File: __init__.py

package info (click to toggle)
coda 2.25.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 10,168 kB
  • sloc: ansic: 121,489; javascript: 6,788; java: 2,369; python: 1,695; yacc: 1,007; makefile: 598; lex: 204; sh: 105; fortran: 60; xml: 5
file content (3339 lines) | stat: -rw-r--r-- 105,125 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
# Copyright (C) 2007-2024 S[&]T, The Netherlands.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

"""CODA Python interface

This package implements the CODA Python interface. The interface consists
of a low-level part, corresponding directly to the C interface, and a high-
level part, which adds an object-oriented wrapper layer and additional
convenience methods.

The Python interface depends on the '_cffi_backend' module, which is part
of the C foreign function interface (cffi) package. This package must be
installed in order to be able to use the Python interface.

Using the high-level interface, a CODA Product is represented by an
instance of class Product. One or more instances of class Cursor can be
used to navigate a product, and extract CODA types and product data. CODA
types are represented as instances of class Type. There are several
subclasses of Type, corresponding to the different CODA type classes.

Example of basic usage:

    import coda

    with coda.Product('somefile.nc') as product:
        # use cursor
        cursor = product.cursor()
        cursor.goto('a/b')
        data = cursor.fetch()

        # use convenience method
        data = product.fetch('a/b')

Also using the high-level interface, a CODA expression is represented by
an instance of class Expression.

For the convenience methods, it is possible to specify a path indicating
from where to retrieve data. A path consists of a sequence of strings and
integers, which are resolved from the respective location. The path can be
given as a CODA node expression or as one or more positional arguments.

For both the Cursor and Expression classes, there are much fewer methods
than there are functions in the low-level interface, because in Python
functions can return different types of values. For example, rather than
having to call cursor_read_uint8(cursor), we can just call cursor.fetch().

Further information (also about the low-level interface) is available in
the CODA documentation.

"""

from __future__ import print_function

import copy
import functools
import io
import os
import platform
import sys
import threading

import numpy

from ._codac import ffi as _ffi
ffinew = _ffi.new

PY3 = sys.version_info[0] == 3

if PY3:
    long = int

    def _is_str(s):
        return isinstance(s, str)
else:
    def _is_str(s):
        return isinstance(s, (str, unicode))


# use thread-local storage to avoid calling _ffi.new all the time

class ThreadLocalState(threading.local):
    def __init__(self):
        self.double = _ffi.new('double *')


TLS = ThreadLocalState()


#
# high-level interface
#

class Error(Exception):
    """Exception base class for all CODA Python interface errors."""


CodaError = Error  # compat


class FetchError(Error):
    """Exception raised when an errors occurs when fetching data.

    Attributes:
        str       --  error message

    """

    def __init__(self, str):
        super(Error, self).__init__(self)
        self.str = str

    def __str__(self):
        return self.str

    def __repr__(self):
        return 'FetchError(%r)' % self.str


class CodacError(Error):
    """Exception raised when an error occurs inside the CODA C library.

    Attributes:
        errno       --  error code; if None, the error code will be retrieved from
                        the CODA C library.
        strerror    --  error message; if None, the error message will be retrieved
                        from the CODA C library.

    """

    def __init__(self, function=None):
        super(CodacError, self).__init__(self)

        errno = _lib.coda_get_errno()[0]
        strerror = _decode_string(_ffi.string(_lib.coda_errno_to_string(errno)))
        if function:
            strerror = function + '(): ' + strerror

        self.errno = errno
        self.strerror = strerror

    def __str__(self):
        return self.strerror

    def __repr__(self):
        return 'CodacError(%s, %r)' % (self.errno, self.strerror)


def _check(return_code, function=None):
    if return_code != 0:
        raise CodacError(function=function)


class Node(object):
    """Base class of 'Product' and 'Cursor' classes.

    This class contains shared functionality between Product and Cursor.
    For this functionality, a Product can be used as if it were a Cursor
    (pointing at the product root).

    """

    __slots__ = []

    def fetch(self, *path):
        """Return all product data (recursively) for the current data item
        (or as specified by a path).

        This can result in a combination of nested 'Record' instances,
        numpy arrays, scalars, strings and so on.

        Some examples:

            data = product.fetch('fieldname')
            data = cursor.fetch('a/b')

        Arguments:
        path -- path description (optional)
        """
        return fetch(self, *path)

    def get_attributes(self, *path):
        """Return a 'Record' instance containing the attributes for the
        current data item (or as specified by a path).

        Arguments:
        path -- path description (optional)
        """
        return get_attributes(self, *path)

    @property
    def attributes(self):
        """Return a 'Record' instance containing the attributes for the
        current data item.
        """
        return get_description(self, *path)

    def get_description(self, *path):
        """Return the description in the product format definition for the
        current data item (or as specified by a path).

        Arguments:
        path -- path description (optional)
        """
        return get_description(self, *path)

    @property
    def description(self):
        """Return the description (as a string) in the product format
        definition for the current data item.
        """
        return get_description(self)

    @property
    def get_unit(self, *path):
        """Return unit information (as a string) in the product format
        definition for the current data item (or as specified by a path).

        Arguments:
        path -- path description (optional)
        """
        return get_unit(self, *path)

    @property
    def unit(self):
        """Return unit information (as a string) in the product format
        definition for the current data item.
        """
        return get_unit(self)

    def cursor(self, *path):
        """Return a new 'Cursor' instance, pointing to the same data
        item (or as specified by a path).

        Arguments:
        path -- path description (optional)
        """
        return Cursor(self, *path)

    def read_partial_array(self, offset, count):
        """Return partial (flat) array data, using specified offset and count.

        C array ordering conventions are used.

        Arguments:
        offset -- (flat) array index
        count -- number of elements to read
        """
        cursor = self.cursor()

        nodeType = cursor_get_type(cursor)
        baseType = type_get_array_base_type(nodeType)
        readType = type_get_read_type(baseType)

        return _readNativeTypePartialArrayFunctionDictionary[readType](cursor, offset, count)

    def field_available(self, *path):
        """Return a boolean indicating whether a record field is available.

        The last item of the path description must point to a record field.

        Arguments:
        path -- path description (optional)
        """
        return get_field_available(self, *path)

    def field_count(self, *path):
        """Return the number of fields in a record.

        The last item of the path must point to a record.

        Arguments:
        path -- path description (optional)
        """
        return get_field_count(self, *path)

    def field_names(self, *path):
        """Return the names of the fields in a record.

        The last item of the path must point to a record.

        Arguments:
        path -- path description (optional)
        """
        return get_field_names(self, *path)


class Product(Node):
    """CODA Product class.

    An instance of this class represents a CODA product.

    It is a wrapper class around the low-level coda_product struct.

    It implements the context-manager protocol for conveniently
    closing (these low-level) products.

    """

    __slots__ = ['_x']

    def __init__(self, path=None, _x=None):
        """Initialize a 'Product' instance for specified product file.

        The instance should be cleaned up after use via 'with' keyword or
        by calling the 'close' method (or global function).

        Arguments:
        path -- path to product file
        """
        if path is not None:
            self._x = open(path)._x
        else:
            self._x = _x

    def close(self):
        """Close the low-level CODA product.

        Note that it is also possible to use the 'with' keyword for this.
        """
        close(self)

    @property
    def version(self):
        """Return the product type version.
        """
        return get_product_version(self)

    @property
    def product_class(self):
        """Return the name of the product class.
        """
        return get_product_class(self)

    @property
    def product_type(self):
        """Return the name of the product type.
        """
        return get_product_type(self)

    @property
    def format(self):
        """Return the name of the product format."""
        return type_get_format_name(get_product_format(self))

    @property
    def definition_file(self):
        """Return the path to the coda definition file that describes the product format.
        """
        return get_product_definition_file(self)

    @property
    def file_size(self):
        """Return the product file size.
        """
        return get_product_file_size(self)

    @property
    def filename(self):
        """Return the product filename.
        """
        return get_product_filename(self)

    @property
    def root_type(self):
        """Return the CODA type of the root of the product.
        """
        return get_product_root_type(self)

    def variable_value(self, variable, index=0):
        """Return the value for a product variable.

        Product variables are used to store frequently needed
        information of a product (information that is needed to
        calculate byte offsets or array sizes within a product).

        Consult the CODA Product Definition Documentation for
        an overview of product variables for a certain product type.

        Product variables can be one-dimensional arrays, in which an
        index must be passed.

        Arguments:
        variable -- name of product variable
        index -- array index of the product variable (optional)
        """
        return get_product_variable_value(self, variable, index)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        close(self)


class Cursor(Node):
    """CODA Cursor class.

    An instance of this class represents a CODA cursor.

    It is a wrapper class around the low-level coda_cursor struct.

    Cursors are used to navigate a product hierarchy, and
    extract CODA types and product data.

    Internally, a 'Cursor' instance consists of a stack of pointers,
    making it possible to easily move up and down a product hierarchy.

    """

    __slots__ = ['_x']

    def __init__(self, obj=None, *path):
        """Initialize a 'Cursor' instance.

        If a 'Cursor' instance is passed, the cursor will point to the
        same location.

        If a 'Product' instance is passed, the cursor will point to the
        product root.

        If a path is given, the cursor location will then be changed
        to point as specified.

        If no arguments are given, the 'set_product' method should be
        used to point to a 'Product' instance.

        Arguments:
        obj -- existing 'Cursor' or 'Product' instance (optional)
        path -- path description (optional)
        """
        self._x = _ffi.new('coda_cursor *')

        if obj is not None:
            if isinstance(obj, Product):
                self.set_product(obj)
            elif isinstance(obj, Cursor):
                obj._copy_state_to(self)
            else:
                raise TypeError('argument to Cursor.__init__ must be None, Product or Cursor')

        if path:
            self.goto(*path)

    def _copy_state_to(self, other):
        _ffi.buffer(other._x)[:] = _ffi.buffer(self._x)[:]

    def __deepcopy__(self, memo):
        cursor = Cursor()
        self._copy_state_to(cursor)
        return cursor

    def goto(self, *path):
        """Move the cursor as specified by 'path'.

        Arguments:
        path -- path description (optional)
        """
        _traverse_path(self, path)
        return self

    def goto_parent(self):
        """Move the cursor one level up in the hierarchy.
        """
        cursor_goto_parent(self)
        return self

    def goto_root(self):
        """Move the cursor to the product root.
        """
        cursor_goto_root(self)
        return self

    def goto_first_record_field(self):
        """Move the cursor to the first record field.
        """
        cursor_goto_first_record_field(self)
        return self

    def goto_next_record_field(self):
        """Move the cursor to the next record field.
        """
        cursor_goto_next_record_field(self)
        return self

    def goto_record_field_by_index(self, index):
        """Move the cursor to the record field with the given index.

        Arguments:
        index -- field index
        """
        cursor_goto_record_field_by_index(self, index)
        return self

    def goto_record_field_by_name(self, name):
        """Move the cursor to the record field with the given name.

        Arguments:
        index -- field name
        """
        cursor_goto_record_field_by_name(self, name)
        return self

    def goto_first_array_element(self):
        """Move the cursor to the first array element.
        """
        cursor_goto_first_array_element(self)
        return self

    def goto_next_array_element(self):
        """Move the cursor to the next array element.
        """
        cursor_goto_next_array_element(self)
        return self

    def goto_array_element(self, idcs):
        """Move the cursor to the array element with the given indices.

        Arguments:
        idcs -- sequence of indices (one per dimension)
        """
        cursor_goto_array_element(self, idcs)
        return self

    def goto_array_element_by_index(self, index):
        """Move the cursor to the array element with the given index.

        A multi-dimensional array is treated as a one-dimensional array
        (with the same number of elements).

        The ordering in such a one dimensional array is by definition
        chosen to be equal to the way the array elements are stored as a
        sequence in the product file.

        The mapping of a one dimensional index for each multidimensional
        data array to an array of subscripts (and vice versa) is defined
        in such a way that the last element of a subscript array is the
        one that is the fastest running index (i.e. C array ordering).

        All multidimensional arrays have their dimensions defined using C
        array ordering in CODA.

        Arguments:
        index -- array index
        """
        cursor_goto_array_element_by_index(self, index)
        return self

    def goto_available_union_field(self):
        """Move the cursor to the available union field.
        """
        cursor_goto_available_union_field(self)
        return self

    def goto_attributes(self):
        """Move the cursor to a (virtual) record containing the attributes
        of the current data element.
        """
        cursor_goto_attributes(self)
        return self

    def set_product(self, product):
        """Initialize the cursor to point to the given product root.

        Arguments:
        product -- 'Product' instance
        """
        cursor_set_product(self, product)

    @property
    def product(self):
        """Return the corresponding 'Product' instance.
        """
        return cursor_get_product_file(self)

    def num_elements(self):
        """Return the number of array or record elements (or 1 for other
        types."""
        return cursor_get_num_elements(self)

    def string_length(self):
        """Return the length in bytes of a string."""
        return cursor_get_string_length(self)

    def use_base_type_of_special_type(self):
        """Reinterpret special data using the special type base type.

        All special data types have a base type that can be used to read
        the data in its raw form (e.g. for ASCII time data the type will
        change to a string type and for binary compound time data the type
        will change to a record with fields containing binary numbers).
        """
        cursor_use_base_type_of_special_type(self)

    @property
    def coda_type(self):
        """Return a 'Type' instance corresponding to the CODA type for
        the current location.
        """
        return cursor_get_type(self)

    @property
    def type_class(self):
        """Return the name of the CODA type class for the current
        location.
        """
        return type_get_class_name(cursor_get_type_class(self))

    @property
    def special_type(self):
        """Return the name of the special type for the current
        location.
        """
        return type_get_special_type_name(cursor_get_special_type(self))

    @property
    def format(self):
        """Return the name of the storage format for the current
        location.
        """
        return type_get_format_name(cursor_get_format(self))

    @property
    def has_attributes(self):
        """Return a boolean indicating if there are attributes for
        the current location.
        """
        return bool(cursor_has_attributes(self))

    @property
    def has_ascii_content(self):
        """Return a boolean indicating if the data for the current
        location is stored in ASCII format.
        """
        return bool(cursor_has_ascii_content(self))

    @property
    def available_union_field_index(self):
        """Return the index of the available union field.
        """
        return cursor_get_available_union_field_index(self)

    def record_field_is_available(self, index):
        """Return a boolean indicating if a record field is available.

        Arguments:
        index -- record field index
        """
        return bool(cursor_get_record_field_available_status(self, index))

    def record_field_index_from_name(self, name):
        """Return record field index for the field with the given name.

        Arguments:
        name -- record field name
        """
        return cursor_get_record_field_index_from_name(self, name)

    @property
    def array_dim(self):
        """Return a list containing the dimensions of an array.
        """
        return cursor_get_array_dim(self)

    @property
    def depth(self):
        """Return the hierarchical depth of the current location.
        """
        return cursor_get_depth(self)

    @property
    def index(self):
        """Return the array or record field index for the current location.

        For arrays, a 'flat' index is returned (similator to the argument
        of the 'goto_array_element_by_index' method).
        """
        return cursor_get_index(self)

    def bit_size(self):
        """Return the bit size for the current location.
        """
        return cursor_get_bit_size(self)

    def byte_size(self):
        """Return the byte size for the current location.

        It is calculated by rounding *up* the bit size to the nearest byte.
        """
        return cursor_get_byte_size(self)

    @property
    def file_bit_offset(self):
        """Return the file offset in bits for the current location.
        """
        return cursor_get_file_bit_offset(self)

    @property
    def file_byte_offset(self):
        """Return the file offset in bytes for the current location.

        It is calculated by rounding *down* the bit offset to the nearest
        byte.
        """
        return cursor_get_file_byte_offset(self)


class Record(object):
    """
    A class that represents the CODA record type in Python.

    When a record is read from a product file, a Record instance is
    created and populated with fields using the _registerField() method.
    Each field will appear as an instance attribute. The field name is used as
    the name of the attribute, and its value is read from the product file.
    """

    # dictionary to convert from numpy types to
    # a string representation of the corresponding CODA type.
    _typeToString = {
        numpy.int8:   "int8",
        numpy.uint8:  "uint8",
        numpy.int16:  "int16",
        numpy.uint16: "uint16",
        numpy.int32:  "int32",
        numpy.uint32: "uint32",
        numpy.int64:  "int64",
        numpy.float32: "float",
        numpy.float64: "double",
        numpy.complex64: "complex",
        numpy.object_: "object" }

    def __init__(self):
        self._registeredFields = []

    @property
    def __dict__(self):
        d = {}
        for field in self._registeredFields:
            d[field] = getattr(self, field)
        return d

    def _registerField(self,name,data):
        """
        _registerField() is a private method that is used to populate
        the Record with fields read from the product file.
        """
        self._registeredFields.append(name)
        self.__setattr__(name, data)

    def __len__(self):
        """
        Return the number of fields in this record.
        """
        return len(self._registeredFields)

    def __getitem__(self, key):
        if not isinstance(key, int):
            raise TypeError("index should be an integer")

        if key < 0:
            key += len(self._registeredFields)

        if key < 0 or key >= len(self._registeredFields):
            raise IndexError

        return self.__dict__[self._registeredFields[key]]

    def __repr__(self):
        """
        Return the canonical string representation of the instance.

        This is always the identifying string '<coda record>'.
        """
        return "<coda record>"

    def __str__(self):
        """
        Print type/structure information for this record.

        The output format is identical to how MATLAB shows structure information, except
        that for now a fixed padding value of 32 is used, and that the precision parameters
        for some of the floats will differ.
        """
        out = io.StringIO()

        for field in self._registeredFields:
            data = self.__dict__[field]

            out.write("%32s:" % (field))

            if isinstance(data, Record):
                out.write("record (%i fields)" % (len(data),))

            elif isinstance(data, numpy.ndarray):
                dim = data.shape
                if len(dim) == 0:
                    dim = [1]
                dimString = ""
                for d in dim[:-1]:
                    dimString += "%ix" % (d,)
                dimString += "%i" % (dim[-1],)
                out.write("[%s %s]" % (dimString, self._typeToString[data.dtype.type]))

            elif _is_str(data):
                out.write("\"%s\"" % (data,))

            else:
                # if type is none of the above, fall back
                # on the type specific __str__() function.
                out.write("%s" % (data,))

            out.write("\n")

        return out.getvalue()


class Type(object):
    """CODA Type base class.

    An instance of this class represents a CODA type.

    It is a wrapper class around the low-level coda_type struct.

    Specialized functionality corresponding to the different CODA
    types is provided by the following subclasses:

    - 'IntegerType'
    - 'RealType'
    - 'RecordType'
    - 'ArrayType'
    - 'SpecialType'
    - 'TextType'
    - 'RawType'

    """

    __slots__ = ['_x']

    def __init__(self, _x):
        self._x = _x

    @property
    def type_class(self):
        """Return the name of the type class.
        """
        return type_get_class_name(type_get_class(self))

    @property
    def format(self):
        """Return the name of the type storage format.
        """
        return type_get_format_name(type_get_format(self))

    @property
    def special_type(self):
        """Return the name of the special type."""
        return type_get_special_type_name(type_get_special_type(self))

    @property
    def description(self):
        """Return the type description.
        """
        return type_get_description(self)

    @property
    def has_attributes(self):
        """Return a boolean indicating whether the type has any
        attributes.
        """
        return bool(type_has_attributes(self))

    @property
    def attributes(self):
        """Return the type for the associated attribute record.
        """
        return type_get_attributes(self)

    @property
    def read_type(self):
        """Return the best native type for reading the data.
        """
        return type_get_read_type(self)

    @property
    def unit(self):
        """Return the type unit.
        """
        return type_get_unit(self)

    @property
    def bit_size(self):
        """Return the bit size for the type.
        """
        return type_get_bit_size(self)

    @property
    def fixed_value(self):
        """Return the associated fixed value string for the type.
        """
        return type_get_fixed_value(self)


class IntegerType(Type):
    """CODA Integer Type class."""

    __slots__ = []


class RealType(Type):
    """CODA Real Type class."""

    __slots__ = []


class RecordTypeField(object):
    """CODA Record Type Field class.
    """

    __slots__ = ['recordtype', 'index']

    def __init__(self, recordtype, index):
        self.recordtype = recordtype
        self.index = index

    @property
    def is_hidden(self):
        """Return a boolean indicating whether the field is hidden.
        """
        return bool(type_get_record_field_hidden_status(self.recordtype, self.index))

    @property
    def is_optional(self):
        """Return a boolean indicating whether the field is optional
        (not always available).
        """
        return type_get_record_field_available_status(self.recordtype, self.index) == -1

    @property
    def coda_type(self):
        """Return 'Type' instance corresponding to the field.
        """
        return type_get_record_field_type(self.recordtype, self.index)

    @property
    def name(self):
        """Return the name (identifier) of the field
        """
        return type_get_record_field_name(self.recordtype, self.index)

    @property
    def real_name(self):
        """Return the real (original) name of the field.

        This may be different from the regular name (identifier) because
        of restrictions on identifier names.
        """
        return type_get_record_field_real_name(self.recordtype, self.index)


class RecordType(Type):
    """CODA Record Type class.

    Unions are implemented in CODA as records where only one field is
    'available' at a time.

    """

    __slots__ = []

    def num_fields(self):
        """Return the total number of fields.
        """
        return type_get_num_record_fields(self)

    def field(self, index):
        """Return an instance of 'RecordTypeField' corresponding to the
        specified field index or name.

        Arguments:
        index -- field index or name
        """
        if _is_str(index):
            index = type_get_record_field_index_from_name(self, index)
        return RecordTypeField(self, index)

    def fields(self):
        """Return a list of 'RecordTypeField' instances corresponding
        to the fields.
        """
        result = []
        for i in range(self.num_fields()):
            result.append(RecordTypeField(self, i))
        return result

    @property
    def is_union(self):
        """Return a boolean indicating whether the record is a union.
        """
        return bool(type_get_record_union_status(self))


class ArrayType(Type):
    """CODA Array Type class."""

    __slots__ = []

    @property
    def base_type(self):
        """Return a 'Type' instance corresponding to the array elements.
        """
        return type_get_array_base_type(self)

    @property
    def dim(self):
        """Return a list with array dimension sizes.

        The size of a variable dimension is represented as -1.
        """
        return type_get_array_dim(self)


class SpecialType(Type):
    """CODA Special Type class."""

    __slots__ = []

    @property
    def base_type(self):
        """Return a 'Type' instance corresponding to the special type
        base type.
        """
        return type_get_special_base_type(self)


class TextType(Type):
    """CODA Text Type class."""

    __slots__ = []

    @property
    def string_length(self):
        """Return the string length in bytes.
        """
        return type_get_string_length(self)


class RawType(Type):
    """CODA Raw Type class."""

    __slots__ = []


class Expression(object):
    """CODA Expression class.

    An instance of this class represents a CODA expression.

    It is a wrapper class around the low-level coda_expression struct.

    Consult the CODA documentation for information about the the CODA
    expression language.

    """

    __slots__ = ['_x']

    def __init__(self, s=None, _x=None):
        """Initialize an 'Expression' instance.

        The instance should be cleaned up after use via 'with' keyword or
        by calling the 'delete' method.

        Arguments:
        s -- string containing CODA expression
        """
        if s is not None:
            self._x = expression_from_string(s)._x
        else:
            self._x = _x

    def is_constant(self):
        """Return a boolean indicating whether the expression is constant.

        An expression is constant if it does not depend on the contents of
        a product and hence can be evaluated without requiring a cursor.
        """
        return bool(expression_is_constant(self))

    def is_equal(self, expr):
        """Return a boolean indicating whether the expression is equal
        to another 'Expression' instance.

        For two expressions to be considered as equal, all operands to an
        operation need to be equal and operands need to be provided in the
        same order.

        For example, the expression '1!=2' is not considered equal to the
        expression '2!=1'.

        Arguments:
        expr -- 'Expression' instance
        """
        return bool(expression_is_equal(self, expr))

    def eval(self, cursor=None):
        """Evaluate the expression and return the resulting value.

        For a constant expression, the 'cursor' argument is optional.

        For a node expression, the cursor is moved to the resulting
        location and no value is returned.

        Arguments:
        cursor -- 'Cursor' instance (optional)
        """
        expression_type = self.expression_type
        if expression_type == 'boolean':
            return bool(expression_eval_bool(self, cursor))
        elif expression_type == 'integer':
            return expression_eval_integer(self, cursor)
        elif expression_type == 'float':
            return expression_eval_float(self, cursor)
        elif expression_type == 'string':
            return expression_eval_string(self, cursor)
        elif expression_type == 'node':
            return expression_eval_node(self, cursor)

    @property
    def expression_type(self):
        """Return the name of the expression type.
        """
        return expression_get_type_name(expression_get_type(self))

    def delete(self):
        """Delete the low-level CODA expression object.

        Note that it is also possible to use the 'with' keyword for this.
        """
        return expression_delete(self)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.delete()


def recognize_file(path):
    """Return a list containing the file size, format, product class,
    product type, and format version of a product file.

    Arguments:
    path -- path to product file
    """

    x = _ffi.new('int64_t *')
    y = _ffi.new('enum coda_format_enum *')
    z = _ffi.new('char **')
    a = _ffi.new('char **')
    b = _ffi.new('int *')

    _check(_lib.coda_recognize_file(_encode_path(path), x, y, z, a, b), 'coda_recognize_file')

    return [long(x[0]), y[0], _string(z[0]), _string(a[0]), b[0]]


def open(path):
    """Return a 'Product' instance for the specified product file.

    Note that products can also be opened as follows:

        product = Product(path)

    Arguments:
    path -- path to CODA compatible product file.
    """
    x = _ffi.new('coda_product **')
    _check(_lib.coda_open(_encode_path(path), x), 'coda_open')
    return Product(_x=x[0])


def open_as(path, product_class, product_type, version):
    """Return a 'Product' instance for the specified product file,
    using the specified format definition.

    Arguments:
    path -- path to CODA compatible product file.
    product_class -- product class name
    product_type -- product type name
    version -- format version number (-1 for latest)
    """
    x = _ffi.new('coda_product **')
    class_ = _encode_string(product_class)
    type_ = _encode_string(product_type)
    _check(_lib.coda_open_as(_encode_path(path), class_, type_, version, x), 'coda_open_as')
    return Product(_x=x[0])


def close(product):
    """Close the given 'Product' instance.

    This will release any memory used by the low-level CODA product.

    Note that products can also be closed as follows:

        product.close()

    The 'with' keyword can also be used for this purpose.

    Arguments:
    product -- instance of 'Product'.

    """
    _check(_lib.coda_close(product._x), 'coda_close')


#
# low-level interface
#

def match_filefilter(filter_, paths, callback):
    if _is_str(paths):
        paths = [paths]

    def passer(filepath, status, error, userdata):
        callback(_string(filepath), status, _string(error))
        return 0

    fptr = _ffi.callback(
                ' int (char *, enum coda_filefilter_status_enum, char *, void *)',
                passer)
    npaths = len(paths)
    paths2 = _ffi.new('char *[%d]' % npaths)
    for i, path in enumerate(paths):
        paths2[i] = _ffi.new('char[]', _encode_string(paths[i]))
    voidp = _ffi.new('char *')

    _check(_lib.coda_match_filefilter(_encode_string(filter_), npaths, paths2, fptr, voidp))


def _string(s):
    if s != _ffi.NULL:
        return _decode_string(_ffi.string(s))


def get_product_class(product):
    c = _ffi.new('char **')
    _check(_lib.coda_get_product_class(product._x, c), 'coda_get_product_class')
    return _string(c[0])


def get_product_version(product):
    c = _ffi.new('int *')
    _check(_lib.coda_get_product_version(product._x, c), 'coda_get_product_version')
    return c[0]


def get_product_type(product):
    c = _ffi.new('char **')
    _check(_lib.coda_get_product_type(product._x, c), 'coda_get_product_type')
    return _string(c[0])


def get_product_filename(product):
    c = _ffi.new('char **')
    _check(_lib.coda_get_product_filename(product._x, c), 'coda_get_product_filename')
    return _string(c[0])


def get_product_definition_file(product):
    c = _ffi.new('char **')
    _check(_lib.coda_get_product_definition_file(product._x, c), 'coda_get_product_definition_file')
    return _string(c[0])


def get_product_file_size(product):
    c = _ffi.new('int64_t *')
    _check(_lib.coda_get_product_file_size(product._x, c), 'coda_get_product_file_size')
    return long(c[0])


def get_product_format(product):
    c = _ffi.new('enum coda_format_enum *')
    _check(_lib.coda_get_product_format(product._x, c), 'coda_get_product_format')
    return c[0]


def _type(coda_type):
    x = _ffi.new('enum coda_type_class_enum *')
    _check(_lib.coda_type_get_class(coda_type, x), 'coda_type_get_class')
    return _codaClassToTypeClass[x[0]](coda_type)


def get_product_root_type(product):
    c = _ffi.new('coda_type **')
    _check(_lib.coda_get_product_root_type(product._x, c), 'coda_get_product_root_type')
    return _type(c[0])


def get_product_variable_value(product, variable, index):
    x = _ffi.new('int64_t *')
    _check(_lib.coda_get_product_variable_value(product._x, _encode_string(variable), index, x),
           'coda_get_product_variable_value')
    return long(x[0])


def cursor_set_product(cursor, product):
    _check(_lib.coda_cursor_set_product(cursor._x, product._x), 'coda_cursor_set_product')


def cursor_goto(cursor, path):
    if _lib.coda_cursor_goto(cursor._x, _encode_string(path)) != 0:
        raise CodacError('coda_cursor_goto')


def cursor_goto_parent(cursor):
    if _lib.coda_cursor_goto_parent(cursor._x) != 0:
        raise CodacError('coda_cursor_goto_parent')


def cursor_goto_root(cursor):
    if _lib.coda_cursor_goto_root(cursor._x) != 0:
        raise CodacError('coda_cursor_goto_root')


def cursor_goto_attributes(cursor):
    if _lib.coda_cursor_goto_attributes(cursor._x) != 0:
        raise CodacError('coda_cursor_goto_attributes')


def cursor_goto_first_array_element(cursor):
    if _lib.coda_cursor_goto_first_array_element(cursor._x) != 0:
        raise CodacError('coda_cursor_goto_first_array_element')


def cursor_goto_next_array_element(cursor):
    if _lib.coda_cursor_goto_next_array_element(cursor._x) != 0:
        raise CodacError('coda_cursor_goto_next_array_element')


def cursor_goto_array_element_by_index(cursor, index):
    if _lib.coda_cursor_goto_array_element_by_index(cursor._x, index) != 0:
        raise CodacError('coda_cursor_goto_array_element_by_index')


def cursor_goto_array_element(cursor, idcs):
    n = len(idcs)
    s = _ffi.new('long [%d]' % n)
    for i, val in enumerate(idcs):
        s[i] = val
    if _lib.coda_cursor_goto_array_element(cursor._x, n, s) != 0:
        raise CodacError('coda_cursor_goto_array_element')


def cursor_goto_first_record_field(cursor):
    if _lib.coda_cursor_goto_first_record_field(cursor._x) != 0:
        raise CodacError('coda_cursor_goto_first_record_field')


def cursor_goto_next_record_field(cursor):
    if _lib.coda_cursor_goto_next_record_field(cursor._x) != 0:
        raise CodacError('coda_cursor_goto_next_record_field')


def cursor_goto_available_union_field(cursor):
    if _lib.coda_cursor_goto_available_union_field(cursor._x) != 0:
        raise CodacError('coda_cursor_goto_available_union_field')


def cursor_goto_record_field_by_index(cursor, index):
    if _lib.coda_cursor_goto_record_field_by_index(cursor._x, index) != 0:
        raise CodacError('coda_cursor_goto_record_field_by_index')


def cursor_goto_record_field_by_name(cursor, name):
    if _lib.coda_cursor_goto_record_field_by_name(cursor._x, _encode_string(name)) != 0:
        raise CodacError('coda_cursor_goto_record_field_by_name')


def cursor_use_base_type_of_special_type(cursor):
    _check(_lib.coda_cursor_use_base_type_of_special_type(cursor._x), 'coda_cursor_use_base_type_of_special_type')


def cursor_get_depth(cursor):
    x = _ffi.new('int *')
    _check(_lib.coda_cursor_get_depth(cursor._x, x), 'coda_cursor_get_depth')
    return x[0]


def cursor_get_index(cursor):
    x = _ffi.new('long *')
    _check(_lib.coda_cursor_get_index(cursor._x, x), 'coda_cursor_get_index')
    return x[0]


def cursor_get_array_dim(cursor):
    x = _ffi.new('int *')
    y = _ffi.new('long[%d]' % _lib.CODA_MAX_NUM_DIMS)
    _check(_lib.coda_cursor_get_array_dim(cursor._x, x, y), 'coda_cursor_get_array_dim')
    return list(y)[:x[0]]


def cursor_get_record_field_available_status(cursor, index):
    x = _ffi.new('int *')
    _check(_lib.coda_cursor_get_record_field_available_status(cursor._x, index, x),
           'coda_cursor_get_record_field_available_status')
    return x[0]


def cursor_get_record_field_index_from_name(cursor, name):
    x = _ffi.new('long *')
    _check(_lib.coda_cursor_get_record_field_index_from_name(cursor._x, _encode_string(name), x),
           'coda_cursor_get_record_field_index_from_name')
    return x[0]


def cursor_get_available_union_field_index(cursor):
    x = _ffi.new('long *')
    _check(_lib.coda_cursor_get_available_union_field_index(cursor._x, x),
           'coda_cursor_get_available_union_field_index')
    return x[0]


def cursor_has_attributes(cursor):
    x = _ffi.new('int *')
    _check(_lib.coda_cursor_has_attributes(cursor._x, x), 'coda_cursor_has_attributes')
    return x[0]


def cursor_get_product_file(cursor):
    x = _ffi.new('coda_product **')
    _check(_lib.coda_cursor_get_product_file(cursor._x, x), 'coda_get_product_file')
    return Product(_x=x[0])


def _read_scalar(cursor, type_):
    x = _ffi.new('%s *' % type_)
    desc = type_
    if desc.endswith('_t'):
        desc = desc[:-2]
    func = getattr(_lib, 'coda_cursor_read_%s' % desc)
    _check(func(cursor._x, x), 'coda_cursor_read_%s' % desc)
    return x[0]


def _read_array(cursor, type_, order):
    shape = cursor_get_array_dim(cursor)
    size = functools.reduce(lambda x, y: x*y, shape, 1)
    d = _ffi.new('%s[%d]' % (type_, size))
    desc = type_
    if desc.endswith('_t'):
        desc = desc[:-2]
    func = getattr(_lib, 'coda_cursor_read_%s_array' % desc)
    _check(func(cursor._x, d, order), 'coda_cursor_read_%s_array' % desc)
    buf = _ffi.buffer(d)
    if desc == 'char':
        array = numpy.array(buf, dtype='int8')
        array = array.reshape(shape)
    else:
        if desc == 'float':
            desc = 'float32'
        array = numpy.ndarray(shape=shape, buffer=buf, dtype=desc)
    return array


def _read_partial(cursor, type_, offset, count):
    d = _ffi.new('%s[%d]' % (type_, count))
    desc = type_
    if desc.endswith('_t'):
        desc = desc[:-2]
    func = getattr(_lib, 'coda_cursor_read_%s_partial_array' % desc)
    _check(func(cursor._x, offset, count, d), 'coda_cursor_read_%s_partial_array' % desc)
    buf = _ffi.buffer(d)
    if desc == 'char':
        array = numpy.array(buf, dtype='int8')
    else:
        array = numpy.frombuffer(buf)
    return array


def cursor_read_char(cursor):
    return _decode_string(_read_scalar(cursor, 'char'))


def cursor_read_char_array(cursor, order=0):
    return _read_array(cursor, 'char', order)


def cursor_read_char_partial_array(cursor, offset, count):
    return _read_partial(cursor, 'char', offset, count)


def cursor_read_int8(cursor):
    return _read_scalar(cursor, 'int8_t')


def cursor_read_int8_array(cursor, order=0):
    return _read_array(cursor, 'int8_t', order)


def cursor_read_int8_partial_array(cursor, offset, count):
    return _read_partial(cursor, 'int8_t', offset, count)


def cursor_read_int16(cursor):
    return _read_scalar(cursor, 'int16_t')


def cursor_read_int16_array(cursor, order=0):
    return _read_array(cursor, 'int16_t', order)


def cursor_read_int16_partial_array(cursor, offset, count):
    return _read_partial(cursor, 'int16_t', offset, count)


def cursor_read_int32(cursor):
    return _read_scalar(cursor, 'int32_t')


def cursor_read_int32_array(cursor, order=0):
    return _read_array(cursor, 'int32_t', order)


def cursor_read_int32_partial_array(cursor, offset, count):
    return _read_partial(cursor, 'int32_t', offset, count)


def cursor_read_int64(cursor):
    return long(_read_scalar(cursor, 'int64_t'))


def cursor_read_int64_array(cursor, order=0):
    return _read_array(cursor, 'int64_t', order)


def cursor_read_int64_partial_array(cursor, offset, count):
    return _read_partial(cursor, 'int64_t', offset, count)


def cursor_read_uint8(cursor):
    return _read_scalar(cursor, 'uint8_t')


def cursor_read_uint8_array(cursor, order=0):
    return _read_array(cursor, 'uint8_t', order)


def cursor_read_uint8_partial_array(cursor, offset, count):
    return _read_partial(cursor, 'uint8_t', offset, count)


def cursor_read_uint16(cursor):
    return _read_scalar(cursor, 'uint16_t')


def cursor_read_uint16_array(cursor, order=0):
    return _read_array(cursor, 'uint16_t', order)


def cursor_read_uint16_partial_array(cursor, offset, count):
    return _read_partial(cursor, 'uint16_t', offset, count)


def cursor_read_uint32(cursor):
    return _read_scalar(cursor, 'uint32_t')


def cursor_read_uint32_array(cursor, order=0):
    return _read_array(cursor, 'uint32_t', order)


def cursor_read_uint32_partial_array(cursor, offset, count):
    return _read_partial(cursor, 'uint32_t', offset, count)


def cursor_read_uint64(cursor):
    return long(_read_scalar(cursor, 'uint64_t'))


def cursor_read_uint64_array(cursor, order=0):
    return _read_array(cursor, 'uint64_t', order)


def cursor_read_uint64_partial_array(cursor, offset, count):
    return _read_partial(cursor, 'uint64_t', offset, count)


def cursor_read_float(cursor):
    return _read_scalar(cursor, 'float')


def cursor_read_float_array(cursor, order=0):
    return _read_array(cursor, 'float', order)


def cursor_read_float_partial_array(cursor, offset, count):
    return _read_partial(cursor, 'float', offset, count)


def cursor_read_double(cursor):
    x = TLS.double
    if _lib.coda_cursor_read_double(cursor._x, x) != 0:
        raise CodacError('coda_cursor_read_double')
    return x[0]


def cursor_read_double_array(cursor, order=0):
    return _read_array(cursor, 'double', order)


def cursor_read_double_partial_array(cursor, offset, count):
    return _read_partial(cursor, 'double', offset, count)


def cursor_read_complex(cursor):
    return complex(*cursor_read_complex_double_split(cursor))


def cursor_read_complex_double_pair(cursor):
    d = _ffi.new('double [2]')
    _check(_lib.coda_cursor_read_complex_double_pair(cursor._x, d), 'coda_cursor_read_complex_double_pair')
    return numpy.asarray(list(d), dtype=float)


def cursor_read_complex_double_split(cursor):
    d = _ffi.new('double *')
    e = _ffi.new('double *')
    _check(_lib.coda_cursor_read_complex_double_split(cursor._x, d, e), 'coda_cursor_read_complex_double_split')
    return [d[0], e[0]]


def cursor_read_complex_array(cursor, order=0):
    array = cursor_read_complex_double_pairs_array(cursor, order)
    return numpy.squeeze(array.view(dtype=complex))


def cursor_read_complex_double_pairs_array(cursor, order=0):
    shape = cursor_get_array_dim(cursor)
    size = functools.reduce(lambda x, y: x*y, shape, 1)
    d = _ffi.new('double[%d]' % (size*2))
    _check(_lib.coda_cursor_read_complex_double_pairs_array(cursor._x, d, order),
           'coda_cursor_read_complex_double_pairs_array')
    buf = _ffi.buffer(d)
    array = numpy.frombuffer(buf).reshape(tuple(shape)+(2,))
    return array


def cursor_read_complex_double_split_array(cursor, order=0):
    shape = cursor_get_array_dim(cursor)
    size = functools.reduce(lambda x, y: x*y, shape, 1)
    d = _ffi.new('double[%d]' % size)
    e = _ffi.new('double[%d]' % size)
    _check(_lib.coda_cursor_read_complex_double_split_array(cursor._x, d, e, order),
           'coda_cursor_read_complex_double_split_array')
    array1 = numpy.frombuffer(_ffi.buffer(d)).reshape(shape)
    array2 = numpy.frombuffer(_ffi.buffer(e)).reshape(shape)
    return [array1, array2]


def cursor_get_bit_size(cursor):
    x = _ffi.new('int64_t *')
    _check(_lib.coda_cursor_get_bit_size(cursor._x, x), 'coda_cursor_get_bit_size')
    return long(x[0])


def cursor_get_byte_size(cursor):
    x = _ffi.new('int64_t *')
    _check(_lib.coda_cursor_get_byte_size(cursor._x, x), 'coda_cursor_get_byte_size')
    return long(x[0])


def cursor_get_file_bit_offset(cursor):
    x = _ffi.new('int64_t *')
    _check(_lib.coda_cursor_get_file_bit_offset(cursor._x, x), 'coda_cursor_get_file_bit_offset')
    return long(x[0])


def cursor_get_file_byte_offset(cursor):
    x = _ffi.new('int64_t *')
    _check(_lib.coda_cursor_get_file_byte_offset(cursor._x, x), 'coda_cursor_get_file_byte_offset')
    return long(x[0])


def cursor_get_format(cursor):
    x = _ffi.new('enum coda_format_enum *')
    _check(_lib.coda_cursor_get_format(cursor._x, x), 'coda_cursor_get_format')
    return x[0]


def cursor_has_ascii_content(cursor):
    x = _ffi.new('int *')
    _check(_lib.coda_cursor_has_ascii_content(cursor._x, x), 'coda_cursor_has_ascii_content')
    return x[0]


def cursor_read_bytes(cursor, offset=None, count=None):
    if offset is None and count is None:
        offset = 0
        count = cursor_get_byte_size(cursor)
        if count == 0:
            return None
    d = _ffi.new('uint8_t[%d]' % count)
    _check(_lib.coda_cursor_read_bytes(cursor._x, d, offset, count), 'coda_cursor_read_bytes')
    buf = _ffi.buffer(d)
    array = numpy.frombuffer(buf, dtype='uint8')
    return array


def cursor_read_bits(cursor, offset, count):
    nbytes = count // 8
    if count % 8 > 0:
        nbytes += 1
    d = _ffi.new('uint8_t[%d]' % nbytes)
    _check(_lib.coda_cursor_read_bits(cursor._x, d, offset, count), 'coda_cursor_read_bits')
    buf = _ffi.buffer(d)
    array = numpy.frombuffer(buf, dtype='uint8')
    return array


def cursor_get_string_length(cursor):
    length = _ffi.new('long *')
    _check(_lib.coda_cursor_get_string_length(cursor._x, length), 'coda_cursor_get_string_length')
    return length[0]


def cursor_read_string(cursor):
    length = cursor_get_string_length(cursor)
    y = _ffi.new('char [%d]' % (length + 1))
    _check(_lib.coda_cursor_read_string(cursor._x, y, length + 1), 'coda_cursor_read_string')
    return _decode_string(_ffi.unpack(y, length))


def cursor_get_type(cursor):
    x = _ffi.new('coda_type **')
    _check(_lib.coda_cursor_get_type(cursor._x, x), 'coda_cursor_get_type')
    return _type(x[0])


def cursor_get_type_class(cursor):
    x = _ffi.new('enum coda_type_class_enum *')
    _check(_lib.coda_cursor_get_type_class(cursor._x, x), 'coda_cursor_get_type_class')
    return x[0]


def cursor_get_special_type(cursor):
    x = _ffi.new('enum coda_special_type_enum *')
    _check(_lib.coda_cursor_get_special_type(cursor._x, x), 'coda_cursor_get_special_type')
    return x[0]


def cursor_get_num_elements(cursor):
    x = _ffi.new('long *')
    _check(_lib.coda_cursor_get_num_elements(cursor._x, x), 'coda_cursor_get_num_elements')
    return x[0]


def type_get_class(type_):
    x = _ffi.new('enum coda_type_class_enum *')
    _check(_lib.coda_type_get_class(type_._x, x), 'coda_type_get_class')
    return x[0]


def type_get_format(type_):
    x = _ffi.new('enum coda_format_enum *')
    _check(_lib.coda_type_get_format(type_._x, x), 'coda_type_get_format')
    return x[0]


def type_get_special_type(type_):
    x = _ffi.new('enum coda_special_type_enum *')
    _check(_lib.coda_type_get_special_type(type_._x, x), 'coda_type_get_special_type')
    return x[0]


def type_get_special_type_name(n):
    return _string(_lib.coda_type_get_special_type_name(n))


def type_get_special_base_type(type_):
    x = _ffi.new('coda_type **')
    _check(_lib.coda_type_get_special_base_type(type_._x, x), 'coda_type_get_special_base_type')
    return _type(x[0])


def type_get_array_base_type(type_):
    x = _ffi.new('coda_type **')
    _check(_lib.coda_type_get_array_base_type(type_._x, x), 'coda_type_get_array_base_type')
    return _type(x[0])


def type_get_attributes(type_):
    x = _ffi.new('coda_type **')
    _check(_lib.coda_type_get_attributes(type_._x, x), 'coda_type_get_attributes')
    return _type(x[0])


def type_get_array_num_dims(type_):
    x = _ffi.new('int *')
    _check(_lib.coda_type_get_array_num_dims(type_._x, x), 'coda_type_get_array_num_dims')
    return x[0]


def type_get_array_dim(type_):
    x = _ffi.new('int *')
    y = _ffi.new('long[%d]' % _lib.CODA_MAX_NUM_DIMS)
    _check(_lib.coda_type_get_array_dim(type_._x, x, y), 'coda_type_get_array_dim')
    return list(y)[:x[0]]


def type_get_read_type(type_):
    x = _ffi.new('coda_native_type *')
    _check(_lib.coda_type_get_read_type(type_._x, x), 'coda_type_get_read_type')
    return x[0]


def type_get_description(type_):
    c = _ffi.new('char **')
    _check(_lib.coda_type_get_description(type_._x, c), 'coda_type_get_description')
    return _string(c[0])


def type_get_num_record_fields(type_):
    x = _ffi.new('long *')
    _check(_lib.coda_type_get_num_record_fields(type_._x, x), 'coda_type_get_num_record_fields')
    return x[0]


def type_get_record_field_available_status(type_, index):
    x = _ffi.new('int *')
    _check(_lib.coda_type_get_record_field_available_status(type_._x, index, x),
           'coda_type_get_record_field_available_status')
    return x[0]


def type_get_record_union_status(type_):
    x = _ffi.new('int *')
    _check(_lib.coda_type_get_record_union_status(type_._x, x), 'coda_type_get_record_union_status')
    return x[0]


def type_get_record_field_hidden_status(type_, index):
    x = _ffi.new('int *')
    _check(_lib.coda_type_get_record_field_hidden_status(type_._x, index, x),
           'coda_type_get_record_field_hidden_status')
    return x[0]


def type_get_record_field_name(type_, index):
    x = _ffi.new('char **')
    _check(_lib.coda_type_get_record_field_name(type_._x, index, x), 'coda_type_get_record_field_name')
    return _string(x[0])


def type_get_record_field_real_name(type_, index):
    x = _ffi.new('char **')
    _check(_lib.coda_type_get_record_field_real_name(type_._x, index, x), 'coda_type_get_record_field_real_name')
    return _string(x[0])


def type_get_record_field_type(type_, index):
    x = _ffi.new('coda_type **')
    _check(_lib.coda_type_get_record_field_type(type_._x, index, x), 'coda_type_get_record_field_type')
    return _type(x[0])


def type_get_record_field_index_from_name(type_, name):
    x = _ffi.new('long *')
    _check(_lib.coda_type_get_record_field_index_from_name(type_._x, _encode_string(name), x),
           'coda_type_get_record_field_index_from_name')
    return x[0]


def type_get_record_field_index_from_real_name(type_, name):
    x = _ffi.new('long *')
    _check(_lib.coda_type_get_record_field_index_from_real_name(type_._x, _encode_string(name), x),
           'coda_type_get_record_field_index_from_real_name')
    return x[0]


def type_get_bit_size(type_):
    x = _ffi.new('int64_t *')
    _check(_lib.coda_type_get_bit_size(type_._x, x), 'coda_type_get_bit_size')
    return long(x[0])


def type_get_string_length(type_):
    x = _ffi.new('long *')
    _check(_lib.coda_type_get_string_length(type_._x, x), 'coda_type_get_string_length')
    return x[0]


def type_get_class_name(cl):
    return _string(_lib.coda_type_get_class_name(cl))


def type_get_format_name(f):
    return _string(_lib.coda_type_get_format_name(f))


def type_get_native_type_name(f):
    return _string(_lib.coda_type_get_native_type_name(f))


def type_get_name(type_):
    x = _ffi.new('char **')
    _check(_lib.coda_type_get_name(type_._x, x), 'coda_type_get_name')
    return _string(x[0])


def type_get_unit(type_):
    x = _ffi.new('char **')
    _check(_lib.coda_type_get_unit(type_._x, x), 'coda_type_get_unit')
    return _string(x[0])


def type_get_fixed_value(type_):
    x = _ffi.new('char **')
    y = _ffi.new('long *')
    _check(_lib.coda_type_get_fixed_value(type_._x, x, y), 'coda_type_get_fixed_value')
    return _string(x[0])


def type_has_attributes(type_):
    x = _ffi.new('int *')
    _check(_lib.coda_type_has_attributes(type_._x, x), 'coda_type_has_attributes')
    return x[0]


def expression_from_string(s):
    x = _ffi.new('coda_expression **')
    if not isinstance(s, bytes):
        s = _encode_string_with_encoding(s, 'ascii')
    _check(_lib.coda_expression_from_string(s, x), 'coda_expression_from_string')
    return Expression(_x=x[0])


def expression_eval_bool(expr, cursor=None):
    x = _ffi.new('int *')
    if cursor is None:
        cur = _ffi.NULL
    else:
        cur = cursor._x
    _check(_lib.coda_expression_eval_bool(expr._x, cur, x), 'coda_expression_eval_bool')
    return x[0]


def expression_eval_integer(expr, cursor=None):
    x = _ffi.new('int64_t *')
    if cursor is None:
        cur = _ffi.NULL
    else:
        cur = cursor._x
    _check(_lib.coda_expression_eval_integer(expr._x, cur, x), 'coda_expression_eval_integer')
    return long(x[0])


def expression_eval_float(expr, cursor=None):
    x = _ffi.new('double *')
    if cursor is None:
        cur = _ffi.NULL
    else:
        cur = cursor._x
    _check(_lib.coda_expression_eval_float(expr._x, cur, x), 'coda_expression_eval_float')
    return x[0]


def expression_eval_string(expr, cursor=None):
    x = _ffi.new('char **')
    y = _ffi.new('long *')
    if cursor is None:
        cur = _ffi.NULL
    else:
        cur = cursor._x
    _check(_lib.coda_expression_eval_string(expr._x, cur, x, y), 'coda_expression_eval_string')
    return _ffi.string(x[0])


def expression_eval_node(expr, cursor):
    _check(_lib.coda_expression_eval_node(expr._x, cursor._x), 'coda_expression_eval_node')


def expression_get_type(expr):
    x = _ffi.new('enum coda_expression_type_enum *')
    _check(_lib.coda_expression_get_type(expr._x, x), 'coda_expression_get_type')
    return x[0]


def expression_get_type_name(type_):
    return _string(_lib.coda_expression_get_type_name(type_))


def expression_is_constant(expr):
    return _lib.coda_expression_is_constant(expr._x)


def expression_is_equal(expr1, expr2):
    return _lib.coda_expression_is_equal(expr1._x, expr2._x)


def expression_delete(expr):
    _lib.coda_expression_delete(expr._x)


def _to_parts(dt, from_, fmt=None):
    y = _ffi.new('int *')
    mo = _ffi.new('int *')
    d = _ffi.new('int *')
    h = _ffi.new('int *')
    mi = _ffi.new('int *')
    s = _ffi.new('int *')
    mus = _ffi.new('int *')

    if from_ == 'double':
        _check(_lib.coda_time_double_to_parts(dt, y, mo, d, h, mi, s, mus), 'coda_time_double_to_parts')
    elif from_ == 'double_utc':
        _check(_lib.coda_time_double_to_parts_utc(dt, y, mo, d, h, mi, s, mus), 'coda_time_double_to_parts_utc')
    elif from_ == 'string':
        _check(_lib.coda_time_string_to_parts(fmt, dt, y, mo, d, h, mi, s, mus), 'coda_time_string_to_parts')

    return [y[0], mo[0], d[0], h[0], mi[0], s[0], mus[0]]


def time_double_to_parts(d):
    return _to_parts(d, 'double')


def time_double_to_parts_utc(d):
    return _to_parts(d, 'double_utc')


def time_double_to_string(d, fmt):
    s = _ffi.new('char [%d]' % (len(fmt)+1))
    _check(_lib.coda_time_double_to_string(d, _encode_string(fmt), s), 'coda_time_double_to_string')
    return _string(s)


def time_double_to_string_utc(d, fmt):
    s = _ffi.new('char [%d]' % (len(fmt)+1))
    fmt = _encode_string(fmt)
    _check(_lib.coda_time_double_to_string_utc(d, fmt, s), 'coda_time_double_to_string_utc')
    return _string(s)


def time_parts_to_double(y, mo, d, h, mi, s, mus):
    dt = _ffi.new('double *')
    _check(_lib.coda_time_parts_to_double(y, mo, d, h, mi, s, mus, dt), 'coda_time_parts_to_double')
    return dt[0]


def time_parts_to_double_utc(y, mo, d, h, mi, s, mus):
    dt = _ffi.new('double *')
    _check(_lib.coda_time_parts_to_double_utc(y, mo, d, h, mi, s, mus, dt), 'coda_time_parts_to_double_utc')
    return dt[0]


def time_parts_to_string(y, mo, d, h, mi, s, mus, fmt):
    dt = _ffi.new('char [%d]' % (len(fmt)+1))
    fmt = _encode_string(fmt)
    _check(_lib.coda_time_parts_to_string(y, mo, d, h, mi, s, mus, fmt, dt), 'coda_time_parts_to_string')
    return _string(dt)


def time_string_to_double(fmt, s):
    d = _ffi.new('double *')
    fmt = _encode_string(fmt)
    s = _encode_string(s)
    _check(_lib.coda_time_string_to_double(fmt, s, d), 'coda_time_string_to_double')
    return d[0]


def time_string_to_double_utc(fmt, s):
    d = _ffi.new('double *')
    fmt = _encode_string(fmt)
    s = _encode_string(s)
    _check(_lib.coda_time_string_to_double_utc(fmt, s, d), 'coda_time_string_to_double_utc')
    return d[0]


def time_string_to_parts(fmt, s):
    return _to_parts(_encode_string(s), 'string', _encode_string(fmt))


def set_definition_path_conditional(p1, p2, p3):
    def conv(p):
        if p is None:
            return _ffi.NULL
        else:
            return _encode_path(p)
    _check(_lib.coda_set_definition_path_conditional(conv(p1), conv(p2), conv(p3)),
           'coda_set_definition_path_conditional')


coda_set_definition_path_conditional = set_definition_path_conditional  # compat


def set_option_bypass_special_types(enable):
    _check(_lib.coda_set_option_bypass_special_types(enable), 'coda_set_option_bypass_special_types')


def get_option_bypass_special_types():
    return _lib.coda_get_option_bypass_special_types()


def set_option_perform_boundary_checks(enable):
    _check(_lib.coda_set_option_perform_boundary_checks(enable), 'coda_set_option_perform_boundary_checks')


def get_option_perform_boundary_checks():
    return _lib.coda_get_option_perform_boundary_checks()


def set_option_perform_conversions(enable):
    _check(_lib.coda_set_option_perform_conversions(enable), 'coda_set_option_perform_conversions')


def get_option_perform_conversions():
    return _lib.coda_get_option_perform_conversions()


def set_option_use_fast_size_expressions(enable):
    _check(_lib.coda_set_option_use_fast_size_expressions(enable), 'coda_set_option_use_fast_size_expressions')


def get_option_use_fast_size_expressions():
    return _lib.coda_get_option_use_fast_size_expressions()


def set_option_use_mmap(enable):
    _check(_lib.coda_set_option_use_mmap(enable), 'coda_set_option_use_mmap')


def get_option_use_mmap():
    return _lib.coda_get_option_use_mmap()


def init():
    _check(_lib.coda_init(), 'coda_init')


def done():
    _lib.coda_done()


def c_index_to_fortran_index(shape, index):
    num_dims = len(shape)
    d = _ffi.new('long [%d]' % num_dims)
    for i in range(len(shape)):
        d[i] = shape[i]
    return _lib.coda_c_index_to_fortran_index(num_dims, d, index)


def NaN():
    return _lib.coda_NaN()


def isNaN(x):
    return _lib.coda_isNaN(x)


def isInf(x):
    return _lib.coda_isInf(x)


def MinInf():
    return _lib.coda_MinInf()


def isMinInf(x):
    return _lib.coda_isMinInf(x)


def PlusInf():
    return _lib.coda_PlusInf()


def isPlusInf(x):
    return _lib.coda_isPlusInf(x)


def get_encoding():
    """Return the encoding used to convert between unicode strings and C strings
    (only relevant when using Python 3).

    """
    return _encoding


def set_encoding(encoding):
    """Set the encoding used to convert between unicode strings and C strings
    (only relevant when using Python 3).

    """
    global _encoding

    _encoding = encoding


def version():
    """Return the version of the CODA C library."""
    return _string(_lib.coda_get_libcoda_version())


def _get_filesystem_encoding():
    """Return the encoding used by the filesystem."""
    from sys import getdefaultencoding as _getdefaultencoding, getfilesystemencoding as _getfilesystemencoding

    encoding = _getfilesystemencoding()
    if encoding is None:
        encoding = _getdefaultencoding()

    return encoding


def _encode_string_with_encoding(string, encoding="utf-8"):
    """Encode a unicode string using the specified encoding.

    By default, use the "surrogateescape" error handler to deal with encoding
    errors. This error handler ensures that invalid bytes encountered during
    decoding are converted to the same bytes during encoding, by decoding them
    to a special range of unicode code points.

    The "surrogateescape" error handler is available since Python 3.1. For earlier
    versions of Python 3, the "strict" error handler is used instead.

    """
    try:
        try:
            return string.encode(encoding, "surrogateescape")
        except LookupError:
            # Either the encoding or the error handler is not supported; fall-through to the next try-block.
            pass

        try:
            return string.encode(encoding)
        except LookupError:
            # Here it is certain that the encoding is not supported.
            raise Error("unknown encoding '%s'" % encoding)
    except UnicodeEncodeError:
        raise Error("cannot encode '%s' using encoding '%s'" % (string, encoding))


def _decode_string_with_encoding(string, encoding="utf-8"):
    """Decode a byte string using the specified encoding.

    By default, use the "surrogateescape" error handler to deal with encoding
    errors. This error handler ensures that invalid bytes encountered during
    decoding are converted to the same bytes during encoding, by decoding them
    to a special range of unicode code points.

    The "surrogateescape" error handler is available since Python 3.1. For earlier
    versions of Python 3, the "strict" error handler is used instead. This may cause
    decoding errors if the input byte string contains bytes that cannot be decoded
    using the specified encoding. Since most HARP products use ASCII strings
    exclusively, it is unlikely this will occur often in practice.

    """
    try:
        try:
            return string.decode(encoding, "surrogateescape")
        except LookupError:
            # Either the encoding or the error handler is not supported; fall-through to the next try-block.
            pass

        try:
            return string.decode(encoding)
        except LookupError:
            # Here it is certain that the encoding is not supported.
            raise Error("unknown encoding '%s'" % encoding)
    except UnicodeEncodeError:
        raise Error("cannot decode '%s' using encoding '%s'" % (string, encoding))


def _encode_path(path):
    """Encode the input unicode path using the filesystem encoding.

    On Python 2, this method returns the specified path unmodified.

    """
    if isinstance(path, bytes):
        # This branch will be taken for instances of class str on Python 2 (since this is an alias for class bytes),
        # and on Python 3 for instances of class bytes.
        return path
    elif isinstance(path, str):
        # This branch will only be taken for instances of class str on Python 3. On Python 2 such instances will take
        # the branch above.
        return _encode_string_with_encoding(path, _get_filesystem_encoding())
    else:
        raise TypeError("path must be bytes or str, not %r" % path.__class__.__name__)


def _encode_string(string):
    """Encode the input unicode string using the package default encoding.

    On Python 2, this method returns the specified string unmodified.

    """
    if isinstance(string, bytes):
        # This branch will be taken for instances of class str on Python 2 (since this is an alias for class bytes),
        # and on Python 3 for instances of class bytes.
        return string
    elif isinstance(string, str):
        # This branch will only be taken for instances of class str on Python 3. On Python 2 such instances will take
        # the branch above.
        return _encode_string_with_encoding(string, get_encoding())
    else:
        raise TypeError("string must be bytes or str, not %r" % string.__class__.__name__)


def _decode_string(string):
    """Decode the input byte string using the package default encoding.

    On Python 2, this method returns the specified byte string unmodified.

    """
    if isinstance(string, str):
        # This branch will be taken for instances of class str on Python 2 and Python 3.
        return string
    elif isinstance(string, bytes):
        # This branch will only be taken for instances of class bytes on Python 3. On Python 2 such instances will take
        # the branch above.
        return _decode_string_with_encoding(string, get_encoding())
    else:
        raise TypeError("string must be bytes or str, not %r" % string.__class__.__name__)


def _get_c_library_filename():
    """Return the filename of the CODA shared library depending on the current
    platform.

    """
    if platform.system() == "Windows":
        return "coda.dll"

    if platform.system() == "Darwin":
        library_name = "libcoda.dylib"
    else:
        library_name = "libcoda.so"

    # expand symlinks (for conda-forge, pypy build)
    dirname = os.path.dirname(os.path.realpath(__file__))

    # look in different directories based on platform
    for rel_path in (
        "..",  # pyinstaller bundles
        "../../..",  # regular lib dir
        "../../../../lib",  # on RHEL the python path uses lib64, but the library might have gotten installed in lib
    ):
        library_path = os.path.normpath(os.path.join(dirname, rel_path, library_name))
        if os.path.exists(library_path):
            return library_path


#
# UTILITY FUNCTIONS
#
def _isIterable(maybeIterable):
    """Is the argument an iterable object? Taken from the Python Cookbook, recipe 1.12"""
    try:
        iter(maybeIterable)
    except Exception:
        return False
    else:
        return True


#
# PATH TRAVERSAL
#
def _traverse_path(cursor, path, start=0):
    """
    _traverse_path() traverses the specified path until
    an array with variable indices is encountered or the
    end of the path is reached. It checks field availability
    for records and index ranges for arrays. An exception is
    thrown when a check fails.
    """

    for pathIndex in range(start, len(path)):
        if isinstance(path[pathIndex], str):
            cursor_goto(cursor, path[pathIndex])
        else:
            if isinstance(path[pathIndex], int):
                arrayIndex = [path[pathIndex]]
            elif isinstance(path[pathIndex], (list, tuple)):
                arrayIndex = path[pathIndex]
            else:
                raise ValueError("path specification (%s) should be a string or (list of) integers" %
                                 (path[pathIndex],))

            # get the shape of the array from the cursor. the size of all
            # dynamic dimensions are computed by the coda library.
            arrayShape = cursor_get_array_dim(cursor)

            # handle a rank-0 array by (virtually) converting it to
            # a 1-dimensional array of size 1.
            rankZeroArray = False
            if len(arrayShape) == 0:
                rankZeroArray = True
                arrayShape.append(1)

            # check if the number of indices specified match the
            # dimensionality of the array.
            if len(arrayIndex) != len(arrayShape):
                raise ValueError("number of specified indices does not match the dimensionality of the array")

            # check for variable indices and perform range checks on all
            # non-variable indices.
            intermediateArray = False
            for i in range(0, len(arrayIndex)):
                if arrayIndex[i] == -1:
                    intermediateArray = True
                elif (arrayIndex[i] < 0) or (arrayIndex[i] >= arrayShape[i]):
                    raise ValueError("array index (%i) exceeds array range [0:%i)" % (arrayIndex[i], arrayShape[i]))

            if intermediateArray:
                return (True, pathIndex)
            else:
                # if all indices are non-variable, just move the cursor
                # to the indicated element.
                if rankZeroArray:
                    cursor_goto_array_element(cursor, [])
                else:
                    cursor_goto_array_element(cursor, arrayIndex)

    # we've arrived at the end of the path.
    return (False, len(path) - 1)


#
# HELPER FUNCTIONS FOR CODA.FETCH()
#
def _fetch_intermediate_array(cursor, path, pathIndex=0):
    """
    _fetch_intermediate_array calls _traverse_path() to traverse the path
    until the end is reached or an intermediate array is encountered.
    if the end of the path is reached, then we need to fetch everything
    from that point on (i.e. the whole subtree). in this case _fetch_subtree()
    is called. otherwise _fetch_intermediate_array() is called which
    recursively fetches each element of the array. note that this will result
    in calls to _fetch_data().
    """
    arrayShape = cursor_get_array_dim(cursor)

    # handle a rank-0 array by converting it to
    # a 1-dimensional array of size 1.
    if len(arrayShape) == 0:
        arrayShape.append(1)

    fetchShape = []
    fetchStep = []
    nextElementIndex = 0
    elementCount = 1

    if isinstance(path[pathIndex], int):
        # if the current path element is of type int, then
        # the intermediate array must be of rank 1. hence
        # the int in question must equal -1.
        assert path[pathIndex] == -1, \
            "A rank-1 intermediate array should always be indexed by -1 (got %i)." % (path[pathIndex],)

        fetchShape.append(arrayShape[0])
        fetchStep.append(1)
        fetchStep.append(arrayShape[0])
        elementCount = arrayShape[0]
    else:
        step = 1
        arrayIndex = path[pathIndex]

        for i in reversed(list(range(0, len(arrayIndex)))):
            if arrayIndex[i] == -1:
                fetchShape.append(arrayShape[i])
                fetchStep.append(step)
                elementCount *= arrayShape[i]
            else:
                nextElementIndex += step * arrayIndex[i]

            step *= arrayShape[i]

        fetchStep.append(step)

    # check for empty array (i.e. at least one dimension equals zero).
    if elementCount == 0:
        return None

    # create an index.
    fetchIndex = [0] * len(fetchShape)

    # flag array as uninitialized. the result array is created after traversing
    # the path to the first array element. note that we are fetching an intermediate array,
    # which implies that the end of the path has not been reached yet. therefore, the
    # 'basetype' of the intermediate array can only be determined after traversing the path
    # to a (i.e. the first) array element.
    array = None
    nodeReader = None

    # currentElementIndex represents an index into the flattened array from which elements
    # will be _read_. however, iteration is performed over the flattened array into which
    # elements will be _stored_. at the beginning of each iteration, (nextElementIndex -
    # currentElementIndex) elements are skipped using cursor_goto_next_array_element().
    currentElementIndex = 0

    cursor_goto_first_array_element(cursor)
    for i in range(0, elementCount):
        # move the cursor to the next required array element.
        while currentElementIndex < nextElementIndex:
            if _goto_next_elem(cursor._x) != 0:  # optimized to avoid lookup, boilerplate call
                raise CodacError('coda_cursor_goto_next_array_element')
            currentElementIndex += 1

        depth = cursor_get_depth(cursor)

        # traverse the path.
        (intermediateNode, copiedPathIndex) = _traverse_path(cursor, path, pathIndex + 1)

        # create the result array by examining the type of the first element.
        # This is equivalent to i == 0
        if array is None:
            assert i == 0
            # everything is an object until proven a scalar. :-)
            scalar = False

            # check for scalar types.
            nodeType = cursor_get_type(cursor)
            nodeClass = type_get_class(nodeType)

            if ((nodeClass == coda_array_class) or (nodeClass == coda_record_class)):
                # records and arrays are non-scalar.
                scalar = False

            elif ((nodeClass == coda_integer_class) or (nodeClass == coda_real_class) or
                  (nodeClass == coda_text_class) or (nodeClass == coda_raw_class)):
                nodeReadType = type_get_read_type(nodeType)

                if nodeReadType == coda_native_type_not_available:
                    raise FetchError("cannot read array (not all elements are available)")
                else:
                    (scalar, numpyType) = _numpyNativeTypeDictionary[nodeReadType]
                    nodeReader = _readNativeTypeScalarFunctionDictionary.get(nodeReadType)

            elif nodeClass == coda_special_class:
                nodeSpecialType = type_get_special_type(nodeType)
                (scalar, numpyType) = _numpySpecialTypeDictionary[nodeSpecialType]

            # for convenience, fetchShape is constructed in reverse order. however,
            # numpy's array creation functions expect a shape argument in regular
            # order.
            tmpShape = copy.copy(fetchShape)
            tmpShape.reverse()

            # instantiate the required array class.
            if scalar:
                array = numpy.empty(dtype=numpyType, shape=tmpShape)
            else:
                array = numpy.empty(dtype=object, shape=tmpShape)
            flat = array.flat  # optimization


        # when this point is reached, a result array has been allocated
        # and the flatArrayIter is set.
        # The required element will now be read, the iterator incremented and the
        # result stored.
        if intermediateNode:
            # an intermediate array was encountered.
            flat[i] = _fetch_intermediate_array(cursor, path, copiedPathIndex)
        else:
            # the end of the path was reached. from this point on,
            # the entire subtree is fetched.

            if nodeReader is not None:
                flat[i] = nodeReader(cursor)
            else:
                flat[i] = _fetch_subtree(cursor)  # TODO add type tree for leafs to type path

        # update fetchIndex and nextElementIndex.
        for j in range(0, len(fetchShape)):
            fetchIndex[j] += 1
            nextElementIndex += fetchStep[j]

            if fetchIndex[j] < fetchShape[j]:
                break

            fetchIndex[j] = 0
            nextElementIndex -= fetchStep[j + 1]

        for j in range(cursor_get_depth(cursor) - depth):
            if _goto_parent(cursor._x) != 0:  # optimized to avoid lookup, boilerplate call
                raise CodacError('coda_cursor_goto_parent')

    cursor_goto_parent(cursor)
    return array


def _fetch_object_array(cursor, type_tree=None):
    """
    _fetch_object_array() fetches arrays with a basetype that is not considered
    scalar.
    """

    arrayShape = cursor_get_array_dim(cursor)

    # handle a rank-0 array by converting it to
    # a 1-dimensional array of size 1.
    if len(arrayShape) == 0:
        arrayShape.append(1)

    # now create the (empty) array of the correct type and shape
    array = numpy.empty(dtype=object, shape=arrayShape)

    # goto the first element
    cursor_goto_first_array_element(cursor)

    # loop over all elements excluding the last one
    flat = array.flat
    arraySizeMinOne = array.size - 1
    for i in range(arraySizeMinOne):
        flat[i] = _fetch_subtree(cursor, type_tree)
        cursor_goto_next_array_element(cursor)

    # final element then back tp parent scope
    flat[arraySizeMinOne] = _fetch_subtree(cursor, type_tree)
    cursor_goto_parent(cursor)

    return array


CLASS_RECORD = 0
CLASS_ARRAY = 1
CLASS_SCALAR = 2
CLASS_SPECIAL = 3

ARRAY_OBJECT = 0
ARRAY_SCALAR = 1
ARRAY_SPECIAL = 2


def _fetch_subtree(cursor, type_tree=None):
    """
    _fetch_subtree() recursively fetches all data starting from a specified
    position. this function is commonly called when path traversal reaches the
    end of the path. from that point on _all_ data has to be fetched, i.e. no
    array slicing or fetching of single specified fields has to be performed.
    note: unavailable fields are skipped (i.e. not added to the Record instance),
    while hidden fields are only skipped if the filtering option is set to True.
    """

    if type_tree is None:
        type_tree = _determine_type_tree(cursor.coda_type)

    class_ = type_tree[0]

    if class_ == CLASS_SCALAR:
        return type_tree[1](cursor)

    elif class_ == CLASS_RECORD:
        fields = type_tree[1]
        fieldCount = len(fields)

        record = Record()

        # check for empty record.
        if fieldCount == 0:
            return record

        # read data.
        for i, field in enumerate(fields):
            # not hidden and available
            if field is not None and cursor.record_field_is_available(i):
                cursor_goto_record_field_by_index(cursor, i)

                name, type_ = field
                if type_[0] == CLASS_SCALAR:  # inline scalar case for performance
                    data = type_[1](cursor)
                else:
                    data = _fetch_subtree(cursor, type_)

                record._registerField(name, data)

                cursor_goto_parent(cursor)

        return record

    elif class_ == CLASS_ARRAY:
        # check for empty array.
        if cursor_get_num_elements(cursor) == 0:
            return None

        _, baseclass, extratype, subtype = type_tree

        if baseclass == ARRAY_OBJECT:
            # neither an array of arrays nor an array of records can be read directly.
            # therefore, the elements of the array are read one at a time and stored
            # in a numpy array.
            return _fetch_object_array(cursor, subtype)

        elif baseclass == ARRAY_SCALAR:
            return _readNativeTypeArrayFunctionDictionary[extratype](cursor)

        elif baseclass == ARRAY_SPECIAL:
            if extratype == coda_special_no_data:
                # this is a very weird special case that will probably never occur.
                # for consistency, an array with base type coda_special_no_data will
                # be returned as an array of the specified size filled with None.
                arrayShape = cursor_get_array_dim(cursor)

                # handle a rank-0 array by converting it to
                # a 1-dimensional array of size 1.
                if len(arrayShape) == 0:
                    arrayShape.append(1)

                return numpy.empty(None, shape=arrayShape)
            else:
                return _readSpecialTypeArrayFunctionDictionary[extratype](cursor)

    elif class_ == CLASS_SPECIAL:
        return type_tree[1](cursor)


def _determine_type_tree(nodeType):
    nodeClass = type_get_class(nodeType)

    if ((nodeClass == coda_integer_class) or (nodeClass == coda_real_class) or
            (nodeClass == coda_text_class) or (nodeClass == coda_raw_class)):
        nodeReadType = type_get_read_type(nodeType)
        reader = _readNativeTypeScalarFunctionDictionary[nodeReadType]
        tree = [CLASS_SCALAR, reader]

    elif nodeClass == coda_record_class:
        fields = []
        fieldCount = type_get_num_record_fields(nodeType)

        if fieldCount != 0:
            # determine field hidden status
            skipField = [False] * fieldCount
            for i in range(0, fieldCount):
                if _filterRecordFields:
                    skipField[i] = bool(type_get_record_field_hidden_status(nodeType, i))

            # field names (None means hidden)
            for i in range(0, fieldCount):
                if not skipField[i]:
                    fieldName = type_get_record_field_name(nodeType, i)
                    subtype = type_get_record_field_type(nodeType, i)
                    subtree = _determine_type_tree(subtype)
                    fields.append([fieldName, subtree])
                else:
                    fields.append(None)

        tree = [CLASS_RECORD, fields]

    elif (nodeClass == coda_array_class):
        # get base type information.
        arrayBaseType = type_get_array_base_type(nodeType)
        arrayBaseClass = type_get_class(arrayBaseType)

        if ((arrayBaseClass == coda_array_class) or (arrayBaseClass == coda_record_class)):
            baseclass = ARRAY_OBJECT
            extratype = None

        elif ((arrayBaseClass == coda_integer_class) or (arrayBaseClass == coda_real_class) or
              (arrayBaseClass == coda_text_class) or (arrayBaseClass == coda_raw_class)):
            baseclass = ARRAY_SCALAR
            extratype = type_get_read_type(arrayBaseType)

        elif arrayBaseClass == coda_special_class:
            baseclass = ARRAY_SPECIAL
            extratype = type_get_special_type(arrayBaseType)

        else:
            raise FetchError("array of unknown base type")

        subtree = _determine_type_tree(arrayBaseType)
        tree = [CLASS_ARRAY, baseclass, extratype, subtree]

    elif nodeClass == coda_special_class:
        nodeSpecialType = type_get_special_type(nodeType)
        reader = _readSpecialTypeScalarFunctionDictionary[nodeSpecialType]
        tree = [CLASS_SPECIAL, reader]

    else:
        raise FetchError("element of unknown type")

    return tree

#
# CODA LAYER I HIGH LEVEL API
#
def _get_cursor(start):
    """
    _get_cursor() takes a valid CODA product file handle _or_ a valid CODA
    cursor as input and returns a new cursor object.
    """

    if not isinstance(start, Cursor):
        # create a cursor
        cursor = Cursor()
        cursor_set_product(cursor, start)
        return cursor
    else:
        # copy the cursor passed in by the user
        return copy.deepcopy(start)


def get_attributes(start, *path):
    """
    Retrieve the attributes of the specified data item.

    This function returns a Record containing the attributes of the
    specified data item.

    The start argument must be a valid CODA file handle that was
    retrieved with coda.open() _or_ a valid CODA cursor. If the start
    argument is a cursor, then the specified path is traversed starting from
    the position represented by the cursor.

    More information can be found in the CODA Python documentation.
    """

    cursor = _get_cursor(start)

    (intermediateNode, _) = _traverse_path(cursor, path)
    if intermediateNode:
        # we encountered an array with variable (-1) indices.
        # this is only allowed when calling coda.fetch().
        raise ValueError("variable (-1) array indices are only allowed when calling coda.fetch()")

    cursor_goto_attributes(cursor)

    result = _fetch_subtree(cursor)

    del cursor
    return result


def get_description(start, *path):
    """
    Retrieve the description of a field.

    This function returns a string containing the description in the
    product format definition of the specified data item.

    The start argument must be a valid CODA file handle that was
    retrieved with coda.open() _or_ a valid CODA cursor. If the start
    argument is a cursor, then the specified path is traversed starting from
    the position represented by the cursor.

    More information can be found in the CODA Python documentation.
    """

    cursor = _get_cursor(start)

    (intermediateNode, _) = _traverse_path(cursor, path)
    if intermediateNode:
        # we encountered an array with variable (-1) indices.
        # this is only allowed when calling coda.fetch().
        raise ValueError("variable (-1) array indices are only allowed when calling coda.fetch()")

    nodeType = cursor_get_type(cursor)
    nodeDescription = type_get_description(nodeType)

    del cursor

    if nodeDescription is None:
        return ""
    else:
        return nodeDescription


def fetch(start, *path):
    """
    Retrieve data from a product file.

    Reads the specified data item from the product file. Instead
    of just reading individual values, like strings, integers, doubles,
    etc. it is also possible to read complete arrays or records of data.
    For instance if 'pf' is a product file handle obtained by calling
    coda.open(), then you can read the complete MPH of this product
    with:

    mph = coda.fetch(pf,'mph')

    which gives you a Record containing all the mph fields.

    It is also possible to read an entire product at once by leaving the
    data specification argument list empty (product = coda.fetch(pf)).

    The start argument must be a valid CODA file handle that was
    retrieved with coda.open(), a valid CODA cursor _or_ a product file
    path. If the start argument is a cursor, then the specified path is
    traversed starting from the position represented by the cursor.

    More information can be found in the CODA Python documentation.
    """

    product = None
    if _is_str(start):
        product = start = Product(start)
    cursor = _get_cursor(start)
    nodeType = cursor_get_type(cursor)

    # traverse the path
    (intermediateNode, pathIndex) = _traverse_path(cursor, path)

    try:
        if (intermediateNode):
            result = _fetch_intermediate_array(cursor, path, pathIndex)
        else:
            result = _fetch_subtree(cursor)
    finally:
        if product is not None:
            product.close()

    # clean up cursor
    del cursor
    return result


def get_field_available(start, *path):
    """
    Find out whether a dynamically available record field is available or not.

    This function returns True if the record field is available and False
    if it is not. The last item of the path argument should point to a
    record field. An empty path is considered an error, even if the start
    argument is a CODA cursor.

    The start argument must be a valid CODA file handle that was
    retrieved with coda.open() _or_ a valid CODA cursor. If the start
    argument is a cursor, then the specified path is traversed starting from
    the position represented by the cursor.

    More information can be found in the CODA Python documentation.
    """

    if len(path) == 0 or not isinstance(path[-1], str):
        raise ValueError("path argument should not be empty and should end with name of a record field")

    cursor = _get_cursor(start)

    # traverse up until the last node of the path.
    (intermediateNode, _) = _traverse_path(cursor, path[:-1])
    if intermediateNode:
        # we encountered an array with variable (-1) indices.
        # this is only allowed when calling coda.fetch().
        raise ValueError("variable (-1) array indices are only allowed when calling coda.fetch()")

    # get the field index.
    nodeType = cursor_get_type(cursor)
    fieldIndex = type_get_record_field_index_from_name(nodeType, path[-1])

    # get field availability.
    result = bool(cursor_get_record_field_available_status(cursor, fieldIndex))

    del cursor
    return result


def get_field_count(start, *path):
    """
    Retrieve the number of fields in a record.

    This function returns the number of fields in the Record instance
    that will be returned if coda.fetch() is called with the same
    arguments. The last node on the path should reference a record.

    The start argument must be a valid CODA file handle that was
    retrieved with coda.open() _or_ a valid CODA cursor. If the start
    argument is a cursor, then the specified path is traversed starting from
    the position represented by the cursor.

    More information can be found in the CODA Python documentation.
    """

    cursor = _get_cursor(start)

    (intermediateNode, _) = _traverse_path(cursor, path)
    if intermediateNode:
        # we encountered an array with variable (-1) indices.
        # this is only allowed when calling coda.fetch().
        raise ValueError("variable (-1) array indices are only allowed when calling coda.fetch()")

    nodeType = cursor_get_type(cursor)
    fieldCount = type_get_num_record_fields(nodeType)
    instanceFieldCount = fieldCount
    for i in range(0, fieldCount):
        if cursor_get_record_field_available_status(cursor, i) != 1:
            instanceFieldCount -= 1
            continue

        if _filterRecordFields and bool(type_get_record_field_hidden_status(nodeType, i)):
            instanceFieldCount -= 1

    del cursor
    return instanceFieldCount


def get_field_names(start, *path):
    """
    Retrieve the names of the fields in a record.

    This function returns the names of the fields of the Record instance
    that will be returned if coda.fetch() is called with the same
    arguments. The last node on the path should reference a record.

    The start argument must be a valid CODA file handle that was
    retrieved with coda.open() _or_ a valid CODA cursor. If the start
    argument is a cursor, then the specified path is traversed starting from
    the position represented by the cursor.

    More information can be found in the CODA Python documentation.
    """

    cursor = _get_cursor(start)

    (intermediateNode, _) = _traverse_path(cursor, path)
    if intermediateNode:
        # we encountered an array with variable (-1) indices.
        # this is only allowed when calling coda.fetch().
        raise ValueError("variable (-1) array indices are only allowed when calling coda.fetch()")

    nodeType = cursor_get_type(cursor)
    fieldCount = type_get_num_record_fields(nodeType)
    fieldNames = []
    for i in range(0, fieldCount):
        if cursor_get_record_field_available_status(cursor, i) != 1:
            continue

        if _filterRecordFields and bool(type_get_record_field_hidden_status(nodeType, i)):
            continue

        fieldNames.append(type_get_record_field_name(nodeType, i))

    del cursor
    return fieldNames


def get_size(start, *path):
    """
    Retrieve the dimensions of the specified array.

    This function returns the dimensions of the array that will be
    returned if coda.fetch() is called with the same arguments. Thus,
    you can check what the dimensions of an array are without having
    to retrieve the entire array with coda.fetch(). The last node on
    the path should reference an array.

    The start argument must be a valid CODA file handle that was
    retrieved with coda.open() _or_ a valid CODA cursor. If the start
    argument is a cursor, then the specified path is traversed starting from
    the position represented by the cursor.

    More information can be found in the CODA Python documentation.
    """

    cursor = _get_cursor(start)

    (intermediateNode, _) = _traverse_path(cursor, path)
    if intermediateNode:
        # we encountered an array with variable (-1) indices.
        # this is only allowed when calling coda.fetch().
        raise ValueError("variable (-1) array indices are only allowed when calling coda.fetch()")

    dims = cursor_get_array_dim(cursor)
    del cursor

    # accurately reflect how rank-0 arrays are handled.
    if dims == []:
        return [1]
    else:
        return dims


def time_to_string(times):
    """
    Convert a number of seconds since 2000-01-01 (TAI) to a human readable
    form.

    This function turns a double value specifying a number of seconds
    since 2000-01-01 into a string containing the date and time in a human
    readable form. For example:

    time_to_string(68260079.0)

    would return the string '2002-03-01 01:07:59.000000'.

    It is possible to input a list or tuple of doubles, in which case a
    list of strings will be returned.
    """

    if _isIterable(times):
        return [time_double_to_string(t, "yyyy-MM-dd HH:mm:ss.SSSSSS") for t in times]
    else:
        return time_double_to_string(times, "yyyy-MM-dd HH:mm:ss.SSSSSS")


def time_to_utcstring(times):
    """
    Convert a TAI number of seconds since 2000-01-01 (TAI) to a human readable
    form in UTC format.

    This function turns a double value specifying a number of TAI seconds
    since 2000-01-01 into a string containing the UTC date and time in a human
    readable form (using proper leap second correction in the conversion).
    For example:

    time_to_utcstring(68260111.0)

    would return the string '2002-03-01 01:07:59.000000'.

    It is possible to input a list or tuple of doubles, in which case a
    list of strings will be returned.
    """

    if _isIterable(times):
        return [time_double_to_string_utc(t, "yyyy-MM-dd HH:mm:ss.SSSSSS") for t in times]
    else:
        return time_double_to_string_utc(times, "yyyy-MM-dd HH:mm:ss.SSSSSS")


def get_unit(start, *path):
    """
    Retrieve unit information.

    This function returns a string containing the unit information
    which is stored in the product format definition for the specified data
    item.

    The start argument must be a valid CODA file handle that was
    retrieved with coda.open() _or_ a valid CODA cursor. If the start
    argument is a cursor, then the specified path is traversed starting from
    the position represented by the cursor.

    More information can be found in the CODA Python documentation.
    """

    cursor = _get_cursor(start)

    (intermediateNode, _) = _traverse_path(cursor, path)
    if intermediateNode:
        # we encountered an array with variable (-1) indices.
        # this is only allowed when calling coda.fetch().
        raise ValueError("variable (-1) array indices are only allowed when calling coda.fetch()")

    nodeType = cursor_get_type(cursor)
    del cursor

    return type_get_unit(nodeType)


# _filterRecordFields: if set to True, hidden record fields are ignored.
_filterRecordFields = True


def set_option_filter_record_fields(enable):
    global _filterRecordFields

    _filterRecordFields = bool(enable)


def get_option_filter_record_fields():
    return _filterRecordFields


def _init():
    """Initialize the CODA Python interface."""
    global _lib, _encoding, _goto_index, _goto_parent, _goto_next_elem
    # Initialize the CODA C library
    clib = _get_c_library_filename()
    _lib = _ffi.dlopen(clib)
    _goto_index = _lib.coda_cursor_goto_record_field_by_index
    _goto_parent = _lib.coda_cursor_goto_parent
    _goto_next_elem = _lib.coda_cursor_goto_next_array_element

    # Import constants
    for attrname in dir(_lib):
        attr = getattr(_lib, attrname)
        if isinstance(attr, int):
            globals()[attrname] = attr

    if os.getenv('CODA_DEFINITION') is None:
        # Set coda definition path relative to C library
        basename = os.path.basename(clib)
        if platform.system() == "Windows":
            dirname = None
        else:
            dirname = os.path.dirname(clib)
        relpath = "../share/coda/definitions"
        coda_set_definition_path_conditional(basename, dirname, relpath)

    # Set default encoding.
    _encoding = "ascii"

    init()


#
# Initialize the CODA Python interface.
#
_init()

#
# MODULE (PRIVATE) ATTRIBUTES
#

# dictionary (a.k.a. switch construct ;) for native type scalar read functions.
# scalars with type coda_native_type_bytes require extra code to find out their size, so this
# type is omitted here.
_readNativeTypeScalarFunctionDictionary = {
    coda_native_type_int8: cursor_read_int8,
    coda_native_type_uint8: cursor_read_uint8,
    coda_native_type_int16: cursor_read_int16,
    coda_native_type_uint16: cursor_read_uint16,
    coda_native_type_int32: cursor_read_int32,
    coda_native_type_uint32: cursor_read_uint32,
    coda_native_type_int64: cursor_read_int64,
    coda_native_type_uint64: cursor_read_uint64,
    coda_native_type_float: cursor_read_float,
    coda_native_type_double: cursor_read_double,
    coda_native_type_char: cursor_read_char,
    coda_native_type_string: cursor_read_string,
    coda_native_type_bytes: cursor_read_bytes
}

# dictionary (a.k.a. switch construct ;) for native type array read functions.
_readNativeTypeArrayFunctionDictionary = {
    coda_native_type_int8: cursor_read_int8_array,
    coda_native_type_uint8: cursor_read_uint8_array,
    coda_native_type_int16: cursor_read_int16_array,
    coda_native_type_uint16: cursor_read_uint16_array,
    coda_native_type_int32: cursor_read_int32_array,
    coda_native_type_uint32: cursor_read_uint32_array,
    coda_native_type_int64: cursor_read_int64_array,
    coda_native_type_uint64: cursor_read_uint64_array,
    coda_native_type_float: cursor_read_float_array,
    coda_native_type_double: cursor_read_double_array,
    coda_native_type_char: _fetch_object_array,
    coda_native_type_string: _fetch_object_array,
    coda_native_type_bytes: _fetch_object_array
}

# dictionary (a.k.a. switch construct ;) for native type partial array read functions.
_readNativeTypePartialArrayFunctionDictionary = {
    coda_native_type_int8: cursor_read_int8_partial_array,
    coda_native_type_uint8: cursor_read_uint8_partial_array,
    coda_native_type_int16: cursor_read_int16_partial_array,
    coda_native_type_uint16: cursor_read_uint16_partial_array,
    coda_native_type_int32: cursor_read_int32_partial_array,
    coda_native_type_uint32: cursor_read_uint32_partial_array,
    coda_native_type_int64: cursor_read_int64_partial_array,
    coda_native_type_uint64: cursor_read_uint64_partial_array,
    coda_native_type_float: cursor_read_float_partial_array,
    coda_native_type_double: cursor_read_double_partial_array,
}

# dictionary (a.k.a. switch construct ;) for special type scalar read functions.
_readSpecialTypeScalarFunctionDictionary = {
    coda_special_no_data: lambda x: None,
    coda_special_vsf_integer: cursor_read_double,
    coda_special_time: cursor_read_double,
    coda_special_complex: cursor_read_complex
}

# dictionary (a.k.a. switch construct ;) for special type array read functions.
# scalars with type coda_special_no_data is a special case that requires extra code, and
# is therefore omitted here.
_readSpecialTypeArrayFunctionDictionary = {
    coda_special_vsf_integer: cursor_read_double_array,
    coda_special_time: cursor_read_double_array,
    coda_special_complex: cursor_read_complex_array
}

# dictionary used as a 'typemap'. a tuple is returned, of which the first element is a
# boolean that indicates if the type is considered to be scalar. if so, the second
# element gives the numpy type that matches the specified CODA type. otherwise the second
# element is None.
_numpyNativeTypeDictionary = {
    coda_native_type_int8: (True, numpy.int8),
    coda_native_type_uint8: (True, numpy.uint8),
    coda_native_type_int16: (True, numpy.int16),
    coda_native_type_uint16: (True, numpy.uint16),
    coda_native_type_int32: (True, numpy.int32),
    coda_native_type_uint32: (True, numpy.uint32),
    coda_native_type_int64: (True, numpy.int64),
    coda_native_type_uint64: (True, numpy.uint64),
    coda_native_type_float: (True, numpy.float32),
    coda_native_type_double: (True, numpy.float64),
    coda_native_type_char: (False, None),
    coda_native_type_string: (False, None),
    coda_native_type_bytes: (False, None)
}


# dictionary used as a 'typemap'. a tuple is returned, of which the first element is a
# boolean that indicates if the type is considered to be scalar. if so, the second
# element gives the numpy type that matches the specified CODA type. otherwise the second
# element is None.
_numpySpecialTypeDictionary = {
    coda_special_no_data: (False, None),
    coda_special_vsf_integer: (True, numpy.float64),
    coda_special_time: (True, numpy.float64),
    coda_special_complex: (True, numpy.complex128)
}

# dictionary mapping coda class to Type subclass
_codaClassToTypeClass = {
    coda_integer_class: IntegerType,
    coda_real_class: RealType,
    coda_text_class: TextType,
    coda_raw_class: RawType,
    coda_array_class: ArrayType,
    coda_record_class: RecordType,
    coda_special_class: SpecialType,
}