1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
|
/*============================================================================
* Functions and structures to deal with evaluation of quantities
*============================================================================*/
/*
This file is part of Code_Saturne, a general-purpose CFD tool.
Copyright (C) 1998-2016 EDF S.A.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "cs_defs.h"
/*----------------------------------------------------------------------------
* Standard C library headers
*----------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <float.h>
/*----------------------------------------------------------------------------
* Local headers
*----------------------------------------------------------------------------*/
#include <bft_mem.h>
#include <bft_printf.h>
#include "cs_math.h"
#include "cs_mesh_location.h"
/*----------------------------------------------------------------------------
* Header for the current file
*----------------------------------------------------------------------------*/
#include "cs_evaluate.h"
/*----------------------------------------------------------------------------*/
BEGIN_C_DECLS
/*=============================================================================
* Local Macro definitions and structure definitions
*============================================================================*/
/* Pointer to shared structures (owned by a cs_domain_t structure) */
static const cs_cdo_quantities_t *cs_cdo_quant;
static const cs_cdo_connect_t *cs_cdo_connect;
static const cs_time_step_t *cs_time_step;
static const char _err_empty_array[] =
" Array storing the evaluation should be allocated before the call"
" to this function.";
static const char _err_not_handled[] = " This case is not handled yet.";
/*============================================================================
* Private function prototypes
*============================================================================*/
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute the integral over a tetrahedron of the barycentric subdiv.
* using a barycentric quadrature rule
*
* \param[in] tcur current physical time of the simulation
* \param[in] xv first point of the tetrahedron
* \param[in] xe second point of the tetrahedron
* \param[in] xf third point of the tetrahedron
* \param[in] xc fourth point of the tetrahedron
* \param[in] ana pointer to the analytic function
*
* \return the result of the integration
*/
/*----------------------------------------------------------------------------*/
inline static double
_analytic_quad_tet1(double tcur,
const cs_real_3_t xv,
const cs_real_3_t xe,
const cs_real_3_t xf,
const cs_real_3_t xc,
cs_analytic_func_t *ana)
{
int k;
cs_real_3_t xg;
cs_get_t evaluation;
const double vol_tet = cs_math_voltet(xv, xe, xf, xc);
for (k = 0; k < 3; k++)
xg[k] = 0.25*(xv[k] + xe[k] + xf[k] + xc[k]);
ana(tcur, xg, &evaluation);
return vol_tet * evaluation.val;
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute the integral over a tetrahedron of the barycentric subdiv.
* with a quadrature rule using 4 Gauss points and a unique weight
*
* \param[in] tcur current physical time of the simulation
* \param[in] xv first point of the tetrahedron
* \param[in] xe second point of the tetrahedron
* \param[in] xf third point of the tetrahedron
* \param[in] xc fourth point of the tetrahedron
* \param[in] ana pointer to the analytic function
*
* \return the result of the integration
*/
/*----------------------------------------------------------------------------*/
inline static double
_analytic_quad_tet4(double tcur,
const cs_real_3_t xv,
const cs_real_3_t xe,
const cs_real_3_t xf,
const cs_real_3_t xc,
cs_analytic_func_t *ana)
{
double weight;
cs_real_3_t gauss_pts[4];
cs_get_t evaluation;
double result = 0.0;
const double vol_tet = cs_math_voltet(xv, xe, xf, xc);
/* Compute Gauss points and its unique weight */
cs_quadrature_tet_4pts(xv, xe, xf, xc, vol_tet, gauss_pts, &weight);
for (int p = 0; p < 4; p++) {
ana(tcur, gauss_pts[p], &evaluation);
result += evaluation.val;
}
result *= weight;
return result;
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute the integral over a tetrahedron of the barycentric subdiv.
* with a quadrature rule using 5 Gauss points and 5 weights
*
* \param[in] tcur current physical time of the simulation
* \param[in] xv first point of the tetrahedron
* \param[in] xe second point of the tetrahedron
* \param[in] xf third point of the tetrahedron
* \param[in] xc fourth point of the tetrahedron
* \param[in] ana pointer to the analytic function
*
* \return the result of the integration
*/
/*----------------------------------------------------------------------------*/
inline static double
_analytic_quad_tet5(double tcur,
const cs_real_3_t xv,
const cs_real_3_t xe,
const cs_real_3_t xf,
const cs_real_3_t xc,
cs_analytic_func_t *ana)
{
double weights[5];
cs_real_3_t gauss_pts[5];
cs_get_t evaluation;
double result = 0.0;
const double vol_tet = cs_math_voltet(xv, xe, xf, xc);
/* Compute Gauss points and its unique weight */
cs_quadrature_tet_5pts(xv, xe, xf, xc, vol_tet, gauss_pts, weights);
for (int p = 0; p < 5; p++) {
ana(tcur, gauss_pts[p], &evaluation);
result += evaluation.val*weights[p];
}
return result;
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute the integral over dual cells of a scalar density field
* defined by an analytical function on a selection of (primal) cells
*
* \param[in] ana pointer to the analytic function
* \param[in] n_loc_elts number of elements to consider
* \param[in] elt_ids pointer to the list od selected ids
* \param[in] quad_type type of quadrature to use
* \param[in, out] values pointer to the computed values
*/
/*----------------------------------------------------------------------------*/
static void
_dcsd_by_analytic(cs_analytic_func_t *ana,
const cs_lnum_t n_elts,
const cs_lnum_t *elt_ids,
cs_quadra_type_t quad_type,
double values[])
{
const cs_cdo_quantities_t *quant = cs_cdo_quant;
const cs_cdo_connect_t *connect = cs_cdo_connect;
const cs_sla_matrix_t *c2f = connect->c2f;
const cs_sla_matrix_t *f2e = connect->f2e;
const double tcur = cs_time_step->t_cur;
/* Compute dual volumes */
for (cs_lnum_t id = 0; id < n_elts; id++) {
const cs_lnum_t c_id = (elt_ids == NULL) ? id : elt_ids[id];
const cs_real_t *xc = quant->cell_centers + 3*c_id;
for (cs_lnum_t i = c2f->idx[c_id]; i < c2f->idx[c_id+1]; i++) {
const cs_lnum_t f_id = c2f->col_id[i];
const cs_quant_t f = quant->face[f_id];
for (cs_lnum_t j = f2e->idx[f_id]; j < f2e->idx[f_id+1]; j++) {
const cs_lnum_t e_id = f2e->col_id[j];
const cs_quant_t e = quant->edge[e_id];
const cs_lnum_t v1_id = connect->e2v->col_id[2*e_id];
const cs_lnum_t v2_id = connect->e2v->col_id[2*e_id+1];
const cs_real_t *xv1 = quant->vtx_coord + 3*v1_id;
const cs_real_t *xv2 = quant->vtx_coord + 3*v2_id;
double add1 = 0.0, add2 = 0.0;
switch(quad_type) {
case CS_QUADRATURE_BARY: /* Barycenter of the tetrahedral subdiv. */
add1 = _analytic_quad_tet1(tcur, xv1, e.center, f.center, xc, ana);
add2 = _analytic_quad_tet1(tcur, xv2, e.center, f.center, xc, ana);
break;
case CS_QUADRATURE_HIGHER: /* Quadrature with a unique weight */
add1 = _analytic_quad_tet4(tcur, xv1, e.center, f.center, xc, ana);
add2 = _analytic_quad_tet4(tcur, xv1, e.center, f.center, xc, ana);
break;
case CS_QUADRATURE_HIGHEST: /* Most accurate quadrature available */
add1 = _analytic_quad_tet5(tcur, xv1, e.center, f.center, xc, ana);
add2 = _analytic_quad_tet5(tcur, xv1, e.center, f.center, xc, ana);
break;
default:
bft_error(__FILE__, __LINE__, 0, _("Invalid quadrature type.\n"));
} /* Quad rule */
values[v1_id] += add1;
values[v2_id] += add2;
} // Loop on edges
} // Loop on faces
} // Loop on cells
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute the integral over primal cells of a scalar density field
* defined by an analytical function on a selection of (primal) cells
*
* \param[in] ana pointer to the analytic function
* \param[in] n_loc_elts number of elements to consider
* \param[in] elt_ids pointer to the list od selected ids
* \param[in] quad_type type of quadrature to use
* \param[in, out] values pointer to the computed values
*/
/*----------------------------------------------------------------------------*/
static void
_pcsd_by_analytic(cs_analytic_func_t *ana,
const cs_lnum_t n_elts,
const cs_lnum_t *elt_ids,
cs_quadra_type_t quad_type,
double values[])
{
const cs_cdo_quantities_t *quant = cs_cdo_quant;
const cs_cdo_connect_t *connect = cs_cdo_connect;
const cs_sla_matrix_t *c2f = connect->c2f;
const cs_sla_matrix_t *f2e = connect->f2e;
const double tcur = cs_time_step->t_cur;
for (cs_lnum_t id = 0; id < n_elts; id++) {
const cs_lnum_t c_id = (elt_ids == NULL) ? id : elt_ids[id];
const cs_real_t *xc = quant->cell_centers + 3*c_id;
for (cs_lnum_t i = c2f->idx[c_id]; i < c2f->idx[c_id+1]; i++) {
const cs_lnum_t f_id = c2f->col_id[i];
const cs_quant_t f = quant->face[f_id];
for (cs_lnum_t j = f2e->idx[f_id]; j < f2e->idx[f_id+1]; j++) {
const cs_lnum_t e_id = f2e->col_id[j];
const cs_lnum_t v1_id = connect->e2v->col_id[2*e_id];
const cs_lnum_t v2_id = connect->e2v->col_id[2*e_id+1];
const cs_real_t *xv1 = quant->vtx_coord + 3*v1_id;
const cs_real_t *xv2 = quant->vtx_coord + 3*v2_id;
double add = 0.0;
switch(quad_type) {
case CS_QUADRATURE_BARY: /* Barycenter of the tetrahedral subdiv. */
add = _analytic_quad_tet1(tcur, xv1, xv2, f.center, xc, ana);
break;
case CS_QUADRATURE_HIGHER: /* Quadrature with a unique weight */
add = _analytic_quad_tet4(tcur, xv1, xv2, f.center, xc, ana);
break;
case CS_QUADRATURE_HIGHEST: /* Most accurate quadrature available */
add = _analytic_quad_tet5(tcur, xv1, xv2, f.center, xc, ana);
break;
default:
bft_error(__FILE__, __LINE__, 0, _("Invalid quadrature type.\n"));
} /* Quad rule */
values[c_id] += add;
} // Loop on edges
} // Loop on faces
} // Loop on cells
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute the integral over a dual cell (or a portion) of a value
* defined on a selection of (primal) cells
*
* \param[in] const_val constant value
* \param[in] n_loc_elts number of elements to consider
* \param[in] elt_ids pointer to the list od selected ids
* \param[in, out] values pointer to the computed values
*/
/*----------------------------------------------------------------------------*/
static void
_dcsd_by_value(const double const_val,
const cs_lnum_t n_elts,
const cs_lnum_t *elt_ids,
double values[])
{
const cs_connect_index_t *c2v = cs_cdo_connect->c2v;
const cs_cdo_quantities_t *quant = cs_cdo_quant;
const cs_real_t *dual_vol = quant->dcell_vol; /* scan by c2v */
if (elt_ids == NULL) {
assert(n_elts == quant->n_cells);
for (cs_lnum_t c_id = 0; c_id < n_elts; c_id++)
for (cs_lnum_t j = c2v->idx[c_id]; j < c2v->idx[c_id+1]; j++)
values[c2v->ids[j]] += dual_vol[j]*const_val;
}
else { /* Loop on selected cells */
for (cs_lnum_t i = 0; i < n_elts; i++) {
cs_lnum_t c_id = elt_ids[i];
for (cs_lnum_t j = c2v->idx[c_id]; j < c2v->idx[c_id+1]; j++)
values[c2v->ids[j]] += dual_vol[j]*const_val;
}
}
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute the integral over a (primal) cell of a value related to
* scalar density field
*
* \param[in] const_val constant value
* \param[in] n_loc_elts number of elements to consider
* \param[in] elt_ids pointer to the list od selected ids
* \param[in, out] values pointer to the computed values
*/
/*----------------------------------------------------------------------------*/
static void
_pcsd_by_value(const double const_val,
const cs_lnum_t n_elts,
const cs_lnum_t *elt_ids,
double values[])
{
const cs_cdo_quantities_t *quant = cs_cdo_quant;
if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for if (quant->n_cells > CS_THR_MIN)
for (cs_lnum_t c_id = 0; c_id < quant->n_cells; c_id++)
values[c_id] = quant->cell_vol[c_id]*const_val;
}
else { /* Loop on selected cells */
# pragma omp parallel for if (n_elts > CS_THR_MIN)
for (cs_lnum_t i = 0; i < n_elts; i++) {
cs_lnum_t c_id = elt_ids[i];
values[c_id] = quant->cell_vol[c_id]*const_val;
}
}
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Get the values at each primal faces for a scalar potential
* defined by an analytical function on a selection of (primal) cells
*
* \param[in] ana pointer to the analytic function
* \param[in] n_loc_elts number of elements to consider
* \param[in] elt_ids pointer to the list od selected ids
* \param[in, out] values pointer to the computed values
*/
/*----------------------------------------------------------------------------*/
static void
_pfsp_by_analytic(cs_analytic_func_t *ana,
const cs_lnum_t n_elts,
const cs_lnum_t *elt_ids,
double values[])
{
cs_get_t result;
const double tcur = cs_time_step->t_cur;
const cs_cdo_quantities_t *quant = cs_cdo_quant;
const cs_sla_matrix_t *c2f = cs_cdo_connect->c2f;
/* Initialize todo array */
bool *todo = NULL;
BFT_MALLOC(todo, quant->n_vertices, bool);
# pragma omp parallel for if (quant->n_faces > CS_THR_MIN)
for (cs_lnum_t f_id = 0; f_id < quant->n_faces; f_id++)
todo[f_id] = true;
for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells
cs_lnum_t c_id = elt_ids[i];
for (cs_lnum_t j = c2f->idx[c_id]; j < c2f->idx[c_id+1]; j++) {
cs_lnum_t f_id = c2f->col_id[j];
if (todo[f_id]) {
ana(tcur, quant->face[f_id].center, &result);
values[f_id] = result.val;
todo[f_id] = false;
}
} // Loop on cell vertices
} // Loop on selected cells
BFT_FREE(todo);
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Get the values at each primal vertices for a scalar potential
* defined by an analytical function on a selection of (primal) cells
*
* \param[in] ana pointer to the analytic function
* \param[in] n_loc_elts number of elements to consider
* \param[in] elt_ids pointer to the list od selected ids
* \param[in, out] values pointer to the computed values
*/
/*----------------------------------------------------------------------------*/
static void
_pvsp_by_analytic(cs_analytic_func_t *ana,
const cs_lnum_t n_elts,
const cs_lnum_t *elt_ids,
double values[])
{
cs_get_t result;
const double tcur = cs_time_step->t_cur;
const cs_cdo_quantities_t *quant = cs_cdo_quant;
const cs_connect_index_t *c2v = cs_cdo_connect->c2v;
/* Initialize todo array */
bool *todo = NULL;
BFT_MALLOC(todo, quant->n_vertices, bool);
# pragma omp parallel for if (quant->n_vertices > CS_THR_MIN)
for (cs_lnum_t v_id = 0; v_id < quant->n_vertices; v_id++)
todo[v_id] = true;
for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells
cs_lnum_t c_id = elt_ids[i];
for (cs_lnum_t j = c2v->idx[c_id]; j < c2v->idx[c_id+1]; j++) {
cs_lnum_t v_id = c2v->ids[j];
if (todo[v_id]) {
ana(tcur, quant->vtx_coord + 3*v_id, &result);
values[v_id] = result.val;
todo[v_id] = false;
}
} // Loop on cell vertices
} // Loop on selected cells
BFT_FREE(todo);
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Get the values at each primal faces for a scalar potential
*
* \param[in] const_val constant value
* \param[in] n_loc_elts number of elements to consider
* \param[in] elt_ids pointer to the list od selected ids
* \param[in, out] values pointer to the array storing the values
*/
/*----------------------------------------------------------------------------*/
static void
_pfsp_by_value(const double const_val,
cs_lnum_t n_elts,
const cs_lnum_t *elt_ids,
double values[])
{
const cs_cdo_quantities_t *quant = cs_cdo_quant;
const cs_sla_matrix_t *c2f = cs_cdo_connect->c2f;
/* Initialize todo array */
bool *todo = NULL;
BFT_MALLOC(todo, quant->n_vertices, bool);
# pragma omp parallel for if (quant->n_faces > CS_THR_MIN)
for (cs_lnum_t f_id = 0; f_id < quant->n_faces; f_id++)
todo[f_id] = true;
for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells
cs_lnum_t c_id = elt_ids[i];
for (cs_lnum_t j = c2f->idx[c_id]; j < c2f->idx[c_id+1]; j++) {
cs_lnum_t f_id = c2f->col_id[j];
if (todo[f_id])
values[f_id] = const_val, todo[f_id] = false;
} // Loop on cell vertices
} // Loop on selected cells
BFT_FREE(todo);
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Define a value to each DoF such that a given quantity is put inside
* the volume associated to the list of cells
*
* \param[in] quantity_val amount of quantity to distribute
* \param[in] n_loc_elts number of elements to consider
* \param[in] elt_ids pointer to the list od selected ids
* \param[in, out] values pointer to the array storing the values
*/
/*----------------------------------------------------------------------------*/
static void
_pvsp_by_qov(const double quantity_val,
cs_lnum_t n_elts,
const cs_lnum_t *elt_ids,
double values[])
{
const cs_cdo_quantities_t *quant = cs_cdo_quant;
const cs_real_t *dc_vol = quant->dcell_vol;
const cs_connect_index_t *c2v = cs_cdo_connect->c2v;
const cs_sla_matrix_t *c2f = cs_cdo_connect->c2f;
const cs_sla_matrix_t *f2c = cs_cdo_connect->f2c;
const cs_sla_matrix_t *f2e = cs_cdo_connect->f2e;
const cs_sla_matrix_t *e2v = cs_cdo_connect->e2v;
/* Initialize todo array */
bool *cell_tag = NULL, *vtx_tag = NULL;
BFT_MALLOC(cell_tag, quant->n_cells, bool);
BFT_MALLOC(vtx_tag, quant->n_vertices, bool);
# pragma omp parallel for if (quant->n_vertices > CS_THR_MIN)
for (cs_lnum_t v_id = 0; v_id < quant->n_vertices; v_id++)
vtx_tag[v_id] = false;
# pragma omp parallel for if (quant->n_cells > CS_THR_MIN)
for (cs_lnum_t c_id = 0; c_id < quant->n_cells; c_id++)
cell_tag[c_id] = false;
/* First pass: flag cells and vertices */
# pragma omp parallel for if (n_elts > CS_THR_MIN)
for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells
const cs_lnum_t c_id = elt_ids[i];
cell_tag[c_id] = true;
for (cs_lnum_t j = c2v->idx[c_id]; j < c2v->idx[c_id+1]; j++)
vtx_tag[c2v->ids[j]] = true;
} // Loop on selected cells
/* Second pass: detect cells at the frontier of the selection */
# pragma omp parallel for if (n_elts > CS_THR_MIN)
for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells
const cs_lnum_t c_id = elt_ids[i];
for (cs_lnum_t j = c2f->idx[c_id]; j < c2f->idx[c_id+1]; j++) {
const cs_lnum_t f_id = c2f->col_id[j];
bool is_ext_face = false;
for (cs_lnum_t l = f2c->idx[f_id]; l < f2c->idx[f_id+1]; l++)
if (!cell_tag[f2c->col_id[l]]) is_ext_face = true;
if (is_ext_face) {
for (cs_lnum_t l = f2e->idx[f_id]; l < f2e->idx[f_id+1]; l++) {
const cs_lnum_t e_id = f2e->col_id[l];
const cs_lnum_t shift_e = 2*e_id;
vtx_tag[e2v->col_id[shift_e]] = false;
vtx_tag[e2v->col_id[shift_e+1]] = false;
} // Loop on face edges
} // This face belongs to the frontier of the selection (only interior)
} // Loop on cell faces
} // Loop on selected cells
/* Third pass: compute the (really) available volume */
double volume = 0.;
# pragma omp parallel for reduction(+:volume) if (n_elts > CS_THR_MIN)
for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells
const cs_lnum_t c_id = elt_ids[i];
for (cs_lnum_t j = c2v->idx[c_id]; j < c2v->idx[c_id+1]; j++)
if (vtx_tag[c2v->ids[j]])
volume += dc_vol[j];
} // Loop on selected cells
double val_to_set = quantity_val;
if (volume > 0)
val_to_set /= volume;
# pragma omp parallel for if (quant->n_vertices > CS_THR_MIN)
for (cs_lnum_t v_id = 0; v_id < quant->n_vertices; v_id++)
if (vtx_tag[v_id])
values[v_id] = val_to_set;
BFT_FREE(cell_tag);
BFT_FREE(vtx_tag);
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Get the values at each primal vertices for a scalar potential
*
* \param[in] const_val constant value
* \param[in] n_loc_elts number of elements to consider
* \param[in] elt_ids pointer to the list od selected ids
* \param[in, out] values pointer to the array storing the values
*/
/*----------------------------------------------------------------------------*/
static void
_pvsp_by_value(const double const_val,
cs_lnum_t n_elts,
const cs_lnum_t *elt_ids,
double values[])
{
const cs_cdo_quantities_t *quant = cs_cdo_quant;
const cs_connect_index_t *c2v = cs_cdo_connect->c2v;
/* Initialize todo array */
bool *todo = NULL;
BFT_MALLOC(todo, quant->n_vertices, bool);
# pragma omp parallel for if (quant->n_vertices > CS_THR_MIN)
for (cs_lnum_t v_id = 0; v_id < quant->n_vertices; v_id++)
todo[v_id] = true;
for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells
cs_lnum_t c_id = elt_ids[i];
for (cs_lnum_t j = c2v->idx[c_id]; j < c2v->idx[c_id+1]; j++) {
cs_lnum_t v_id = c2v->ids[j];
if (todo[v_id])
values[v_id] = const_val, todo[v_id] = false;
} // Loop on cell vertices
} // Loop on selected cells
BFT_FREE(todo);
}
/*============================================================================
* Public function prototypes
*============================================================================*/
/*----------------------------------------------------------------------------*/
/*!
* \brief Set shared pointers to main domain members
*
* \param[in] quant additional mesh quantities struct.
* \param[in] connect pointer to a cs_cdo_connect_t struct.
* \param[in] time_step pointer to a time step structure
*/
/*----------------------------------------------------------------------------*/
void
cs_evaluate_set_shared_pointers(const cs_cdo_quantities_t *quant,
const cs_cdo_connect_t *connect,
const cs_time_step_t *time_step)
{
/* Assign static const pointers */
cs_cdo_quant = quant;
cs_cdo_connect = connect;
cs_time_step = time_step;
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute the value related to each DoF in the case of a density field
* The value defined by the analytic function is by unity of volume
*
* \param[in] dof_flag indicate where the evaluation has to be done
* \param[in] ml_id id related to a cs_mesh_location_t structure
* \param[in] ana accessor to values thanks to a function pointer
* \param[in] quad_type type of quadrature (not always used)
* \param[in, out] retval pointer to the computed values
*/
/*----------------------------------------------------------------------------*/
void
cs_evaluate_density_from_analytic(cs_flag_t dof_flag,
int ml_id,
cs_analytic_func_t *ana,
cs_quadra_type_t quad_type,
double retval[])
{
/* Sanity check */
if (retval == NULL)
bft_error(__FILE__, __LINE__, 0, _err_empty_array);
/* Retrieve information from mesh location structures */
const cs_lnum_t *n_elts = cs_mesh_location_get_n_elts(ml_id);
const cs_lnum_t *elt_ids = cs_mesh_location_get_elt_list(ml_id);
/* Sanity checks */
assert(n_elts != NULL);
cs_mesh_location_type_t ml_type = cs_mesh_location_get_type(ml_id);
if (elt_ids != NULL && ml_type != CS_MESH_LOCATION_CELLS)
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
/* Perform the evaluation */
if (dof_flag & CS_FLAG_SCAL) { /* DoF is scalar-valued */
if (cs_cdo_same_support(dof_flag, cs_cdo_primal_cell))
_pcsd_by_analytic(ana, n_elts[0], elt_ids, quad_type, retval);
else if (cs_cdo_same_support(dof_flag, cs_cdo_dual_cell))
_dcsd_by_analytic(ana, n_elts[0], elt_ids, quad_type, retval);
else
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
}
else
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute the value related to each DoF in the case of a density field
* Accessor to the value is by unit of volume
*
* \param[in] dof_flag indicate where the evaluation has to be done
* \param[in] ml_id id related to a cs_mesh_location_t structure
* \param[in] get accessor to the constant value to set
* \param[in, out] retval pointer to the computed values
*/
/*----------------------------------------------------------------------------*/
void
cs_evaluate_density_from_value(cs_flag_t dof_flag,
int ml_id,
cs_get_t get,
double retval[])
{
/* Sanity check */
if (retval == NULL)
bft_error(__FILE__, __LINE__, 0, _err_empty_array);
/* Retrieve information from mesh location structures */
const cs_lnum_t *n_elts = cs_mesh_location_get_n_elts(ml_id);
const cs_lnum_t *elt_ids = cs_mesh_location_get_elt_list(ml_id);
/* Sanity checks */
assert(n_elts != NULL);
cs_mesh_location_type_t ml_type = cs_mesh_location_get_type(ml_id);
if (elt_ids != NULL && ml_type != CS_MESH_LOCATION_CELLS)
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
/* Perform the evaluation */
if (dof_flag & CS_FLAG_SCAL) { /* DoF is scalar-valued */
if (cs_cdo_same_support(dof_flag, cs_cdo_primal_cell))
_pcsd_by_value(get.val, n_elts[0], elt_ids, retval);
else if (cs_cdo_same_support(dof_flag, cs_cdo_dual_cell))
_dcsd_by_value(get.val, n_elts[0], elt_ids, retval);
else
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
}
else
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Compute the contribution related to a quantity defined by analytic
* function for all the degrees of freedom
*
* \param[in] dof_flag indicate where the evaluation has to be done
* \param[in] ml_id id related to a cs_mesh_location_t structure
* \param[in] ana accessor to values thanks to a function pointer
* \param[in, out] retval pointer to the computed values
*/
/*----------------------------------------------------------------------------*/
void
cs_evaluate_potential_from_analytic(cs_flag_t dof_flag,
int ml_id,
cs_analytic_func_t *ana,
double retval[])
{
cs_get_t result;
/* Sanity check */
if (retval == NULL)
bft_error(__FILE__, __LINE__, 0, _err_empty_array);
const cs_cdo_quantities_t *quant = cs_cdo_quant;
const double tcur = cs_time_step->t_cur;
/* Retrieve information from mesh location structures */
const cs_lnum_t *n_elts = cs_mesh_location_get_n_elts(ml_id);
const cs_lnum_t *elt_ids = cs_mesh_location_get_elt_list(ml_id);
/* Sanity checks */
assert(n_elts != NULL);
cs_mesh_location_type_t ml_type = cs_mesh_location_get_type(ml_id);
if (elt_ids != NULL && ml_type != CS_MESH_LOCATION_CELLS)
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
/* Perform the evaluation */
if (dof_flag & CS_FLAG_SCAL) { /* DoF is scalar-valued */
if (cs_cdo_same_support(dof_flag, cs_cdo_primal_vtx)) {
if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for private(result) if(quant->n_vertices > CS_THR_MIN)
for (cs_lnum_t v_id = 0; v_id < quant->n_vertices; v_id++) {
ana(tcur, quant->vtx_coord + 3*v_id, &result);
retval[v_id] = result.val;
}
}
else
_pvsp_by_analytic(ana, n_elts[0], elt_ids, retval);
} /* Located at primal vertices */
else if (cs_cdo_same_support(dof_flag, cs_cdo_primal_face)) {
if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for private(result) if(quant->n_faces > CS_THR_MIN)
for (cs_lnum_t f_id = 0; f_id < quant->n_faces; f_id++) {
ana(tcur, quant->face[f_id].center, &result);
retval[f_id] = result.val;
}
}
else
_pfsp_by_analytic(ana, n_elts[0], elt_ids, retval);
} /* Located at primal faces */
else if (cs_cdo_same_support(dof_flag, cs_cdo_primal_cell) ||
cs_cdo_same_support(dof_flag, cs_cdo_dual_vtx)) {
if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for private(result) if(quant->n_cells > CS_THR_MIN)
for (cs_lnum_t c_id = 0; c_id < quant->n_cells; c_id++) {
ana(tcur, quant->cell_centers + 3*c_id, &result);
retval[c_id] = result.val;
}
}
else
for (cs_lnum_t i = 0; i < n_elts[0]; i++) { // Loop on selected cells
cs_lnum_t c_id = elt_ids[i];
ana(tcur, quant->cell_centers + 3*c_id, &result);
retval[c_id] = result.val;
}
} /* Located at primal cells or dual vertices */
else
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
}
else
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Define a value to each DoF in the case of a potential field in order
* to put a given quantity inside the volume associated to ml_id
*
* \param[in] dof_flag indicate where the evaluation has to be done
* \param[in] ml_id id related to a cs_mesh_location_t structure
* \param[in] get accessor to the constant value related to the
* quantity to put in the volume spanned by ml_id
* \param[in, out] retval pointer to the computed values
*/
/*----------------------------------------------------------------------------*/
void
cs_evaluate_potential_from_qov(cs_flag_t dof_flag,
int ml_id,
cs_get_t get,
double retval[])
{
/* Sanity check */
if (retval == NULL)
bft_error(__FILE__, __LINE__, 0, _err_empty_array);
/* Retrieve information from mesh location structures */
const cs_lnum_t *n_elts = cs_mesh_location_get_n_elts(ml_id);
const cs_lnum_t *elt_ids = cs_mesh_location_get_elt_list(ml_id);
/* Sanity checks */
assert(n_elts != NULL);
cs_mesh_location_type_t ml_type = cs_mesh_location_get_type(ml_id);
if (elt_ids != NULL && ml_type != CS_MESH_LOCATION_CELLS)
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
/* Perform the evaluation */
bool check = false;
if (dof_flag & CS_FLAG_SCAL) { /* DoF is scalar-valued */
if (cs_cdo_same_support(dof_flag, cs_cdo_primal_vtx))
if (elt_ids != NULL) {
_pvsp_by_qov(get.val, n_elts[0], elt_ids, retval);
check = true;
}
} /* Located at primal vertices */
if (!check)
bft_error(__FILE__, __LINE__, 0,
_(" Stop evaluating a potential from 'quantity over volume'.\n"
" This situation is not handled yet."));
}
/*----------------------------------------------------------------------------*/
/*!
* \brief Store the value related to each DoF in the case of a potential field
*
* \param[in] dof_flag indicate where the evaluation has to be done
* \param[in] ml_id id related to a cs_mesh_location_t structure
* \param[in] get accessor to the constant value to set
* \param[in, out] retval pointer to the computed values
*/
/*----------------------------------------------------------------------------*/
void
cs_evaluate_potential_from_value(cs_flag_t dof_flag,
int ml_id,
cs_get_t get,
double retval[])
{
/* Sanity check */
if (retval == NULL)
bft_error(__FILE__, __LINE__, 0, _err_empty_array);
const cs_cdo_quantities_t *quant = cs_cdo_quant;
/* Retrieve information from mesh location structures */
const cs_lnum_t *n_elts = cs_mesh_location_get_n_elts(ml_id);
const cs_lnum_t *elt_ids = cs_mesh_location_get_elt_list(ml_id);
/* Sanity checks */
assert(n_elts != NULL);
cs_mesh_location_type_t ml_type = cs_mesh_location_get_type(ml_id);
if (elt_ids != NULL && ml_type != CS_MESH_LOCATION_CELLS)
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
/* Perform the evaluation */
if (dof_flag & CS_FLAG_SCAL) { /* DoF is scalar-valued */
if (cs_cdo_same_support(dof_flag, cs_cdo_primal_vtx)) {
if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for if (quant->n_vertices > CS_THR_MIN)
for (cs_lnum_t v_id = 0; v_id < quant->n_vertices; v_id++)
retval[v_id] = get.val;
}
else
_pvsp_by_value(get.val, n_elts[0], elt_ids, retval);
} /* Located at primal vertices */
else if (cs_cdo_same_support(dof_flag, cs_cdo_primal_face)) {
if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for if (quant->n_faces > CS_THR_MIN)
for (cs_lnum_t f_id = 0; f_id < quant->n_faces; f_id++)
retval[f_id] = get.val;
}
else
_pfsp_by_value(get.val, n_elts[0], elt_ids, retval);
} /* Located at primal faces */
else if (cs_cdo_same_support(dof_flag, cs_cdo_primal_cell) ||
cs_cdo_same_support(dof_flag, cs_cdo_dual_vtx)) {
if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for if (quant->n_cells > CS_THR_MIN)
for (cs_lnum_t c_id = 0; c_id < quant->n_cells; c_id++)
retval[c_id] = get.val;
}
else
for (cs_lnum_t i = 0; i < n_elts[0]; i++) // Loop on selected cells
retval[elt_ids[i]] = get.val;
} /* Located at primal cells or dual vertices */
else
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
}
else
bft_error(__FILE__, __LINE__, 0, _err_not_handled);
}
/*----------------------------------------------------------------------------*/
END_C_DECLS
|