1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
|
/*============================================================================
* Manage geometrical quantities needed in CDO schemes
*============================================================================*/
/*
This file is part of Code_Saturne, a general-purpose CFD tool.
Copyright (C) 1998-2016 EDF S.A.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*----------------------------------------------------------------------------*/
#include "cs_defs.h"
/*----------------------------------------------------------------------------
* Standard C library headers
*----------------------------------------------------------------------------*/
#include <limits.h>
#include <assert.h>
#include <float.h>
#include <math.h>
#include <string.h>
/*----------------------------------------------------------------------------
* Local headers
*----------------------------------------------------------------------------*/
#include <bft_mem.h>
#include <bft_printf.h>
#include "cs_math.h"
#include "cs_prototypes.h"
/*----------------------------------------------------------------------------
* Header for the current file
*----------------------------------------------------------------------------*/
#include "cs_cdo_quantities.h"
/*----------------------------------------------------------------------------*/
BEGIN_C_DECLS
/*=============================================================================
* Local Macro definitions
*============================================================================*/
#define CDO_QUANTITIES_DBG 0 /* Switch off/on debug information */
/* Redefined names of function from cs_math to get shorter names */
#define _n3 cs_math_3_norm
#define _dp3 cs_math_3_dot_product
/*=============================================================================
* Local structure definitions
*============================================================================*/
/* Temporary structures to build mesh quantities */
typedef struct {
int XYZ[3]; /* Direct permutation of the ref. axis such that nZ
is maximal */
cs_nvec3_t q; /* face surface and its unit normal */
double omega; /* P = Point belonging to the face omega = - < n, P> */
} _cdo_fspec_t;
typedef struct { /* Face sub-quantities */
double F1;
double Fa;
double Fb;
double Fc;
double Fa2;
double Fb2;
double Fc2;
} _cdo_fsubq_t;
typedef struct { /* These quantities are the integral of q on the plane
(alpha, beta) where the face is projected */
double p1; /* q = 1 */
double pa; /* q = alpha */
double pb; /* q = beta */
double pc; /* q = gamma */
double pab; /* q = alpha * beta */
double pa2; /* q = alpha^2 */
double pb2; /* q = beta^2 */
} _cdo_projq_t;
/*============================================================================
* Static global variables
*============================================================================*/
static const double one_12 = 1/12.;
static const double one_24 = 1/24.;
/*============================================================================
* Private function prototypes
*============================================================================*/
/*----------------------------------------------------------------------------
* Several private functions for volume and centroid computation
* ---------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
* Define an unitary normal to the current face
* Compute omega = - <n, P> where P belongs to the face
* Choose projection axis in order to maximize the projected area
* Define a direct basis (alpha, beta, gamma) with this choice
* ---------------------------------------------------------------------------*/
static _cdo_fspec_t
_get_fspec(cs_lnum_t f_id,
const cs_mesh_t *m,
const cs_mesh_quantities_t *mq)
{
cs_lnum_t f, j, k, v, e, s;
double inv_n, nx, ny, nz;
double P[3]; /* Point belonging to the current face */
_cdo_fspec_t fspec;
const int X = 0, Y = 1, Z = 2;
/* Treatment according to the kind of face (interior or border) */
if (f_id < m->n_i_faces) { /* Interior face */
/* Choose a vertex belonging to this face */
f = f_id;
s = m->i_face_vtx_idx[f];
e = m->i_face_vtx_idx[f+1];
inv_n = 1.0 / (e - s);
for (k = 0; k < 3; k++)
P[k] = 0.0;
for (j = s; j < e; j++) {
v = m->i_face_vtx_lst[j];
for (k = 0; k < 3; k++)
P[k] += m->vtx_coord[3*v+k];
}
for (k = 0; k < 3; k++)
P[k] *= inv_n;
cs_nvec3(&(mq->i_face_normal[3*f]), &(fspec.q));
}
else { /* Border face */
/* Choose a vertex belonging to this face */
f = f_id - m->n_i_faces;
s = m->b_face_vtx_idx[f];
e = m->b_face_vtx_idx[f+1];
inv_n = 1.0 / (e - s);
for (k = 0; k < 3; k++)
P[k] = 0.0;
for (j = s; j < e; j++) {
v = m->b_face_vtx_lst[j];
for (k = 0; k < 3; k++)
P[k] += m->vtx_coord[3*v+k];
}
for (k = 0; k < 3; k++)
P[k] *= inv_n;
cs_nvec3(&(mq->b_face_normal[3*f]), &(fspec.q));
}
/* Define omega = -<n,P>*/
fspec.omega = - _dp3(P, fspec.q.unitv);
/* Define a direct basis such that n[Z] maximal */
nx = fabs(fspec.q.unitv[X]);
ny = fabs(fspec.q.unitv[Y]);
nz = fabs(fspec.q.unitv[Z]);
if (nx > ny && nx > nz)
fspec.XYZ[Z] = X;
else
fspec.XYZ[Z] = (ny > nz) ? Y : Z;
fspec.XYZ[X] = (fspec.XYZ[Z] + 1) % 3;
fspec.XYZ[Y] = (fspec.XYZ[X] + 1) % 3;
#if CDO_QUANTITIES_DBG > 1
printf("\n F: (%d, %d) >> surf: %e; omega: %e; XYZ: %d%d%d; [%e, %e, %e]\n",
f_id, f, fspec.q.meas, fspec.omega,
fspec.XYZ[0], fspec.XYZ[1], fspec.XYZ[2],
fspec.q.unitv[0], fspec.q.unitv[1], fspec.q.unitv[2]);
#endif
return fspec;
}
/* ---------------------------------------------------------------------------*
* Compute projected integrals and quantities
* ---------------------------------------------------------------------------*/
static _cdo_projq_t
_get_proj_quantities(cs_lnum_t f_id,
const cs_cdo_connect_t *connect,
const cs_real_t coords[],
const int axis[])
{
cs_lnum_t v_id[2];
cs_real_t a[2], b[2], a2[2], b2[2];
const cs_sla_matrix_t *f2e = connect->f2e;
const cs_sla_matrix_t *e2v = connect->e2v;
/* Initialize structure */
_cdo_projq_t projq;
/* These quantities are the integral of q on the plane
(alpha, beta) where the face is projected */
projq.p1 = projq.pa = projq.pb = projq.pc = 0.0;
projq.pab = projq.pa2 = projq.pb2 = 0.0;
/* Scan edges which belong to the current face */
for (cs_lnum_t i = f2e->idx[f_id]; i < f2e->idx[f_id+1]; i++) {
short int e_sgn = f2e->sgn[i];
cs_lnum_t e_id = f2e->col_id[i];
cs_lnum_t s = e2v->idx[e_id];
if (e_sgn > 0)
v_id[0] = e2v->col_id[s], v_id[1] = e2v->col_id[s+1];
else
v_id[0] = e2v->col_id[s+1], v_id[1] = e2v->col_id[s];
/* Vertices in the plane (alpha, beta) */
for (int k = 0; k < 2; k++) {
a[k] = coords[3*v_id[k] + axis[0]];
a2[k] = a[k]*a[k];
b[k] = coords[3*v_id[k] + axis[1]];
b2[k] = b[k]*b[k];
}
/* Related variables */
cs_real_t a0_3 = a2[0] * a[0];
cs_real_t b0_3 = b2[0] * b[0];
cs_real_t da = a[1] - a[0], db = b[1] - b[0];
cs_real_t C1 = a[0] + a[1];
cs_real_t Ca = C1 * a[1] + a2[0];
cs_real_t Cb = b2[1] + b[1]*b[0] + b2[0];
cs_real_t Ca2 = a[1] * Ca + a0_3;
cs_real_t Cb2 = b[1] * Cb + b0_3;
cs_real_t Cab = 3*a2[1] + 2*a[1]*a[0] + a2[0];
cs_real_t Kab = a2[1] + 2*a[1]*a[0] + 3*a2[0];
projq.p1 += db * C1;
projq.pa += db * Ca;
projq.pb += da * Cb;
projq.pa2 += db * Ca2;
projq.pb2 += da * Cb2;
projq.pab += db * (b[1] * Cab + b[0] * Kab);
} /* Loop on face edges */
projq.p1 *= 0.5;
projq.pa *= cs_math_onesix;
projq.pb *= -cs_math_onesix;
projq.pab *= one_24;
projq.pa2 *= one_12;
projq.pb2 *= -one_12;
return projq;
}
/* ---------------------------------------------------------------------------*/
static _cdo_fsubq_t
_get_fsub_quantities(cs_lnum_t f_id,
const cs_cdo_connect_t *connect,
const cs_real_t *coord,
_cdo_fspec_t fspec)
{
_cdo_fsubq_t fsubq;
double na = fspec.q.unitv[fspec.XYZ[0]];
double nb = fspec.q.unitv[fspec.XYZ[1]];
double nc = fspec.q.unitv[fspec.XYZ[2]];
double k1 = 1./nc;
double k2 = k1 * k1;
double k3 = k2 * k1;
/* Compute projected quantities */
_cdo_projq_t projq = _get_proj_quantities(f_id, connect, coord, fspec.XYZ);
#if CDO_QUANTITIES_DBG > 1
printf(" F: %d >> p1: %.4e, pa: %.4e, pb: %.4e, pc: %.4e,"
" pab: %.4e, pa2: %.4e, pb2: %.4e\n",
f_id, projq.p1, projq.pa, projq.pb, projq.pc,
projq.pab, projq.pa2, projq.pb2);
#endif
/* Compute face sub-quantities */
fsubq.F1 = k1*projq.p1;
fsubq.Fa = k1 * projq.pa;
fsubq.Fb = k1 * projq.pb;
fsubq.Fc = -k2 * (projq.pa * na + projq.pb * nb + fspec.omega * projq.p1);
fsubq.Fa2 = k1 * projq.pa2;
fsubq.Fb2 = k1 * projq.pb2;
fsubq.Fc2 = k3 * (na*na * projq.pa2 + 2*na*nb * projq.pab +
nb*nb * projq.pb2 +
fspec.omega * (2*na * projq.pa +
2*nb * projq.pb +
fspec.omega * projq.p1));
return fsubq;
}
/*----------------------------------------------------------------------------
* Build edge centers and edge vectors
* ---------------------------------------------------------------------------*/
static void
_compute_edge_quantities(const cs_mesh_t *mesh,
const cs_cdo_connect_t *topo,
cs_cdo_quantities_t *iq) /* In/out */
{
int i, j, k;
int v_id[2];
double xaxb[3];
double xva, xvb, len, invlen;
cs_quant_t eq;
const int n_edges = iq->n_edges;
/* Sanity check */
assert(topo->e2v != NULL);
/* Build edge centers and edge vectors */
BFT_MALLOC(iq->edge, n_edges, cs_quant_t);
for (i = 0; i < n_edges; i++) {
/* Get the two vertex ids related to the current edge */
for (j = topo->e2v->idx[i], k = 0; j < topo->e2v->idx[i+1]; j++, k++)
v_id[k] = topo->e2v->col_id[j];
assert(k == 2);
for (k = 0; k < 3; k++) {
xva = mesh->vtx_coord[3*v_id[0]+k];
xvb = mesh->vtx_coord[3*v_id[1]+k];
xaxb[k] = xvb - xva;
eq.center[k] = 0.5 * ( xva + xvb );
}
len = _n3(xaxb);
assert(len > 0);
invlen = 1/len;
eq.meas = len;
if (v_id[1] > v_id[0]) /* vb > va */
for (k = 0; k < 3; k++)
eq.unitv[k] = invlen * xaxb[k];
else /* Change orientation */
for (k = 0; k < 3; k++)
eq.unitv[k] = -invlen * xaxb[k];
iq->edge[i] = eq;
} /* End of loop on edges */
}
/*----------------------------------------------------------------------------
* Compute dual cell volumes related to primal vertices
* Storage based on c2v connectivity
* ---------------------------------------------------------------------------*/
static void
_compute_dcell_quantities(const cs_cdo_connect_t *topo,
cs_cdo_quantities_t *quant) /* In/out */
{
const cs_mesh_t *m = cs_glob_mesh;
const cs_connect_index_t *c2v = topo->c2v;
const cs_sla_matrix_t *c2f = topo->c2f;
const cs_sla_matrix_t *f2e = topo->f2e;
/* Compute part of dual volume related to each primal cell */
const cs_lnum_t c2v_idx_size = c2v->idx[quant->n_cells];
BFT_MALLOC(quant->dcell_vol, c2v_idx_size, double);
# pragma omp parallel for if (c2v_idx_size > CS_THR_MIN)
for (cs_lnum_t i = 0; i < c2v_idx_size; i++)
quant->dcell_vol[i] = 0.0;
/* Link between the mesh numbering and the cellwise numbering */
short int *vtag = NULL;
BFT_MALLOC(vtag, quant->n_vertices, short int);
# pragma omp parallel for if (quant->n_vertices > CS_THR_MIN)
for (cs_lnum_t i = 0; i < quant->n_vertices; i++)
vtag[i] = 0;
for (cs_lnum_t c_id = 0; c_id < quant->n_cells; c_id++) {
const cs_real_t *xc = quant->cell_centers + 3*c_id;
double *v_vol = quant->dcell_vol + c2v->idx[c_id];
/* Define vtag */
for (cs_lnum_t i = c2v->idx[c_id], ii = 0; i < c2v->idx[c_id+1]; i++, ii++)
vtag[c2v->ids[i]] = ii;
for (cs_lnum_t jf = c2f->idx[c_id]; jf < c2f->idx[c_id+1]; jf++) {
const cs_lnum_t f_id = topo->c2f->col_id[jf];
const cs_quant_t pfq = quant->face[f_id];
for (cs_lnum_t je = f2e->idx[f_id]; je < f2e->idx[f_id+1]; je++) {
const cs_lnum_t e_id = f2e->col_id[je];
const cs_lnum_t eshft = 2*e_id;
const cs_lnum_t v1_id = topo->e2v->col_id[eshft];
const cs_lnum_t v2_id = topo->e2v->col_id[eshft+1];
const double pvol = 0.5 * cs_math_voltet(m->vtx_coord + 3*v1_id,
m->vtx_coord + 3*v2_id,
pfq.center,
xc);
v_vol[vtag[v1_id]] += pvol;
v_vol[vtag[v2_id]] += pvol;
} // Loop on face edges
} // Loop on cell faces
} // Loop on cells
/* Free buffer */
BFT_FREE(vtag);
}
/*----------------------------------------------------------------------------
* Compute dual face normals (face crossed by primal edges).
* Given a cell and an edge, there are two faces attached to the
* couple (cell, edge)
* The triplet (edge, face, cell) induces an elementary triangle s(e,f,c)
* The dual face is the union of these two triangles.
* Storage based on c2e connectivity
* ---------------------------------------------------------------------------*/
static void
_compute_dface_quantities(const cs_cdo_connect_t *topo,
cs_cdo_quantities_t *iq) /* In/out */
{
cs_lnum_t c_id, i, j, k, size, shift, parent;
cs_nvec3_t nvec;
cs_real_3_t trinorm, xexf, xexc;
cs_lnum_t *tag_shift = NULL;
/* Sanity check */
assert(topo->e2f != NULL);
assert(topo->f2c != NULL);
assert(topo->c2e != NULL);
const cs_connect_index_t *c2e = topo->c2e;
/* Allocate and initialize arrays */
size = c2e->idx[iq->n_cells];
BFT_MALLOC(iq->dface, size, cs_dface_t);
BFT_MALLOC(tag_shift, iq->n_edges, cs_lnum_t);
for (i = 0; i < iq->n_edges; i++)
tag_shift[i] = 0;
for (c_id = 0; c_id < iq->n_cells; c_id++) {
/* Tag cell edges */
for (i = c2e->idx[c_id]; i < c2e->idx[c_id+1]; i++)
tag_shift[c2e->ids[i]] = i+1;
/* Get cell center */
const cs_real_t *xc = iq->cell_centers + 3*c_id;
for (i = topo->c2f->idx[c_id]; i < topo->c2f->idx[c_id+1]; i++) {
const cs_lnum_t f_id = topo->c2f->col_id[i];
const cs_quant_t f_q = iq->face[f_id]; /* Face quantities */
for (j = topo->f2e->idx[f_id]; j < topo->f2e->idx[f_id+1]; j++) {
const cs_lnum_t e_id = topo->f2e->col_id[j];
const cs_quant_t e_q = iq->edge[e_id]; /* Edge quantities */
/* Compute the vectorial area for the triangle : xc, xf, xe */
for (k = 0; k < 3; k++) {
xexf[k] = f_q.center[k] - e_q.center[k];
xexc[k] = xc[k] - e_q.center[k];
}
cs_math_3_cross_product(xexf, xexc, trinorm);
cs_nvec3(trinorm, &nvec);
/* One should have (trinorm, te) > 0 */
const double orient = _dp3(nvec.unitv, e_q.unitv);
assert(fabs(orient) > 0);
if (tag_shift[e_id] > 0) /* First time */
shift = tag_shift[e_id]-1, tag_shift[e_id] *= -1, parent = 0;
else /* Second time (<0) */
tag_shift[e_id] *= -1, shift = tag_shift[e_id]-1, parent = 1;
/* Store the computed data */
iq->dface[shift].parent_id[parent] = f_id;
iq->dface[shift].sface[parent].meas = 0.5*nvec.meas;
if (orient < 0)
for (k = 0; k < 3; k++)
iq->dface[shift].sface[parent].unitv[k] = -nvec.unitv[k];
else
for (k = 0; k < 3; k++)
iq->dface[shift].sface[parent].unitv[k] = nvec.unitv[k];
} /* Loop on face edges */
} /* Loop on cell faces */
} /* Loop on cells */
BFT_FREE(tag_shift);
/* Compute the dual face normal from the two elementary contributions */
for (c_id = 0; c_id < iq->n_cells; c_id++) {
for (i = c2e->idx[c_id]; i < c2e->idx[c_id+1]; i++) {
cs_nvec3_t t1 = iq->dface[i].sface[0];
cs_nvec3_t t2 = iq->dface[i].sface[1];
for (k = 0; k < 3; k++)
iq->dface[i].vect[k] = t1.meas*t1.unitv[k] + t2.meas*t2.unitv[k];
}
} /* End of loop on cells */
}
/*----------------------------------------------------------------------------
* Define the cs_quant_info_t structures related to cells, faces and edges
* ---------------------------------------------------------------------------*/
static void
_compute_quant_info(cs_cdo_quantities_t *quant) /* In/out */
{
assert(quant != NULL); // Sanity check
/* Cell info (set default values) */
quant->cell_info.min_id = quant->cell_info.max_id = -1;
quant->cell_info.h_min = quant->cell_info.meas_min = DBL_MAX;
quant->cell_info.h_max = quant->cell_info.meas_max = -DBL_MAX;
for (cs_lnum_t c_id = 0; c_id < quant->n_cells; c_id++) {
const double meas = quant->cell_vol[c_id];
if (meas > quant->cell_info.meas_max) {
quant->cell_info.meas_max = meas;
quant->cell_info.h_max = pow(meas, cs_math_onethird);
quant->cell_info.max_id = c_id;
}
if (meas < quant->cell_info.meas_min) {
quant->cell_info.meas_min = meas;
quant->cell_info.h_min = pow(meas, cs_math_onethird);
quant->cell_info.min_id = c_id;
}
} // Loop on cells
/* Face info (set default values) */
quant->face_info.min_id = quant->face_info.max_id = -1;
quant->face_info.h_min = quant->face_info.meas_min = DBL_MAX;
quant->face_info.h_max = quant->face_info.meas_max = -DBL_MAX;
for (cs_lnum_t f_id = 0; f_id < quant->n_faces; f_id++) {
const double meas = quant->face[f_id].meas;
if (meas > quant->face_info.meas_max) {
quant->face_info.meas_max = meas;
quant->face_info.h_max = sqrt(meas);
quant->face_info.max_id = f_id;
}
if (meas < quant->face_info.meas_min) {
quant->face_info.meas_min = meas;
quant->face_info.h_min = sqrt(meas);
quant->face_info.min_id = f_id;
}
} // Loop on faces
/* Edge info (set default values) */
quant->edge_info.min_id = quant->edge_info.max_id = -1;
quant->edge_info.h_min = quant->edge_info.meas_min = DBL_MAX;
quant->edge_info.h_max = quant->edge_info.meas_max = -DBL_MAX;
for (cs_lnum_t e_id = 0; e_id < quant->n_edges; e_id++) {
const double meas = quant->edge[e_id].meas;
if (meas > quant->edge_info.meas_max) {
quant->edge_info.meas_max = meas;
quant->edge_info.h_max = meas;
quant->edge_info.max_id = e_id;
}
if (meas < quant->edge_info.meas_min) {
quant->edge_info.meas_min = meas;
quant->edge_info.h_min = meas;
quant->edge_info.min_id = e_id;
}
} // Loop on edges
}
/*----------------------------------------------------------------------------
Algorithm for computing mesh quantities : copy data from Saturne structure
----------------------------------------------------------------------------*/
static void
_saturn_algorithm(const cs_mesh_t *mesh,
const cs_mesh_quantities_t *mq,
cs_cdo_quantities_t *cdoq) /* In/out */
{
const cs_lnum_t n_cells = mesh->n_cells;
const cs_lnum_t n_i_faces = mesh->n_i_faces;
const cs_lnum_t n_b_faces = mesh->n_b_faces;
const cs_lnum_t n_faces = n_i_faces + n_b_faces;
assert(mq != NULL);
BFT_MALLOC(cdoq->face, n_faces, cs_quant_t);
BFT_MALLOC(cdoq->cell_centers, 3*n_cells, cs_real_t);
BFT_MALLOC(cdoq->cell_vol, n_cells, cs_real_t);
/* Copy cell volumes and compute vol_tot */
memcpy(cdoq->cell_centers, mq->cell_cen, 3*n_cells*sizeof(cs_real_t));
memcpy(cdoq->cell_vol, mq->cell_vol, n_cells*sizeof(cs_real_t));
cdoq->vol_tot = 0.0;
for (cs_lnum_t i = 0; i < n_cells; i++)
cdoq->vol_tot += mq->cell_vol[i];
/* Concatenate face centers for interior and border faces */
# pragma omp parallel for if (n_i_faces > CS_THR_MIN)
for (cs_lnum_t f_id = 0; f_id < n_i_faces; f_id++)
for (int k = 0; k < 3; k++)
cdoq->face[f_id].center[k] = mq->i_face_cog[3*f_id+k];
for (cs_lnum_t j = 0, f_id = n_i_faces; j < n_b_faces; j++, f_id++) {
for (int k = 0; k < 3; k++)
cdoq->face[f_id].center[k] = mq->b_face_cog[3*j+k];
}
}
/*----------------------------------------------------------------------------
Algorithm for computing mesh quantities : cell centers are computed as the
vertex average over cell vertices. Other quantities are copied from those
computed by Code_Saturne (default algorithm)
----------------------------------------------------------------------------*/
static void
_vtx_algorithm(const cs_mesh_t *mesh,
const cs_mesh_quantities_t *mq,
const cs_cdo_connect_t *connect,
cs_cdo_quantities_t *quant) /* In/out */
{
const cs_lnum_t n_cells = mesh->n_cells;
const cs_lnum_t n_i_faces = mesh->n_i_faces;
const cs_lnum_t n_b_faces = mesh->n_b_faces;
const cs_lnum_t n_faces = n_i_faces + n_b_faces;
const cs_connect_index_t *c2v = connect->c2v;
assert(mq != NULL);
BFT_MALLOC(quant->face, n_faces, cs_quant_t);
BFT_MALLOC(quant->cell_centers, 3*n_cells, cs_real_t);
BFT_MALLOC(quant->cell_vol, n_cells, cs_real_t);
/* Copy cell volumes and compute vol_tot */
memcpy(quant->cell_vol, mq->cell_vol, n_cells*sizeof(cs_real_t));
quant->vol_tot = 0.0;
for (cs_lnum_t i = 0; i < n_cells; i++)
quant->vol_tot += mq->cell_vol[i];
/* Concatenate face centers for interior and border faces */
# pragma omp parallel for if (n_i_faces > CS_THR_MIN)
for (cs_lnum_t f_id = 0; f_id < n_i_faces; f_id++)
for (int k = 0; k < 3; k++)
quant->face[f_id].center[k] = mq->i_face_cog[3*f_id+k];
for (cs_lnum_t j = 0, f_id = n_i_faces; j < n_b_faces; j++, f_id++)
for (int k = 0; k < 3; k++)
quant->face[f_id].center[k] = mq->b_face_cog[3*j+k];
/* Compute cell centers */
for (cs_lnum_t c_id = 0; c_id < n_cells; c_id++) {
const cs_lnum_t vs = c2v->idx[c_id];
const cs_lnum_t ve = c2v->idx[c_id+1];
/* Sanity checks */
assert(ve - vs > 0);
assert(ve - vs < SHRT_MAX);
const double coef = 1./(ve-vs);
double *xc = quant->cell_centers + 3*c_id;
xc[0] = xc[1] = xc[2] = 0;
for (cs_lnum_t jv = vs; jv < ve; jv++) {
const cs_real_t *xv = mesh->vtx_coord + 3*c2v->ids[jv];
xc[0] += coef * xv[0];
xc[1] += coef * xv[1];
xc[2] += coef * xv[2];
} // Loop on cell vertices
} // Loop on cells
}
/*----------------------------------------------------------------------------
* Algorithm for computing cell barycenters inspired from the article
* "Fast and accurate computation of polyhedral mass properties"
* Journal of Graphics, 1997 by Brian Mirtich
*
* Compute also : face centers, cell volumes.
* ---------------------------------------------------------------------------*/
static void
_mirtich_algorithm(const cs_mesh_t *mesh,
const cs_mesh_quantities_t *mq,
const cs_cdo_connect_t *connect,
cs_cdo_quantities_t *quant) /* In/out */
{
cs_lnum_t i, k, c_id, f_id, A, B, C, sgn;
double Fvol, inv_surf;
_cdo_fspec_t fspec;
_cdo_fsubq_t fsubq;
const int X = 0, Y = 1, Z = 2;
const cs_lnum_t n_cells = mesh->n_cells;
const cs_lnum_t n_faces = quant->n_faces;
/* Sanity check */
assert(connect->f2c != NULL);
assert(connect->c2f != NULL);
/* Allocate and initialize cell quantities */
BFT_MALLOC(quant->face, n_faces, cs_quant_t);
BFT_MALLOC(quant->cell_centers, 3*n_cells, cs_real_t);
BFT_MALLOC(quant->cell_vol, n_cells, cs_real_t);
for (i = 0; i < n_cells; i++) {
quant->cell_vol[i] = 0.0;
for (k = 0; k < 3; k++)
quant->cell_centers[3*i+k] = 0.0;
}
for (f_id = 0; f_id < n_faces; f_id++) { /* Loop on faces */
/* Choose gamma to maximize normal according gamma (x, y, or z)
Define a direct basis (alpha, beta, gamma) with this choice
Compute omega = - <n, P> where P belongs to the face */
fspec = _get_fspec(f_id, mesh, mq);
A = fspec.XYZ[X];
B = fspec.XYZ[Y];
C = fspec.XYZ[Z];
fsubq = _get_fsub_quantities(f_id, connect, mesh->vtx_coord, fspec);
inv_surf = 1.0/fsubq.F1;
quant->face[f_id].center[A] = inv_surf * fsubq.Fa;
quant->face[f_id].center[B] = inv_surf * fsubq.Fb;
quant->face[f_id].center[C] = inv_surf * fsubq.Fc;
/* Update cell quantities */
for (i = connect->f2c->idx[f_id]; i < connect->f2c->idx[f_id+1]; i++) {
c_id = connect->f2c->col_id[i];
sgn = connect->f2c->sgn[i];
Fvol = ( (fspec.XYZ[X] == 0) ? fsubq.Fa :
( (fspec.XYZ[Y] == 0) ? fsubq.Fb : fsubq.Fc) );
quant->cell_vol[c_id] += sgn * fspec.q.unitv[0] * Fvol;
quant->cell_centers[3*c_id + A] += sgn * fspec.q.unitv[A] * fsubq.Fa2;
quant->cell_centers[3*c_id + B] += sgn * fspec.q.unitv[B] * fsubq.Fb2;
quant->cell_centers[3*c_id + C] += sgn * fspec.q.unitv[C] * fsubq.Fc2;
} /* End of loop on cell faces */
} /* End of loop on faces */
/* Compute cell center of gravity and total volume */
quant->vol_tot = 0.0;
for (i = 0; i < n_cells; i++) {
double inv_vol2 = 0.5 / quant->cell_vol[i];
quant->vol_tot += quant->cell_vol[i];
for (k = 0; k < 3; k++)
quant->cell_centers[3*i+k] *= inv_vol2;
#if CDO_QUANTITIES_DBG > 1
printf("\n (%4d) volINNOV: % -12.5e | volSAT % -12.5e | %-12.5e\n",
i+1, quant->cell_vol[i], mq->cell_vol[i],
fabs(quant->cell_vol[i] - mq->cell_vol[i]));
printf(" INNOVccog (% -.4e, % -.4e, % -.4e)",
quant->cell_centers[3*i], quant->cell_centers[3*i+1],
quant->cell_centers[3*i+2]);
printf(" SATccog (% -.4e, % -.4e, % -.4e) Delta (% -.4e, % -.4e, % -.4e)\n",
mq->cell_cen[3*i],mq->cell_cen[3*i+1],mq->cell_cen[3*i+2],
fabs(quant->cell_centers[3*i]-mq->cell_cen[3*i]),
fabs(quant->cell_centers[3*i+1]-mq->cell_cen[3*i+1]),
fabs(quant->cell_centers[3*i+2]-mq->cell_cen[3*i+2]));
#endif
}
}
/*============================================================================
* Public function prototypes
*============================================================================*/
/*----------------------------------------------------------------------------*/
/*!
* \brief Build a cs_cdo_quantities_t structure
*
* \param[in] m pointer to a cs_mesh_t structure
* \param[in] mq pointer to a cs_mesh_quantities_t structure
* \param[in] topo pointer to a cs_cdo_connect_t structure
*
* \return a new allocated pointer to a cs_cdo_quantities_t structure
*/
/*----------------------------------------------------------------------------*/
cs_cdo_quantities_t *
cs_cdo_quantities_build(const cs_mesh_t *m,
const cs_mesh_quantities_t *mq,
const cs_cdo_connect_t *topo)
{
cs_cdo_quantities_t *cdoq = NULL;
cs_cdo_cc_algo_t cc_algo = CS_CDO_CC_SATURNE; // default value
/* Sanity check */
assert(topo != NULL);
assert(topo->c2f != NULL);
/* Build cs_cdo_quantities_t structure */
BFT_MALLOC(cdoq, 1, cs_cdo_quantities_t);
cdoq->n_cells = m->n_cells;
cdoq->n_i_faces = m->n_i_faces;
cdoq->n_b_faces = m->n_b_faces;
cdoq->n_faces = m->n_i_faces + m->n_b_faces;
cdoq->n_vertices = m->n_vertices;
cdoq->vtx_coord = m->vtx_coord;
if (topo->e2v != NULL)
cdoq->n_edges = topo->e2v->n_rows;
else /* Not used by the numerical scheme */
cdoq->n_edges = -1;
/* Initialize quantities not used by all schemes */
cdoq->edge = NULL;
cdoq->dcell_vol = NULL;
cdoq->dface = NULL;
cdoq->dedge = NULL;
/* User can modify the default value */
cc_algo = cs_user_cdo_geometric_settings();
switch (cc_algo) { /* Compute face/cell centers and cell volumes */
case CS_CDO_CC_BARYC:
bft_printf(" -cdo- Cell.Center.Algo >> Mirtich\n");
/* Compute (real) barycentric centers, face centers and cell volumes */
_mirtich_algorithm(m, mq, topo, cdoq);
break;
case CS_CDO_CC_MEANV:
bft_printf(" -cdo- Cell.Center.Algo >> Vertices.MeanValue\n");
/* Compute cell centers, face centers and cell volumes and total volume */
_vtx_algorithm(m, mq, topo, cdoq);
break;
case CS_CDO_CC_SATURNE:
bft_printf(" -cdo- Cell.Center.Algo >> Original\n");
_saturn_algorithm(m, mq, cdoq);
break;
default:
bft_error(__FILE__, __LINE__, 0,
_("Unkwown algorithm for cell center computation\n"));
} /* switch cc_algo */
/* Finalize definition of cs_quant_t struct. for faces.
Define face normal with unitary norm and face area */
# pragma omp parallel for if (m->n_i_faces > CS_THR_MIN)
for (cs_lnum_t f_id = 0; f_id < m->n_i_faces; f_id++) {
cs_nvec3_t v;
cs_nvec3((mq->i_face_normal + 3*f_id), &v);
cdoq->face[f_id].meas = v.meas;
for (int k = 0; k < 3; k++)
cdoq->face[f_id].unitv[k] = v.unitv[k];
}
for (cs_lnum_t i = 0, f_id = m->n_i_faces; i < m->n_b_faces; i++, f_id++) {
cs_nvec3_t v;
cs_nvec3((mq->b_face_normal + 3*i), &v);
cdoq->face[f_id].meas = v.meas;
for (int k = 0; k < 3; k++)
cdoq->face[f_id].unitv[k] = v.unitv[k];
}
/* Compute dual edge quantities */
const cs_lnum_t idx_size = topo->c2f->idx[cdoq->n_cells];
const cs_sla_matrix_t *c2f = topo->c2f;
BFT_MALLOC(cdoq->dedge, idx_size, cs_nvec3_t);
# pragma omp parallel for if (cdoq->n_cells > CS_THR_MIN)
for (cs_lnum_t c_id = 0; c_id < cdoq->n_cells; c_id++) {
cs_real_t *xc = cdoq->cell_centers + 3*c_id;
for (cs_lnum_t i = c2f->idx[c_id]; i < c2f->idx[c_id+1]; i++) {
cs_lnum_t f_id = c2f->col_id[i];
short int sgn = c2f->sgn[i];
cs_math_3_length_unitv(xc, cdoq->face[f_id].center,
&(cdoq->dedge[i].meas),
cdoq->dedge[i].unitv);
for (int k = 0; k < 3; k++)
cdoq->dedge[i].unitv[k] *= sgn;
} // Loop on cell faces
} /* End of loop on cells */
/* Compute edge quantities if needed */
if (cdoq->n_edges > 0) {
_compute_edge_quantities(m, topo, cdoq);
_compute_dface_quantities(topo, cdoq);
}
_compute_dcell_quantities(topo, cdoq);
/* Define cs_quant_info_t structure */
_compute_quant_info(cdoq);
return cdoq;
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Destroy a cs_cdo_quantities_t structure
*
* \param[in] q pointer to the cs_cdo_quantities_t struct. to free
*
* \return a NULL pointer
*/
/*----------------------------------------------------------------------------*/
cs_cdo_quantities_t *
cs_cdo_quantities_free(cs_cdo_quantities_t *q)
{
if (q == NULL)
return q;
BFT_FREE(q->cell_centers);
BFT_FREE(q->cell_vol);
BFT_FREE(q->face);
BFT_FREE(q->dedge);
BFT_FREE(q->edge);
BFT_FREE(q->dface);
BFT_FREE(q->dcell_vol);
/* vtx_coord is free when the structure cs_mesh_t is destroyed */
BFT_FREE(q);
return NULL;
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Summarize generic information about the cdo mesh quantities
*
* \param[in] cdoq pointer to cs_cdo_quantities_t structure
*
*/
/*----------------------------------------------------------------------------*/
void
cs_cdo_quantities_summary(const cs_cdo_quantities_t *quant)
{
/* Output */
bft_printf("\n CDO mesh quantities information:\n");
bft_printf(" --cdo-- h_cell %6.4e %6.4e (min/max)\n",
quant->cell_info.h_min, quant->cell_info.h_max);
bft_printf(" --cdo-- h_face %6.4e %6.4e (min/max)\n",
quant->face_info.h_min, quant->face_info.h_max);
bft_printf(" --cdo-- h_edge %6.4e %6.4e (min/max)\n",
quant->edge_info.h_min, quant->edge_info.h_max);
bft_printf("\n");
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Dump a cs_cdo_quantities_t structure
*
* \param[in] cdoq pointer to cs_cdo_quantities_t structure
*
*/
/*----------------------------------------------------------------------------*/
void
cs_cdo_quantities_dump(const cs_cdo_quantities_t *cdoq)
{
cs_lnum_t i, p;
FILE *fdump = NULL;
fdump = fopen("cdo_quantities_dump.dat", "w");
if (cdoq == NULL) {
fprintf(fdump, "Empty structure.\n");
fclose(fdump);
return;
}
fprintf(fdump, "\n Quantities structure: %p\n\n", (const void *)cdoq);
fprintf(fdump, " -cdoq- n_cells = %d\n", cdoq->n_cells);
fprintf(fdump, " -cdoq- n_faces = %d\n", cdoq->n_faces);
fprintf(fdump, " -cdoq- n_edges = %d\n", cdoq->n_edges);
fprintf(fdump, " -cdoq- n_vertices = %d\n", cdoq->n_vertices);
fprintf(fdump, " -cdoq- Total volume = %.6e\n\n", cdoq->vol_tot);
fprintf(fdump, "\n *** Cell Quantities ***\n");
fprintf(fdump, "-msg- num.; volume ; center (3)\n");
for (i = 0; i < cdoq->n_cells; i++) {
p = 3*i;
fprintf(fdump, " [%6d] | %12.8e | % -12.8e | % -12.8e |% -12.8e\n",
i+1, cdoq->cell_vol[i], cdoq->cell_centers[p],
cdoq->cell_centers[p+1], cdoq->cell_centers[p+2]);
}
fprintf(fdump, "\n\n *** Face Quantities ***\n");
fprintf(fdump, "-msg- num. ; measure ; unitary vector (3) ; center (3)\n");
for (i = 0; i < cdoq->n_faces; i++)
cs_quant_dump(fdump, i+1, cdoq->face[i]);
fprintf(fdump, "\n\n *** Edge Quantities ***\n");
fprintf(fdump, "-msg- num. ; measure ; unitary vector (3) ; center (3)\n");
for (i = 0; i < cdoq->n_edges; i++)
cs_quant_dump(fdump, i+1, cdoq->edge[i]);
fclose(fdump);
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Dump a cs_quant_t structure
*
* \param[in] f FILE struct (stdout if NULL)
* \param[in] num entity number related to this quantity struct.
* \param[in] q cs_quant_t structure to dump
*/
/*----------------------------------------------------------------------------*/
void
cs_quant_dump(FILE *f,
cs_lnum_t num,
const cs_quant_t q)
{
FILE *_f = f;
if (_f == NULL) _f = stdout;
fprintf(_f, " -cdoq- [%8d] | % -10.6e | % -10.6e | % -10.6e | % -10.6e |"
" % -10.6e | % -10.6e | % -10.6e\n", num, q.meas,
q.unitv[0], q.unitv[1], q.unitv[2], q.center[0], q.center[1],
q.center[2]);
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute for each vertex the dual cell volume which is also
*
* sum |celld(v) cap c| = pvol_v
* c in C_v
*
* \param[in] connect pointer to a cs_cdo_connect_t structure
* \param[in] quant pointer to a cs_cdo_quantites_t structure
* \param[in, out] p_pvol pvol (if NULL, allocated in this routine)
*/
/*----------------------------------------------------------------------------*/
void
cs_compute_pvol_vtx(const cs_cdo_connect_t *connect,
const cs_cdo_quantities_t *quant,
double *p_pvol[])
{
cs_lnum_t i, j;
double *pvol = *p_pvol;
const cs_connect_index_t *c2v = connect->c2v;
/* Allocate if needed and initialize */
if (pvol == NULL)
BFT_MALLOC(pvol, quant->n_vertices, double);
for (i = 0; i < quant->n_vertices; i++)
pvol[i] = 0;
for (i = 0; i < quant->n_cells; i++)
for (j = c2v->idx[i]; j < c2v->idx[i+1]; j++)
pvol[c2v->ids[j]] += quant->dcell_vol[j];
/* Return pointer */
*p_pvol = pvol;
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute for each edge a related volume pvol_e which constitutes
* a partition of unity
*
* \param[in] connect pointer to a cs_cdo_connect_t structure
* \param[in] quant pointer to a cs_cdo_quantites_t structure
* \param[in, out] p_pvol pvol (if NULL, allocated in this routine)
*/
/*----------------------------------------------------------------------------*/
void
cs_compute_pvol_edge(const cs_cdo_connect_t *connect,
const cs_cdo_quantities_t *quant,
double *p_pvol[])
{
cs_lnum_t i, j;
double dvol;
double *pvol = *p_pvol;
/* Allocate if needed and initialize */
if (pvol == NULL)
BFT_MALLOC(pvol, quant->n_edges, double);
for (i = 0; i < quant->n_edges; i++)
pvol[i] = 0;
for (i = 0; i < quant->n_cells; i++) {
for (j = connect->c2e->idx[i]; j < connect->c2e->idx[i+1]; j++) {
const cs_lnum_t e_id = connect->c2e->ids[j];
const cs_quant_t peq = quant->edge[e_id];
const cs_nvec3_t df0q = quant->dface[j].sface[0];
const cs_nvec3_t df1q = quant->dface[j].sface[1];
dvol = df0q.meas * _dp3(peq.unitv, df0q.unitv);
dvol += df1q.meas * _dp3(peq.unitv, df1q.unitv);
pvol[e_id] += dvol * cs_math_onethird * peq.meas;
}
}
/* Return pointer */
*p_pvol = pvol;
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute for each face a related volume pvol_f which constitutes
* a partition of unity
*
* \param[in] connect pointer to a cs_cdo_connect_t structure
* \param[in] quant pointer to a cs_cdo_quantites_t structure
* \param[in, out] p_pvol pvol (if NULL, allocated in this routine)
*/
/*----------------------------------------------------------------------------*/
void
cs_compute_pvol_face(const cs_cdo_connect_t *connect,
const cs_cdo_quantities_t *quant,
double *p_pvol[])
{
double *pvol = *p_pvol;
const cs_sla_matrix_t *c2f = connect->c2f;
/* Allocate if needed */
if (pvol == NULL)
BFT_MALLOC(pvol, quant->n_faces, double);
/* Initialize */
for (cs_lnum_t i = 0; i < quant->n_faces; i++)
pvol[i] = 0;
for (cs_lnum_t c_id = 0; c_id < quant->n_cells; c_id++) {
for (cs_lnum_t j = c2f->idx[c_id]; j < c2f->idx[c_id+1]; j++) {
const cs_lnum_t f_id = c2f->col_id[j];
const cs_quant_t pfq = quant->face[f_id];
const cs_nvec3_t deq = quant->dedge[j];
/* Compute volume of the pyramid p_fc */
pvol[f_id] +=
cs_math_onethird * pfq.meas * deq.meas * _dp3(pfq.unitv, deq.unitv);
}
}
/* Return pointer */
*p_pvol = pvol;
}
/*----------------------------------------------------------------------------*/
#undef _dp3
#undef _n3
END_C_DECLS
|