1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/*
* Copyright (C) 2007-2024 S[&]T, The Netherlands.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CODA_READ_BITS_H
#define CODA_READ_BITS_H
#include "coda-read-bytes.h"
static int read_bits(coda_product *product, int64_t bit_offset, int64_t bit_length, uint8_t *dst)
{
unsigned long bit_shift;
int64_t padded_bit_length;
/* we read bits by treating them as big endian numbers.
* This means that
*
* src[0] | src[1]
* 7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0
* . . a b c d e f|g h i j k . . .
*
* will be read and shifted to get
*
* dst[0] | dst[1]
* 7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0
* . . . . . a b c|d e f g h i j k
*
* If the value is a number then on little endian machines the value needs to be converted to:
*
* dst[0] | dst[1]
* 7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0
* d e f g h i j k|0 0 0 0 0 a b c
*
* Note that endian conversion does not happen within this function but happens in the functions that call
* read_bits().
*
* In theory we could also implement support for bitdata stored in lsb (least significant bit) to msb order.
* However, such a feature is currently NOT implemented!
* If we ever implement such a feature it should look like this:
* If the format of the source is (note the reverse order in which we display the bits!):
*
* src[0] | src[1]
* 0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7
* . . a b c d e f|g h i j k . . .
*
* then this will be read as
*
* tmp[0] | tmp[1]
* 7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0
* f e d c b a . .|. . . k j i h g
*
* we can then perform a shift of bits (shifting 2 least significant bits from the right byte to the left byte)
* to get the little endian result
*
* dst[0] | dst[1]
* 7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0
* h g f e d c b a|. . . . . k j i
*
* On big endian machines this can then be turned into a big endian number
*
* dst[0] | dst[1]
* 7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0
* 0 0 0 0 0 k j i|h g f e d c b a
*/
/* The padded bit length is the number of 'padding' bits plus the bit length.
* The 'padding' bits are the bits between the start of byte (i.e. starting at the most significant bit) and the
* start of requested bits (in the (big endian) example above, bits 7 and 6 of src[0] are the padding bits).
*/
padded_bit_length = (bit_offset & 0x7) + bit_length;
bit_shift = (unsigned long)(-padded_bit_length & 0x7);
if (padded_bit_length <= 8)
{
/* all bits are located within a single byte, so we will use an optimized approach to extract the bits */
if (read_bytes(product, bit_offset >> 3, 1, dst) != 0)
{
return -1;
}
if (bit_shift != 0)
{
*dst >>= bit_shift;
}
if ((bit_length & 0x7) != 0)
{
*dst &= ((1 << bit_length) - 1);
}
}
else if (bit_shift == 0)
{
/* no shifting needed for the source bytes */
if (bit_length & 0x7)
{
unsigned long trailing_bit_length;
uint8_t buffer;
/* the first byte contains trailing bits and is not copied in full */
if (read_bytes(product, bit_offset >> 3, 1, &buffer) != 0)
{
return -1;
}
trailing_bit_length = (unsigned long)(bit_length & 0x7);
*dst = buffer & ((1 << trailing_bit_length) - 1);
dst++;
bit_offset += trailing_bit_length;
bit_length -= trailing_bit_length;
}
if (bit_length > 0)
{
/* use a plain copy for the remaining bytes */
if (read_bytes(product, bit_offset >> 3, bit_length >> 3, dst) != 0)
{
return -1;
}
}
}
else
{
uint8_t buffer[4];
union
{
uint8_t as_bytes[4];
uint32_t as_uint32;
} data;
/* we need to shift each byte */
/* we first copy the part modulo 24 bits (so the rest can be processed in chuncks of 24 bits each) */
if (bit_length % 24 != 0)
{
unsigned long mod24_bit_length;
unsigned long num_bytes_read;
unsigned long num_bytes_set;
unsigned long i;
mod24_bit_length = (unsigned long)(bit_length % 24);
num_bytes_read = bit_size_to_byte_size(((unsigned long)(bit_offset & 0x7)) + mod24_bit_length);
num_bytes_set = bit_size_to_byte_size(mod24_bit_length);
if (read_bytes(product, bit_offset >> 3, num_bytes_read, buffer) != 0)
{
return -1;
}
data.as_uint32 = 0;
for (i = 0; i < num_bytes_read; i++)
{
#ifdef WORDS_BIGENDIAN
data.as_bytes[i] = buffer[i];
#else
data.as_bytes[3 - i] = buffer[i];
#endif
}
data.as_uint32 = (data.as_uint32 >> (bit_shift + 8 * (4 - num_bytes_read))) & ((1 << mod24_bit_length) - 1);
for (i = 0; i < num_bytes_set; i++)
{
#ifdef WORDS_BIGENDIAN
dst[i] = data.as_bytes[(4 - num_bytes_set) + i];
#else
dst[i] = data.as_bytes[(num_bytes_set - 1) - i];
#endif
}
dst += num_bytes_set;
bit_offset += mod24_bit_length;
bit_length -= mod24_bit_length;
}
/* we copy the remaining data in chunks of 24 bits (3 bytes) at a time */
while (bit_length > 0)
{
#ifdef WORDS_BIGENDIAN
if (read_bytes(product, bit_offset >> 3, 4, data.as_bytes) != 0)
{
return -1;
}
data.as_uint32 >>= bit_shift;
dst[0] = data.as_bytes[1];
dst[1] = data.as_bytes[2];
dst[2] = data.as_bytes[3];
#else
if (read_bytes(product, bit_offset >> 3, 4, buffer) != 0)
{
return -1;
}
data.as_bytes[0] = buffer[3];
data.as_bytes[1] = buffer[2];
data.as_bytes[2] = buffer[1];
data.as_bytes[3] = buffer[0];
data.as_uint32 >>= bit_shift;
dst[0] = data.as_bytes[2];
dst[1] = data.as_bytes[1];
dst[2] = data.as_bytes[0];
#endif
dst += 3;
bit_offset += 24;
bit_length -= 24;
}
}
return 0;
}
#endif
|