subroutine.
sub is_disordered_around_special_position($)
{
my ($atom) = @_;
# "A minus prefix (e.g. "-1") is used to indicate sites disordered
# about a special position"
# (https://www.iucr.org/__data/iucr/cifdic_html/1/cif_core.dic/Iatom_site_disorder_group.html,
# 2019-10-22):
if( $atom && exists $atom->{group} &&
$atom->{group} =~ /^-/ ) {
return 1
} else {
return 0;
}
}
#==============================================================================#
# Calculate distance between two atoms. The atoms are represented as
# references to a hash returned by atom_array_from_cif()
# subroutine. These hashes MUST contain 'coordinates_ortho' field
# (with Cartesian atom coordinates.
sub atom_distance($$)
{
my ($atom1, $atom2) = @_;
return
distance(
$atom1->{coordinates_ortho},
$atom2->{coordinates_ortho},
);
}
#==============================================================================#
# Test if two atoms are too close (i.e. if the "bump").
sub atoms_bump($$$$)
{
my ($atom1, $atom2, $atom_properties, $distance_factor) = @_;
my $distance = atom_distance( $atom1, $atom2 );
do {
local $, = " ";
local $\ = "\n";
print STDERR ">>>> checking bump: ",
$atom1->{chemical_type}, $atom2->{chemical_type},
$atom1->{site_label}, $atom2->{site_label}, $distance,
$distance_factor;
} if 0;
return
test_bump(
$atom_properties,
$atom1->{chemical_type},
$atom2->{chemical_type},
$atom1->{site_label},
$atom2->{site_label},
$distance,
$distance_factor,
"vdw_radius"
);
}
#==============================================================================#
# Find all atoms sets that are disordered around a special position;
# determine symmetry (sub)group of each such special position and left
# cosets of each such symmetry group. Store references to space group
# operators, coset operator lists and unique operators needed to by
# applied to disordered atoms into each atom's record (hash).
sub determine_disordered_set_symmetry($$$$)
{
my ( $atom_list, $symmetry_operators, $atom_properties,
$distance_factor ) = @_;
my %special_disorder_groups;
for my $atom (@$atom_list) {
if( is_disordered_around_special_position( $atom ) ) {
my $disorder_group_key = $atom->{group};
push( @{$special_disorder_groups{$disorder_group_key}},
$atom );
}
}
for my $group_key (sort keys %special_disorder_groups) {
my @group_atoms = @{$special_disorder_groups{$group_key}};
my $unity_symop =
[ [ 1, 0, 0, 0 ],
[ 0, 1, 0, 0 ],
[ 0, 0, 1, 0 ],
[ 0, 0, 0, 1 ] ];
my $group_symmetric_atoms =
apply_shifts(
symgen_all_atoms( \@group_atoms, [ $unity_symop ],
{ print_errors => 0 } )
);
my $max_vdw_radius = get_max_vdw_radius( $atom_properties );
my $bricks = build_bricks( $group_symmetric_atoms,
$max_vdw_radius * 2.5 );
do {
local $\ = "\n";
local $, = " ";
print STDERR int(@$group_symmetric_atoms);
print STDERR "\$group_symmetric_atoms";
for my $atom (@$group_symmetric_atoms) {
print( STDERR substr($atom->{site_label}, 0, 1),
@{$atom->{coordinates_ortho}} );
}
} if 0;
my @symgroup_generators;
for my $symop (@$symmetry_operators) {
do {
local $\ = "\n";
print STDERR int(@group_atoms);
print STDERR "Group label ", $group_key;
} if 0;
for my $atom (@group_atoms) {
my $symm_atom = symop_apply( $atom, $symop, {modulo_1 => 1} );
do {
local $, = " ";
local $\ = "\n";
print STDERR substr($symm_atom->{site_label}, 0, 1),
@{$symm_atom->{coordinates_ortho}};
} if 0;
# Performed an optimised search of the neighbouring
# atoms in "bricks":
my $coordinates = $symm_atom->{coordinates_ortho};
my ($i_init, $j_init, $k_init) =
get_atom_index( $bricks, @$coordinates );
my ( $min_i, $max_i, $min_j, $max_j, $min_k, $max_k );
eval {
( $min_i, $max_i, $min_j, $max_j, $min_k, $max_k ) =
get_search_span( $bricks, $i_init, $j_init, $k_init );
};
if( $@ ) {
use COD::Serialise qw( serialiseRef );
serialiseRef( $coordinates );
serialiseRef( [ $i_init, $j_init, $k_init ] );
serialiseRef( $bricks );
die( $@ );
}
for my $i ($min_i .. $max_i) {
for my $j ($min_j .. $max_j) {
for my $k ($min_k .. $max_k) {
for my $other_atom ( @{$bricks->{atoms}[$i][$j][$k]} ) {
do {
print STDERR ">>> testing: ",
$symm_atom->{name}, " ",
$other_atom->{name}, " ",
"distance = ",
atom_distance($symm_atom, $other_atom ),
"\n";
} if 0;
if( atoms_bump( $symm_atom, $other_atom,
$atom_properties, $distance_factor ) ) {
push( @symgroup_generators, $symop );
do {
print( STDERR ">>> bump: ",
$symm_atom->{'site_label'}, " ",
$other_atom->{'site_label'},
"\n" );
print( STDERR ">>> pushing symop ",
string_from_symop($symop), "\n" );
} if 0;
}
}
}}}
}
}
# Now the @symgroup_generators will contain, if any, those
# symmetry operators that mapped the currently processed
# disordered group onto itself. Let's build a subgroup
# generated by those operators, it will the symmetry of the
# site around which the atom group is disordered.
if( @symgroup_generators ) {
use COD::Spacegroups::Cosets qw( find_left_cosets );
my $sg_builder =
make_spacegroup_builder( $space_group_builder_type );
$sg_builder->insert_symops( \@symgroup_generators );
my $subgroup_operators = $sg_builder->all_symops_ref();
do {
local $" = "; ";
local $\ = "\n";
my @disorder_symops =
map { string_from_symop($_) } @$subgroup_operators;
print STDERR ">>>> disorder symops: @disorder_symops";
} if 0;
my @cosets = find_left_cosets( $symmetry_operators,
$subgroup_operators );
my @permissible_operators;
for my $coset (@cosets) {
do {
local $" = "; ";
local $\ = "\n";
my @coset_symop_strings = map {string_from_symop($_)} @$coset;
print( STDERR ">>> coset ", ": ",
"@coset_symop_strings" );
} if 0;
for my $i (0..$#$coset) {
push( @{$permissible_operators[$i]}, $coset->[$i] );
}
}
do {
local $" = "; ";
local $\ = "\n";
for my $operators (@permissible_operators) {
my @operator_strings = map {string_from_symop($_)} @$operators;
print( STDERR ">>> operator set ", ": ",
"@operator_strings" );
}
} if 0;
# Distribute the found operators into disorder group
# atoms. Only those symmetry operators listed here should
# be applied to the atoms that contain them:
if( @permissible_operators ) {
for my $atom (@group_atoms) {
die "permissible operators already defined!"
if exists $atom->{permissible_operators};
$atom->{permissible_operators} = \@permissible_operators;
$atom->{disorder_site_symmetry} = $subgroup_operators;
}
}
} else {
warn "WARNING, disorder group '$group_key' is not mapped " .
"to itself by any non-unity symmetry operator\n";
}
}
}
#==============================================================================#
# This is the main function where other functions such as find_molecules are
# called.
# Accepts
# covalent_sensitivity - a threshold for covalent sensitivity
# filename - CIF file name
# sym_data - symmetric data from the CIF file
# atom_site_tag - atom site label or atom site type symbol from the
# CIF file
# values - a hash where a data from the CIF file is stored
#
# Returns
# unique_molecules - an array of hashes
# %molecule = (
# atoms=>[\%atom_info1, \%atom_info2], #covalent bond
# chemical_formula_sum=>"C6 H6",
# );
sub get_molecules
{
my $covalent_sensitivity = shift;
my $sym_data = shift;
my $dataset = shift;
my $atom_properties = shift;
my $uniquify_atoms = shift;
my $values = $dataset->{values};
# Parse symmetry operators:
my @sym_operators = map { symop_from_string($_) } @{$sym_data};
# Create a list of symmetry operators:
my $symop_list = { symops => [ map { symop_from_string($_) } @$sym_data ],
symop_ids => {} };
for (my $i = 0; $i < @{$sym_data}; $i++)
{
$symop_list->{symop_ids}
{symop_string_canonical_form($sym_data->[$i])} = $i;
}
my $cif_atom_list_options = {
uniquify_atom_names => 1,
uniquify_atoms => $uniquify_atoms,
exclude_dummy_atoms => $exclude_dummy_atoms,
exclude_dummy_coordinates => 1,
exclude_unknown_coordinates => 1,
symop_list => $symop_list,
modulo_1 => 1,
atom_properties => $atom_properties,
continue_on_errors => !$die_on_errors
};
# Extract atoms fract coordinates
my $atom_list = atom_array_from_cif( $dataset, $cif_atom_list_options );
return [] unless defined $atom_list;
# atoms with zero occupancies are not initially filtered in the
# 'atom_array_from_cif' subroutine due to some dummy atoms
# potentially containing zero or equivalent ('.', '?') occupancies
if ( $exclude_zero_occupancies ) {
my @filtered_atom_list;
for my $atom ( @$atom_list ) {
my $has_zero_occupancy = 0;
if ( exists $atom->{'atom_site_occupancy'} ) {
if ( $atom->{'atom_site_occupancy'} eq '?' ||
$atom->{'atom_site_occupancy'} eq '.' ) {
$has_zero_occupancy = 1;
} else {
my $occupancy = $atom->{'atom_site_occupancy'};
$occupancy =~ s/[(][0-9]+[)]$//; # remove precision
if ( $occupancy == 0.0 ) {
$has_zero_occupancy = 1;
}
}
}
next if ( $has_zero_occupancy &&
( !exists $atom->{'calc_flag'} ||
$atom->{'calc_flag'} ne 'dum' ) );
push @filtered_atom_list, $atom;
}
$atom_list = \@filtered_atom_list;
}
if( !@$atom_list ) {
warn "WARNING, no atoms suitable for processing were found -- "
. "maybe all occupancies were unknown, zero, or "
. "all atom types were unrecognised\n";
return [];
}
my $max_covalent_radius = get_max_covalent_radius( $atom_properties );
my @unique_molecules;
my %seen_molecules;
# If there are atom sets that are disordered around a special
# position, determine their symmetry subgroups in the space group
# and their symmetry subgroup cosets:
determine_disordered_set_symmetry( $atom_list, \@sym_operators,
$atom_properties,
$vdw_distance_factor );
# Apply necessary symmetry operators to all atoms. For atom sets
# that are disordered around a special position, only symmetry
# operators from atom set symmetry group cosets are applied, one
# symop from each coset:
my %initial_atom_names = map { $_->{name} => 1 } @$atom_list;
my $unit_cell_atoms = symgen_all_atoms( $atom_list, \@sym_operators,
{
print_errors => 1,
initial_atom_names =>
\%initial_atom_names
} );
my $symmetric_atoms = apply_shifts( $unit_cell_atoms );
my @initial_atoms;
if( $expand_to_p1 ) {
@initial_atoms = @$unit_cell_atoms;
} else {
do {
local $" = ", ";
local $\ = "\n";
my @atom_names = sort keys %initial_atom_names;
print STDERR ">>> atom names: @atom_names";
} if 0;
foreach my $symmetric_atom ( @$symmetric_atoms ) {
do {
local $\ = "\n";
print STDERR ">>> checking atom: $symmetric_atom->{name}";
} if 0;
push( @initial_atoms, $symmetric_atom )
if exists $initial_atom_names{$symmetric_atom->{name}};
}
}
if( $dump_atoms ) {
dump_atoms_as_cif( 1, \@initial_atoms,
[ get_cell( $values ) ] );
} else {
my $bricks = build_bricks( $symmetric_atoms,
$max_covalent_radius * 2 +
$covalent_sensitivity );
# Finds molecules
my @current_ordered_molecules = find_molecules( $covalent_sensitivity,
$atom_properties,
$symmetric_atoms,
\@initial_atoms,
$bricks,
\%seen_molecules );
push( @unique_molecules, @current_ordered_molecules );
}
# Calculates chemical formula sum
foreach my $molecule (@unique_molecules) {
$molecule->{chemical_formula_sum} =
chemical_formula_sum( $molecule->{atoms} );
}
return \@unique_molecules;
}
#===============================================================#
# Applies symmetry operator to all atoms in a given list.
#
# The symop_apply_to_atoms subroutine accepts a reference to an array
# of hash references:
#
# $atom_list = [
# {
# site_label=>"C1",
# name=>"C1_2",
# chemical_type=>"C",
# coordinates_fract=>[1.0, 1.0, 1.0],
# unity_matrix_applied=>1
# }, # $atom_info hash
# $atom2_info,
# $atom3_info,
# $atom4_info
# ]
#
# and a reference to an array - symmetry operator:
#
# my $symop = [
# [ r11 r12 r13 t1 ]
# [ r21 r22 r23 t1 ]
# [ r31 r32 r33 t1 ]
# [ 0 0 0 1 ]
# ],
#
# Returns an list of the above-mentioned atom_info hashes.
sub symop_apply_to_atoms
{
my($atom_list, $symop) = @_;
my @sym_atoms = ();
for my $atom (@$atom_list) {
push( @sym_atoms,
symop_apply( $atom, $symop,
{ append_symop_to_label => $expand_to_p1 } ) );
}
return \@sym_atoms;
}
#===============================================================#
# Generate symmetry equivalents of an atom, exclude duplicates
# on special positions
sub symgen_atom($$)
{
my ( $atom, $sym_operators ) = @_;
my( $sym_atoms ) = symops_apply_modulo1( $atom, $sym_operators,
{ append_symop_to_label =>
$expand_to_p1,
use_special_position_disorder =>
$use_special_position_disorder } );
if( $sym_atoms &&
( !@{$sym_atoms} ||
$sym_atoms->[0]{multiplicity_ratio} == 1 )) {
return @$sym_atoms;
} else {
my @unique_atoms;
my %to_be_deleted;
for my $i (0..$#$sym_atoms-1) {
for my $j ($i+1..$#$sym_atoms) {
if( atoms_coincide( $sym_atoms->[$i],
$sym_atoms->[$j],
$sym_atoms->[$i]{f2o} )) {
$to_be_deleted{$sym_atoms->[$j]{name}} = 1;
}
}
}
for my $atom (@$sym_atoms) {
if( !defined $to_be_deleted{$atom->{name}} ) {
push( @unique_atoms, $atom );
}
}
return @unique_atoms;
}
}
#===============================================================#
# Generate symmetry equivalents of all atoms from a list, exclude
# duplicates on special positions. Check the multiplicity values
# provided in the original file.
sub symgen_all_atoms($$$)
{
my ( $atoms, $sym_operators, $options ) = @_;
my $print_errors = 1
if $options && $options->{print_errors};
my $initial_atom_names = $options->{initial_atom_names}
if exists $options->{initial_atom_names};
my @sym_atoms = ();
my %disorder_group_operators;
for my $atom (@{$atoms}) {
my $atom_symops;
if( exists $atom->{permissible_operators} ) {
my $operator_set_index;
if( $special_position_operator_set eq "random" ) {
my $disorder_group = $atom->{group};
if( exists $disorder_group_operators{$disorder_group} ) {
$atom_symops =
$disorder_group_operators{$disorder_group}
} else {
# Pre-multiply the symmetry operator with a randomly
# selected operator that maps a disordered group into
# itself:
my @randomised_symops;
my $site_symops = $atom->{disorder_site_symmetry};
my $nsymops = int(@$site_symops);
for my $permissible_symop (
@{$atom->{permissible_operators}[0]}
) {
my $symop_index = int(rand($nsymops));
my $site_symop = $site_symops->[$symop_index];
do {
use Data::Dumper;
print STDERR Dumper( $site_symop, $permissible_symop );
} if 0;
push( @randomised_symops,
symop_mul( $permissible_symop, $site_symop )
);
}
$disorder_group_operators{$disorder_group} =
\@randomised_symops;
$atom_symops = \@randomised_symops;
}
} else {
$operator_set_index =
$special_position_operator_set %
int(@{$atom->{permissible_operators}});
$atom_symops =
$atom->{permissible_operators}[$operator_set_index];
}
} else {
$atom_symops = $sym_operators;
}
die unless defined $atom_symops;
# If symgen_all_atoms() is called by the code that needs all
# symmetry equivalents in the cell to reconstruct molecules,
# it passes a hash of all initial atoms names as an optional
# parameter. Molecules are reconstructed by the caller of
# this function starting from atoms that have their names
# listed in the $initial_atom_names = {} hash. Normally, they
# are just _atom_site_label values from the CIF since, when a
# unity operator is applied, the atom name is not changed by
# symgen_atom(). However, if an atom belongs to a group that is
# disordered around a special position, and if we choose to
# apply some of the disorder site operators to this atom, the
# unity operator will never be used for such atom. In this
# case, its name in the initial atom list must be replaced so
# that the molecule reconstruction code finds them:
if( $initial_atom_names &&
!symop_is_unity( $atom_symops->[0] ) ) {
my $symop_string = canonical_string_from_symop( $atom_symops->[0] );
# FIXME: the code that generates the $symop_id value MUST
# be exactly the same as in symop_register_applied_symop()
# of the SymmetryGenerator.pm, line 206 onwards
# (rev. 7270). The code should be refactored so that the
# symop_id generation happens just in one place (restore
# SPOT) (S.G.).
my $symop_id =
$atom->{symop_list}{symop_ids}{$symop_string} + 1;
my $old_atom_name = $atom->{site_label};
my $new_atom_name = $atom->{site_label} . '_' . $symop_id . '_555';
delete $initial_atom_names->{$old_atom_name};
$initial_atom_names->{$new_atom_name} = 1;
}
push( @sym_atoms, symgen_atom( $atom, $atom_symops ) );
}
my $nr_multiplicity_ratios_found = 0;
for my $atom (@{$atoms}) {
my $multiplicity = $atom->{multiplicity};
my $multiplicity_ratio = $atom->{multiplicity_ratio};
if( exists $atom->{_atom_site_symmetry_multiplicity} &&
$atom->{_atom_site_symmetry_multiplicity} ne '?' &&
$atom->{_atom_site_symmetry_multiplicity} ne '.' &&
$atom->{_atom_site_symmetry_multiplicity} !=
$multiplicity ) {
if( $atom->{_atom_site_symmetry_multiplicity} ==
$multiplicity_ratio ) {
$nr_multiplicity_ratios_found++;
} else {
if( $print_errors ) {
warn 'WARNING, the given multiplicity value of atom ' .
"'$atom->{name}' differs from the calculated value " .
"('$atom->{_atom_site_symmetry_multiplicity}' vs. " .
"'$multiplicity') -- the calculated value will be " .
'used' . "\n";
}
}
}
}
if( $nr_multiplicity_ratios_found > 0 &&
$print_errors ) {
warn "WARNING, multiplicity ratios are given instead of "
. "multiplicities for $nr_multiplicity_ratios_found atoms -- "
. "taking calculated values\n";
}
return \@sym_atoms;
}
#===============================================================#
# Prints molecule to the CIF file.
# Accepts a hash
# %molecule = (
# atoms=>[\%atom_info1, \%atom_info2, ...],
# bonds=>[{atom1=>\%atom_info1, atom2=>\%atom_info2}], #covalent bond
# chemical_formula_sum=>"\\'C6 H6\\'",
# );
# ...
#
# @param $sym_data
# Reference to an array of symmetry operations as returned
# by the COD::CIF::Data::get_symmetry_operators() subroutine.
# Currently not used.
# @param $Z
# Molecular Z number.
# @param $original_sg_number
# Space group IT number derived from the input crystal structure
# (see the get_space_group_number() subroutine). May be undefined.
##
sub print_molecule
{
my( $molecule_id, $audit, $molecule, $Id, $dataset, $dataset_name,
$filename, $sym_data, $Z, $original_sg_number ) = @_;
my $new_dataset = clone( $dataset );
$new_dataset->{name} = $dataset_name;
if( defined $molecule_id ) {
$new_dataset->{name} .= '_molecule_' . $molecule_id;
}
my @data2copy = qw(
_publ_author_name
_publ_section_title
_journal_issue
_journal_name_full
_journal_page_first
_journal_page_last
_journal_volume
_journal_year
_cell_length_a
_cell_length_b
_cell_length_c
_cell_angle_alpha
_cell_angle_beta
_cell_angle_gamma
_cell_measurement_pressure
_cell_measurement.pressure
_cell_measurement.pressure_esd
_cell_measurement_pressure_gPa
_cell_measurement_radiation
_cell_measurement.radiation
_cell_measurement.temp
_cell_measurement_temperature
_cell_measurement_temperature_C
_cell_measurement.temp_esd
_cell_measurement_wavelength
_cell_measurement.wavelength
_cell_measurement_wavelength_nm
_cell_measurement_wavelength_pm
_diffrn_ambient_environment
_diffrn.ambient_environment
_diffrn_ambient_pressure
_diffrn.ambient_pressure
_diffrn.ambient_pressure_esd
_diffrn_ambient_pressure_gPa
_diffrn_ambient_pressure_gt
_diffrn.ambient_pressure_gt
_diffrn_ambient_pressure_lt
_diffrn.ambient_pressure_lt
_diffrn.ambient_temp
_diffrn.ambient_temp_details
_diffrn_ambient_temperature
_diffrn_ambient_temperature_C
_diffrn_ambient_temperature_gt
_diffrn_ambient_temperature_lt
_diffrn.ambient_temp_esd
_diffrn.ambient_temp_gt
_diffrn.ambient_temp_lt
_diffrn_radiation_collimation
_diffrn_radiation.collimation
_diffrn_radiation_detector
_diffrn_radiation_detector_dtime
_diffrn_radiation.diffrn_id
_diffrn_radiation.div_x_source
_diffrn_radiation.div_x_y_source
_diffrn_radiation.div_y_source
_diffrn_radiation_filter_edge
_diffrn_radiation.filter_edge
_diffrn_radiation_filter_edge_nm
_diffrn_radiation_filter_edge_pm
_diffrn_radiation_inhomogeneity
_diffrn_radiation.inhomogeneity
_diffrn_radiation_monochromator
_diffrn_radiation.monochromator
_diffrn_radiation_polarisn_norm
_diffrn_radiation.polarisn_norm
_diffrn_radiation_polarisn_ratio
_diffrn_radiation.polarisn_ratio
_diffrn_radiation.polarizn_source_norm
_diffrn_radiation.polarizn_source_ratio
_diffrn_radiation_probe
_diffrn_radiation.probe
_diffrn_radiation_source
_diffrn_radiation_type
_diffrn_radiation.type
_diffrn_radiation_wavelength
_diffrn_radiation_wavelength_id
_diffrn_radiation_wavelength.id
_diffrn_radiation.wavelength_id
_diffrn_radiation_wavelength_nm
_diffrn_radiation_wavelength_pm
_diffrn_radiation_wavelength.wavelength
_diffrn_radiation_wavelength_wt
_diffrn_radiation_wavelength.wt
_diffrn_radiation_xray_symbol
_diffrn_radiation.xray_symbol
_diffrn_reflns_theta_full
_diffrn_reflns_resolution_full
_diffrn_reflns_theta_max
_diffrn_reflns_resolution_max
_reflns_d_resolution_high
_reflns.d_resolution_high
_reflns_d_resolution_high_nm
_reflns_d_resolution_high_pm
_reflns_d_resolution_low
_reflns.d_resolution_low
_reflns_d_resolution_low_nm
_reflns_d_resolution_low_pm
_diffrn_reflns_limit_h_max
_diffrn_reflns.limit_h_max
_diffrn_reflns_limit_h_min
_diffrn_reflns.limit_h_min
_diffrn_reflns_limit_k_max
_diffrn_reflns.limit_k_max
_diffrn_reflns_limit_k_min
_diffrn_reflns.limit_k_min
_diffrn_reflns_limit_l_max
_diffrn_reflns.limit_l_max
_diffrn_reflns_limit_l_min
_diffrn_reflns.limit_l_min
_cod_duplicate_entry
_[local]_cod_duplicate_entry
);
my @data2rename = qw(
_chemical_formula_analytical
_chemical_formula.analytical
_chemical_formula.entry_id
_chemical_formula_iupac
_chemical_formula.iupac
_chemical_formula_moiety
_chemical_formula.moiety
_chemical_formula_structural
_chemical_formula.structural
_chemical_formula_sum
_chemical_formula.sum
_pd_proc_ls_prof_R_factor
_pd_proc_ls_prof_wR_factor
_refine_hist.R_factor_all
_refine_hist.R_factor_obs
_refine_hist.R_factor_R_free
_refine_hist.R_factor_R_work
_refine_ls_class_R_factor_all
_refine_ls_class.R_factor_all
_refine_ls_class_R_factor_gt
_refine_ls_class.R_factor_gt
_refine_ls_class_wR_factor_all
_refine_ls_class.wR_factor_all
_refine_ls_R_factor_all
_refine.ls_R_factor_all
_refine_ls_R_factor_gt
_refine.ls_R_factor_gt
_refine_ls_R_factor_obs
_refine.ls_R_factor_obs
_refine.ls_R_factor_R_free
_refine.ls_R_factor_R_free_error
_refine.ls_R_factor_R_free_error_details
_refine.ls_R_factor_R_work
_refine_ls_shell.R_factor_all
_refine_ls_shell.R_factor_obs
_refine_ls_shell.R_factor_R_free
_refine_ls_shell.R_factor_R_free_error
_refine_ls_shell.R_factor_R_work
_refine_ls_shell.wR_factor_all
_refine_ls_shell.wR_factor_obs
_refine_ls_shell.wR_factor_R_free
_refine_ls_shell.wR_factor_R_work
_refine_ls_wR_factor_all
_refine.ls_wR_factor_all
_refine_ls_wR_factor_gt
_refine_ls_wR_factor_obs
_refine.ls_wR_factor_obs
_refine_ls_wR_factor_ref
_refine.ls_wR_factor_R_free
_refine.ls_wR_factor_R_work
_reflns_class_R_factor_all
_reflns_class.R_factor_all
_reflns_class_R_factor_gt
_reflns_class.R_factor_gt
_reflns_class_wR_factor_all
_reflns_class.wR_factor_all
);
# Copy the '_atom_type.symbol' and '_atom_type.oxidation_number'
# data items only if both are simultaneously provided. Otherwise,
# the oxidation numbers cannot be mapped to the corresponding atom
# types or the oxidation numbers are not provided at all.
if( ( contains_data_item( $new_dataset, '_atom_type_symbol' ) ||
contains_data_item( $new_dataset, '_atom_type.symbol' ) ) &&
( contains_data_item( $new_dataset, '_atom_type_oxidation_number' ) ||
contains_data_item( $new_dataset, '_atom_type.oxidation_number' ) ) )
{
push @data2copy, qw(
_atom_type.symbol
_atom_type_symbol
_atom_type.oxidation_number
_atom_type_oxidation_number
)
}
my %data2copy = map { $_, $_ } @data2copy;
my @tag_list = @{$new_dataset->{tags}};
my $src_tag_prefix = '_[local]_cod_src';
my %renamed_tags = rename_tags( $new_dataset,
\@data2rename,
$src_tag_prefix );
my @tags_to_exclude = grep { !exists $data2copy{$_} &&
!exists $renamed_tags{$_} }
@{$new_dataset->{tags}};
foreach (@tags_to_exclude) {
exclude_tag( $new_dataset, $_ );
}
if( $audit ) {
my $id_value = $Id;
$id_value =~ s/\s*\$\s*//g;
set_tag( $new_dataset, '_audit_creation_method', $id_value );
}
set_tag( $new_dataset, '_chemical_formula_sum',
$molecule->{chemical_formula_sum} );
set_tag( $new_dataset, '_cod_data_source_file',
basename( $filename ) );
set_tag( $new_dataset, '_cod_data_source_block',
$dataset_name );
set_tag( $new_dataset, '_cell_formula_units_Z', $Z );
set_tag( $new_dataset, '_space_group_name_H-M_alt', 'P 1' );
set_loop_tag( $new_dataset, '_space_group_symop_operation_xyz',
undef, [ 'x, y, z' ] );
if( defined $original_sg_number ) {
set_tag( $new_dataset, '_cod_molecule_space_group_IT_number',
$original_sg_number );
}
if( $molecule->{is_polymer} ) {
set_tag( $new_dataset, '_cod_molecule_is_polymer', 'yes' );
}
else {
set_tag( $new_dataset, '_cod_molecule_is_polymer', 'no' );
}
if( $molecule->{polymer_dimension} && $max_polymer_span != 0 ) {
set_tag( $new_dataset, '_cod_molecule_polymer_dimension',
$molecule->{polymer_dimension} );
set_tag( $new_dataset, '_cod_molecule_polymer_basis',
$molecule->{polymer_basis} );
}
my @atoms = sort {
length($a->{name}) == length($b->{name}) ?
$a->{name} cmp $b->{name} :
length($a->{name}) <=> length($b->{name})
} @{$molecule->{atoms}};
my $atoms_datablock = datablock_from_atom_array( \@atoms );
merge_datablocks( $atoms_datablock, $new_dataset );
my $cod_molecule_datablock = generate_cod_molecule_data_block( \@atoms );
merge_datablocks( $cod_molecule_datablock, $new_dataset );
if( $force_unit_occupancies &&
exists $new_dataset->{values}{_atom_site_occupancy} ) {
set_loop_tag( $new_dataset,
'_atom_site_occupancy',
'_atom_site_label',
[ map { exists $_->{calc_flag} && $_->{calc_flag} eq 'dum'
? '.' : '1.0' } @atoms ] );
}
if( !$use_one_output_datablock ) {
exclude_tag( $new_dataset, '_atom_site_disorder_assembly' );
exclude_tag( $new_dataset, '_atom_site_disorder_group' );
}
# Forcing coordinate format
for my $tag ( qw( _atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z ) ) {
set_loop_tag( $new_dataset,
$tag,
'_atom_site_label',
[ map { $_ = sprintf $format, $_;
s/^\s+//; s/\s+$//; $_ }
@{$new_dataset->{values}{$tag}} ] );
}
# Printing _geom_bond_ output on request
if( $output_geom_bond ) {
if( exists $molecule->{bonds} ) {
set_loop_tag( $new_dataset,
'_geom_bond_atom_site_label_1',
'_geom_bond_atom_site_label_1',
[ map { $_->{atom1}{name} }
@{$molecule->{bonds}} ] );
set_loop_tag( $new_dataset,
'_geom_bond_atom_site_label_2',
'_geom_bond_atom_site_label_1',
[ map { $_->{atom2}{name} }
@{$molecule->{bonds}} ] );
set_loop_tag( $new_dataset,
'_geom_bond_distance',
'_geom_bond_atom_site_label_1',
[ map { sprintf '%.5f', $_->{distance} }
@{$molecule->{bonds}} ] );
set_loop_tag( $new_dataset,
'_geom_bond_valence',
'_geom_bond_atom_site_label_1',
[ map { $_->{order} }
@{$molecule->{bonds}} ] );
} else {
warn 'WARNING, bond data necessary to compute _geom_bond_ '
. 'data items was not calculated' . "\n";
}
}
print_cif( $new_dataset,
{
preserve_loop_order => 1,
keep_tag_order => 1
} );
return;
}
#===============================================================#
# Finds all possible molecules in the CIF file. If two atoms are connected via
# then the algorithm states that there in no bond between these two atoms.
# The algorithm:
# 1. Takes an initial atom and tests if it has not been found in the other
# molecule yet
# 2. If not, then begins to search for the other molecule:
# 2.1 Does modulo_1 for the initial atom
# 2.2 Finds a translation from initial atom to atom_modulo_1
# 2.3 Searches for all neighbours of atom_modulo_1
# 2.4 For each neighbour of atom_modulo_1 does 2.1 -- 2.4
# 2.5 atom_modulo_1 and all its neighbours translates according translation
# vector. atom_modulo_1 now becomes initial atom. The others - accordingly
# 3. Stops and does the step 1 until there is no left any initial atom.
# Accepts
# covalent_sensitivity - a threshold for covalent sensitivity
# atom_properties(
# H => {
# name => Hydrogen, #(chemical_type)
# period => 1,
# group => 1,
# block => s,
# atomic_number => "1",
# atomic_weight => 1.008,
# covalent_radius => 0.23,
# vdw_radius => 1.09,
# valency => [1],
# },
# );
# symmetric_atoms and initial_atoms are arrays of
# $atom_info = {
# name=>"C1_2",
# site_label=>"C1",
# chemical_type=>"C",
# coordinates_fract=>[1.0, 1.0,1.0],
# coordinates_ortho=>[1.0, 1.0,1.0],
# unity_matrix_applied=>1
# }
# Returns an array of
# %molecule = (
# atoms => [
# \%atom1_info, \%atom2_info, \%atom3_info, \%atom4_info
# ],
# bonds => [
# [ \%atom1_info, \%atom2_info ],
# [ \%atom1_info, \%atom3_info ],
# [ \%atom4_info, \%atom3_info ],
# ] # covalent bond description
# chemical_formula_sum => "C6 H6",
# );
sub find_molecules($$$$$$)
{
my $covalent_sensitivity = shift(@_);
my $atom_properties = shift(@_);
my $symmetric_atoms = shift(@_);
my $initial_atoms = shift(@_);
my $bricks = shift(@_);
my $seen_molecules = shift(@_);
my @unique_molecules;
my %used_atoms;
my %used_originals;
my %used_uc_atoms;
my %checked_pairs;
my $nbumps = 0;
foreach my $initial_atom (@$initial_atoms)
{
next if exists $used_originals{$initial_atom->{cell_label}};
print STDERR ">>>> starting new molecule\n" if $debug;
## if( ! $expand_to_p1 &&
## $initial_atom->{cell_label} ne $initial_atom->{site_label} ) {
## print STDERR
## ">>>> site: $initial_atom->{site_label}, " .
## "cell: $initial_atom->{cell_label}\n";
## }
my( $molecule_atoms, $mol_nbumps, $mol_polymer_atoms ) =
find_molecule( $covalent_sensitivity,
$atom_properties,
$symmetric_atoms,
\%used_atoms,
\%used_originals,
\%used_uc_atoms,
\%checked_pairs,
$initial_atom, $bricks );
my @molecule_atoms = @$molecule_atoms;
$nbumps += $mol_nbumps;
if( !@molecule_atoms ) {
warn "WARNING, found molecule with no atoms -- strange...\n";
next;
}
# Calculate polymer dimension and basis.
my $polymer_dimension;
my $polymer_basis;
if( $mol_polymer_atoms > 0 ) {
my $polymer_vectors = {};
for my $atom ( @molecule_atoms ) {
my $site_label = $atom->{site_label};
my $symop_id = $atom->{symop_id};
if( !exists $polymer_vectors->{$site_label}{$symop_id} ) {
$polymer_vectors->{$site_label}{$symop_id} = [];
}
push( @{$polymer_vectors->{$site_label}{$symop_id}},
$atom->{translation} );
}
for my $site_label (sort keys %$polymer_vectors) {
for my $symop_id (sort keys %{$polymer_vectors->{$site_label}} ) {
my @polymer_vectors =
@{$polymer_vectors->{$site_label}{$symop_id}};
next if @polymer_vectors < 2;
my $reference_vector = shift @polymer_vectors;
my ($polymer_dimension_now, $basis_now) =
get_rank_and_basis(
[ map { vector_sub( $_, $reference_vector ) }
@polymer_vectors ]
);
next if !defined $polymer_dimension_now;
if( !defined $polymer_dimension ||
$polymer_dimension < $polymer_dimension_now ) {
$polymer_dimension = $polymer_dimension_now;
$polymer_basis = $basis_now;
}
}
}
}
my %molecule = (
atoms => \@molecule_atoms,
chemical_formula_sum => '',
is_polymer => ($mol_polymer_atoms > 0),
polymer_dimension => $polymer_dimension,
polymer_basis => $polymer_basis,
);
push( @unique_molecules, \%molecule );
}
if( !$verbose && $nbumps > 0 ) {
warn "WARNING, $nbumps pair(s) of atoms are too close to "
. "each other and are considered as bumps\n";
}
return @unique_molecules;
}
# ============================================================================ #
sub find_molecule($$$$$$$$$)
{
my $covalent_sensitivity = shift(@_);
my $atom_properties = shift(@_);
my $symmetric_atoms = shift(@_);
my $used_atoms = shift(@_);
my $used_originals = shift(@_);
my $used_uc_atoms = shift(@_);
my $checked_pairs = shift(@_);
my $current_atom = shift(@_);
my $bricks = shift(@_);
my @current_coords_fract_modulo_1 =
map { modulo_1($_) } @{$current_atom->{coordinates_fract}};
my $atom_in_unit_cell_coords_ortho =
symop_vector_mul( $current_atom->{f2o}, \@current_coords_fract_modulo_1 );
my $current_translation = translation( $current_atom->{coordinates_fract},
\@current_coords_fract_modulo_1 );
my @neighbors;
do {
no warnings;
if( exists $used_atoms->
{$current_atom->{site_label}}
{$current_atom->{symop_id}}
{$current_atom->{translation_id}} ) {
print STDERR "<<<< atom labelled '$current_atom->{name}' " .
"is already in some molecule, returning\n"
if $debug;
return ( \@neighbors, 0, 0 );
}
$used_atoms->{$current_atom->{site_label}}
{$current_atom->{symop_id}}
{$current_atom->{translation_id}} = $current_atom;
}; # end no warnings
$used_originals->{$current_atom->{cell_label}} =
$current_atom->{cell_label};
my $polymer_atoms = 0;
do {
no warnings;
if( exists $used_uc_atoms->
{$current_atom->{site_label}}
{$current_atom->{symop_id}} ) {
my $used_uc_atom = $used_uc_atoms->
{$current_atom->{site_label}}
{$current_atom->{symop_id}};
print STDERR ">>> !!!! detected a used unit cell " .
"label $current_atom->{name}/$current_atom->{symop_id}/" .
"$current_atom->{translation_id} (${used_uc_atom}-th time)\n"
if $debug;
$polymer_atoms++;
if( $used_uc_atoms->
{$current_atom->{site_label}}
{$current_atom->{symop_id}} > $max_polymer_atoms ) {
my $message = "the maximum number of polymer atom " .
"repetitions $max_polymer_atoms was reached for " .
"atom '$current_atom->{site_label}' " .
"(symop id '$current_atom->{symop_id}') -- " .
"to get around this limit, please increase " .
"--max-polymer-atoms, to say, " .
"--max-polymer-atoms=" . (2 * $max_polymer_atoms) . " " .
"or decrease --max-polymer-span (e.g. " .
"--max-polymer-span=" . int($max_polymer_span/2) . ", " .
"but expect increased computation times and " .
"memory consumption)";
if( !$die_on_errors ) {
warn "WARNING, $message\n";
return ( [], 0, $polymer_atoms );
} else {
die "ERROR, $message\n";
}
}
if( abs($current_atom->{translation}[0]) > $max_polymer_span ||
abs($current_atom->{translation}[1]) > $max_polymer_span ||
abs($current_atom->{translation}[2]) > $max_polymer_span ) {
return ( [$current_atom], 0, $polymer_atoms );
}
}
$used_uc_atoms->
{$current_atom->{site_label}}
{$current_atom->{symop_id}} ++;
}; # end no warnings
print STDERR
">>> considering atom $current_atom->{name} " .
"(@{$atom_in_unit_cell_coords_ortho}) " .
"($current_atom->{cell_label}/" .
"$current_atom->{symop_id}/$current_atom->{translation_id})\n"
if $debug;
push( @neighbors, $current_atom );
my ($i_init, $j_init, $k_init) =
get_atom_index( $bricks, @{$atom_in_unit_cell_coords_ortho} );
my ( $min_i, $max_i, $min_j, $max_j, $min_k, $max_k );
eval {
( $min_i, $max_i, $min_j, $max_j, $min_k, $max_k ) =
get_search_span( $bricks, $i_init, $j_init, $k_init );
};
if( $@ ) {
use COD::Serialise qw( serialiseRef );
serialiseRef( $atom_in_unit_cell_coords_ortho );
serialiseRef( [ $i_init, $j_init, $k_init ] );
serialiseRef( $bricks );
die( $@ );
}
if( $debug ) {
local $" = ", ";
print STDERR
">>> now scanning its distinct neighbours " .
"around @{$atom_in_unit_cell_coords_ortho}:\n";
};
my $nbumps = 0;
## foreach my $sym_atom (@$symmetric_atoms)
for my $i ($min_i .. $max_i) {
for my $j ($min_j .. $max_j) {
for my $k ($min_k .. $max_k) {
for my $sym_atom ( @{$bricks->{atoms}[$i][$j][$k]} ) {
my $sym_atom_coords_ortho = $sym_atom->{coordinates_ortho};
my $new_label = $current_atom->{name};
my $sym_label = $sym_atom->{name};
if( $current_atom->{name} eq $sym_atom->{name} ) {
# We have found the same atom, no need to add bond or
# neighbour
next;
}
my $dist = distance( $atom_in_unit_cell_coords_ortho,
$sym_atom_coords_ortho );
do {
local $" = ' ';
print STDERR ">>> checking neighbour $sym_label " .
"(@{$sym_atom_coords_ortho}), " .
"d = $dist\n";
} if $debug;
my $is_bump = test_bump( $atom_properties,
$current_atom->{chemical_type},
$sym_atom->{chemical_type},
$current_atom->{site_label},
$sym_atom->{site_label},
$dist, $bump_distance_factor );
if( $is_bump &&
!atoms_are_alternative( $current_atom, $sym_atom ) ) {
if( not exists $checked_pairs->{$sym_label}{$new_label} ) {
my $message = "atoms '$current_atom->{name}' and " .
"'$sym_atom->{name}' are too close " .
"(distance = " .
sprintf( "%6.4f", $dist ) .
") and are considered a bump";
if( $ignore_bumps ) {
if( $verbose || $total_nbumps < 5 ) {
warn "WARNING, $message\n";
}
$nbumps++;
$total_nbumps++;
} else {
die "ERROR, $message -- aborting calculations\n";
}
}
}
$checked_pairs->{$sym_label}{$new_label} = 1;
$checked_pairs->{$new_label}{$sym_label} = 1;
my $is_bond = test_bond($atom_properties,
$current_atom->{chemical_type},
$sym_atom->{chemical_type},
$dist,
$covalent_sensitivity);
if( $is_bond &&
!atoms_are_alternative( $current_atom, $sym_atom ) ) {
do {
use COD::Serialise qw( serialiseRef );
local $" = ' ';
print STDERR ">>> found bond:\n";
serialiseRef( { "translation" => $current_translation,
"original atom" => $current_atom,
"sym atom" => $sym_atom } );
} if $debug;
my $back_shifted_sym_atom =
translate_atom( $sym_atom, $current_translation );
do {
use COD::Serialise qw( serialiseRef );
print ">>>> back-shifted atom:\n";
serialiseRef( { sym_atom => $sym_atom,
backshifted => $back_shifted_sym_atom } );
} if $debug;
my( $neighbours, $mol_nbumps, $mol_polymer_atoms ) =
find_molecule( $covalent_sensitivity,
$atom_properties,
$symmetric_atoms,
$used_atoms,
$used_originals,
$used_uc_atoms,
$checked_pairs,
$back_shifted_sym_atom,
$bricks );
push(@neighbors, @$neighbours);
$nbumps += $mol_nbumps;
$polymer_atoms += $mol_polymer_atoms;
}
}
}}}
print ">>> Finished checks;\n" if $debug;
do {
use COD::Serialise qw( serialiseRef );
print ">>> Before translation:";
serialiseRef( \@neighbors );
} if $debug;
return ( \@neighbors, $nbumps, $polymer_atoms );
}
#===========================================================================
# Return a list of chemical bonds (represented as atom pairs, each
# pair being two references to two %atom_info structures describing
# the bonded atoms).
sub atom_bonds
{
my ($atoms, $atom_properties, $covalent_sensitivity) = @_;
my $max_covalent_radius = get_max_covalent_radius( $atom_properties );
my $bricks = build_bricks( $atoms,
$max_covalent_radius * 2 +
$covalent_sensitivity );
my %used_atoms;
my @bonds;
for my $atom (@$atoms) {
$used_atoms{$atom->{name}} = $atom;
my $coordinates = $atom->{coordinates_ortho};
my ($i_init, $j_init, $k_init) =
get_atom_index( $bricks, @$coordinates );
my ( $min_i, $max_i, $min_j, $max_j, $min_k, $max_k );
eval {
( $min_i, $max_i, $min_j, $max_j, $min_k, $max_k ) =
get_search_span( $bricks, $i_init, $j_init, $k_init );
};
if( $@ ) {
use COD::Serialise qw( serialiseRef );
serialiseRef( $coordinates );
serialiseRef( [ $i_init, $j_init, $k_init ] );
serialiseRef( $bricks );
die( $@ );
}
## foreach my $sym_atom (@$symmetric_atoms)
for my $i ($min_i .. $max_i) {
for my $j ($min_j .. $max_j) {
for my $k ($min_k .. $max_k) {
for my $neighbour ( @{$bricks->{atoms}[$i][$j][$k]} ) {
next if exists $used_atoms{$neighbour->{name}};
my $neighbour_coords = $neighbour->{coordinates_ortho};
if( $atom == $neighbour ) {
# We have found the same atom, no need to add bond or
# neighbour
next;
}
my $distance = distance( $coordinates, $neighbour_coords );
my $is_bond = test_bond($atom_properties,
$atom->{chemical_type},
$neighbour->{chemical_type},
$distance,
$covalent_sensitivity);
if( $is_bond &&
!atoms_are_alternative( $atom, $neighbour ) ) {
do {
use COD::Serialise qw( serialiseRef );
local $" = ' ';
print STDERR ">>> found bond:\n";
serialiseRef( { "original atom" => $atom,
"neighbour atom" => $neighbour } );
} if $debug;
my $bond_order =
get_bond_order( $distance,
$atom->{chemical_type},
$neighbour->{chemical_type},
$atom_properties );
push( @bonds, {
atom1 => $atom,
atom2 => $neighbour,
distance => $distance,
order => $bond_order,
});
}
}
}}}
}
return \@bonds;
}
#==============================================================================
# Use heuristics to guess bond order from its length:
sub get_bond_order
{
my( $distance, $atom1_type, $atom2_type, $atom_properties ) = @_;
if( exists $atom_radii{$atom1_type} && exists $atom_radii{$atom2_type} ) {
my @atom1_radii = @{$atom_radii{$atom1_type}};
my @atom2_radii = @{$atom_radii{$atom2_type}};
my @lengths;
for my $a1 (@atom1_radii) {
for my $a2 (@atom2_radii) {
if( $a1->[0] eq $a2->[0] ) {
push( @lengths, [ $a1->[0], $a1->[1],
$a1->[2] + $a2->[2] ] );
}
}
}
@lengths = sort {$a->[2] <=> $b->[2]} @lengths;
for my $length (@lengths) {
if( $distance < $length->[2] ) {
return $length->[1];
}
}
return "?";
} else {
return "?";
}
}
#==============================================================================
# Calculate the rank and basis of a matrix using Gauss-Jordan elimination.
# @param matrix
# @retval rank (integer), matrix basis (string)
sub get_rank_and_basis
{
my( $m ) = @_;
return 0 if @{$m} == 0; # no need to create row echelon form
do {
local $\ = "\n";
for (@{$m}) {
print STDERR join ' ', @{$_};
}
} if 0;
my $reduced_row_echelon_matrix =
gj_elimination_non_zero_elements( $m, 8 * $machine_epsilon );
my @rre_semicolon_separated_vectors =
reverse sort { $a cmp $b }
map {
join ';', map {sprintf '%g', $_} @{$_}
} @{$reduced_row_echelon_matrix};
# set of linearly independent vectors for the matrix:
my $basis = join ' ', @rre_semicolon_separated_vectors;
print STDERR ">>>> basis: $basis\n"
if 0;
return scalar( @{$reduced_row_echelon_matrix} ), $basis;
}
#==============================================================================
# Convert single-quoted basis string to matrix.
# @param string
# @retval matrix
sub basis_string_to_matrix
{
my( $string ) = @_;
$string =~ s/'//g; # remove single-quotes
my @vectors = split /\s+/, $string;
my $matrix = [map { [split /;/, $_] } @vectors];
return $matrix;
}
#==============================================================================
# Find machine epsilon.
# @param void
# @retval scalar
sub get_machine_epsilon
{
my $epsilon = 1.00;
while ( $epsilon + 1.00 > 1.00 ) {
$epsilon /= 2;
}
return $epsilon;
}
|