1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
/*
* Copyright (C) 2007-2018 S[&]T, The Netherlands.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "coda-internal.h"
#include "coda-tree.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
/** Create root node for a new node tree
* \param root_type Pointer to the root type of the product for which this node tree is applicable
* \return
* \arg \c 0, Success.
* \arg \c -1, Error occurred (check coda_errno).
*/
coda_tree_node *coda_tree_node_new(const coda_type *root_type)
{
coda_tree_node *node;
node = malloc(sizeof(coda_tree_node));
if (node == NULL)
{
coda_set_error(CODA_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
(long)sizeof(coda_tree_node), __FILE__, __LINE__);
return NULL;
}
node->type = root_type;
node->num_items = 0;
node->item = NULL;
node->all_children = NULL;
node->num_indexed_children = 0;
node->index = NULL;
node->indexed_child = NULL;
return node;
}
/** Delete node and all subnodes
* \param node Pointer to the node that should be deleted
* \param free_time Optional deallocation function that will be called on all items that are attached to nodes
*/
void coda_tree_node_delete(coda_tree_node *node, void (*free_item) (void *))
{
int i;
if (node->all_children != NULL)
{
coda_tree_node_delete(node->all_children, free_item);
}
if (node->index != NULL)
{
free(node->index);
}
if (node->indexed_child != NULL)
{
for (i = 0; i < node->num_indexed_children; i++)
{
if (node->indexed_child[i] != NULL)
{
coda_tree_node_delete(node->indexed_child[i], free_item);
}
}
free(node->indexed_child);
}
if (node->item != NULL)
{
if (free_item != NULL)
{
for (i = 0; i < node->num_items; i++)
{
if (node->item[i] != NULL)
{
free_item(node->item[i]);
}
}
}
free(node->item);
}
free(node);
}
static int tree_node_add_item(coda_tree_node *node, void *item)
{
void **new_item;
new_item = realloc(node->item, (node->num_items + 1) * sizeof(void *));
if (new_item == NULL)
{
coda_set_error(CODA_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
(long)(node->num_items + 1) * sizeof(void *), __FILE__, __LINE__);
return -1;
}
node->item = new_item;
node->item[node->num_items] = item;
node->num_items++;
return 0;
}
static int tree_node_get_node_for_all(coda_tree_node *node, coda_tree_node **sub_node, int create)
{
if (node->all_children == NULL && create)
{
coda_type_class type_class;
const coda_type *type = node->type;
coda_type *sub_type;
coda_type_get_class(type, &type_class);
if (type_class == coda_special_class)
{
/* use base type */
if (coda_type_get_special_base_type(type, &sub_type) != 0)
{
return -1;
}
type = sub_type;
coda_type_get_class(type, &type_class);
}
assert(type_class == coda_array_class);
if (coda_type_get_array_base_type(type, &sub_type) != 0)
{
return -1;
}
node->all_children = coda_tree_node_new(sub_type);
if (node->all_children == NULL)
{
return -1;
}
}
*sub_node = node->all_children;
return 0;
}
static int tree_node_get_node_for_index(coda_tree_node *node, long index, coda_tree_node **sub_node, int create)
{
int bottom = 0;
int top = node->num_indexed_children - 1;
if (node->num_indexed_children > 0)
{
while (top != bottom)
{
int middle = (bottom + top) / 2;
if (index <= node->index[middle])
{
top = middle;
}
if (index > node->index[middle])
{
bottom = middle + 1;
}
}
}
if (node->num_indexed_children > 0 && index == node->index[top])
{
*sub_node = node->indexed_child[top];
}
else if (create)
{
coda_tree_node **new_indexed_child;
coda_tree_node *child_node;
const coda_type *type = node->type;
coda_type *sub_type;
long *new_index;
int i;
new_index = realloc(node->index, (node->num_indexed_children + 1) * sizeof(long));
if (new_index == NULL)
{
coda_set_error(CODA_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
(long)(node->num_indexed_children + 1) * sizeof(long), __FILE__, __LINE__);
return -1;
}
node->index = new_index;
new_indexed_child = realloc(node->indexed_child, (node->num_indexed_children + 1) * sizeof(coda_tree_node *));
if (new_indexed_child == NULL)
{
coda_set_error(CODA_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
(long)(node->num_indexed_children + 1) * sizeof(coda_tree_node *), __FILE__, __LINE__);
return -1;
}
node->indexed_child = new_indexed_child;
if (index == -1)
{
if (coda_type_get_attributes(type, &sub_type) != 0)
{
return -1;
}
}
else
{
coda_type_class type_class;
coda_type_get_class(type, &type_class);
if (type_class == coda_special_class)
{
/* use base type */
if (coda_type_get_special_base_type(type, &sub_type) != 0)
{
return -1;
}
type = sub_type;
coda_type_get_class(type, &type_class);
}
if (type_class == coda_array_class)
{
if (coda_type_get_array_base_type(type, &sub_type) != 0)
{
return -1;
}
}
else
{
if (coda_type_get_record_field_type(type, index, &sub_type) != 0)
{
return -1;
}
}
}
child_node = coda_tree_node_new(sub_type);
if (child_node == NULL)
{
return -1;
}
*sub_node = child_node;
/* add node using bubble sort */
for (i = 0; i < node->num_indexed_children; i++)
{
if (index < node->index[i])
{
long tmp_index = node->index[i];
coda_tree_node *tmp_node = node->indexed_child[i];
node->index[i] = index;
node->indexed_child[i] = child_node;
index = tmp_index;
child_node = tmp_node;
}
}
node->index[node->num_indexed_children] = index;
node->indexed_child[node->num_indexed_children] = child_node;
node->num_indexed_children++;
}
else
{
*sub_node = NULL;
}
return 0;
}
/** Add an item to the tree
* The item will be added to the tree at the location as indicated by 'path'.
* \param node Pointer to the root node of the tree
* \param path String using CODA node expression syntax to define the product location where the item is applicable
* \param item Pointer to the item that will be attached
* \param leaf_only Set to 1 if an error should be raised if 'path' ends up pointing to an array or record (0 otherwise)
* \return
* \arg \c 0, Success.
* \arg \c -1, Error occurred (check coda_errno).
*/
int coda_tree_node_add_item_for_path(coda_tree_node *node, const char *path, void *item, int leaf_only)
{
coda_type_class type_class;
int start = 0;
if (path[start] == '/')
{
/* skip leading '/' if it is not followed by a record field name */
if (path[start + 1] == '\0' || path[start + 1] == '/' || path[start + 1] == '[' || path[start + 1] == '@')
{
start++;
}
}
/* find node */
while (path[start] != '\0')
{
if (path[start] == '@')
{
/* attribute */
if (tree_node_get_node_for_index(node, -1, &node, 1) != 0)
{
return -1;
}
start++;
}
else
{
long index;
coda_type_get_class(node->type, &type_class);
if (type_class == coda_special_class)
{
coda_type *type;
/* use base type */
if (coda_type_get_special_base_type(node->type, &type) != 0)
{
return -1;
}
coda_type_get_class(type, &type_class);
}
if (path[start] == '[')
{
int end;
/* array index */
if (type_class != coda_array_class)
{
coda_set_error(CODA_ERROR_INVALID_ARGUMENT, "not an array '%.*s' (type is %s)", start, path,
coda_type_get_class_name(type_class));
}
start++;
end = start;
while (path[end] != '\0' && path[end] != ']')
{
end++;
}
if (path[end] == '\0')
{
coda_set_error(CODA_ERROR_INVALID_ARGUMENT, "invalid path '%s' (missing ']')", path);
return -1;
}
if (start == end)
{
/* add item to all array elements */
if (tree_node_get_node_for_all(node, &node, 1) != 0)
{
return -1;
}
}
else
{
int result;
int n;
/* add item to specific array element */
result = sscanf(&path[start], "%ld%n", &index, &n);
if (result != 1 || n != end - start)
{
coda_set_error(CODA_ERROR_INVALID_ARGUMENT, "invalid array index '%.*s' in path", end - start,
&path[start]);
return -1;
}
if (tree_node_get_node_for_index(node, index, &node, 1) != 0)
{
return -1;
}
}
start = end + 1;
}
else
{
long end;
if (path[start] != '/')
{
coda_set_error(CODA_ERROR_INVALID_ARGUMENT, "invalid path '%s' (missing '/'?)", path);
return -1;
}
/* record field */
if (type_class != coda_record_class)
{
coda_set_error(CODA_ERROR_INVALID_ARGUMENT, "not a record '%.*s' (type is %s)", start, path,
coda_type_get_class_name(type_class));
}
start++;
end = start;
while (path[end] != '\0' && path[end] != '/' && path[end] != '[' && path[end] != '@')
{
end++;
}
if (coda_type_get_record_field_index_from_name_n(node->type, &path[start], end - start, &index) != 0)
{
return -1;
}
if (tree_node_get_node_for_index(node, index, &node, 1) != 0)
{
return -1;
}
start = end;
}
}
}
coda_type_get_class(node->type, &type_class);
if (leaf_only && (type_class == coda_array_class || type_class == coda_record_class))
{
coda_set_error(CODA_ERROR_INVALID_ARGUMENT, "trying to add item to path '%s', which is not a leaf item", path);
return -1;
}
/* add item to node */
return tree_node_add_item(node, item);
}
static int get_item_for_cursor(coda_tree_node *node, int depth, coda_cursor *cursor, void **item)
{
if (node == NULL)
{
*item = NULL;
return 0;
}
if (depth < cursor->n - 1)
{
/* specific indexed array elements take precedence over an 'all array elements' reference */
if (node->num_indexed_children > 0)
{
long bottom = 0;
long top = node->num_indexed_children - 1;
long index = cursor->stack[depth + 1].index;
while (top != bottom)
{
long middle = (bottom + top) / 2;
if (index <= node->index[middle])
{
top = middle;
}
if (index > node->index[middle])
{
bottom = middle + 1;
}
}
if (index == node->index[top])
{
if (get_item_for_cursor(node->indexed_child[top], depth + 1, cursor, item) != 0)
{
return -1;
}
if (item != NULL)
{
return 0;
}
}
}
if (node->all_children != NULL)
{
if (get_item_for_cursor(node->all_children, depth + 1, cursor, item) != 0)
{
return -1;
}
if (item != NULL)
{
return 0;
}
}
}
else if (node->num_items > 0)
{
/* return the last item in the list */
*item = node->item[node->num_items - 1];
return 0;
}
/* nothing found */
*item = NULL;
return 0;
}
/** Retrieve the item located at the given cursor position
* If multiple items exist at the current position then the last item in the list will be returned.
* Items attached to paths with an explicit array index (e.g. /foo[0]/bar) will take precedence over items that are
* attached to all elements of an array (e.g. /foo[]/bar).
* \param node Pointer to the root node of the tree
* \param cursor A valid cursor
* \param item Pointer to the item that is attached to the cursor position, or NULL if no item was found
* \return
* \arg \c 0, Success.
* \arg \c -1, Error occurred (check coda_errno).
*/
int coda_tree_node_get_item_for_cursor(coda_tree_node *node, coda_cursor *cursor, void **item)
{
return get_item_for_cursor(node, 0, cursor, item);
}
|