File: clptur.tex

package info (click to toggle)
code-saturne 4.3.3%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 77,992 kB
  • sloc: ansic: 281,257; f90: 122,305; python: 56,490; makefile: 3,915; xml: 3,285; cpp: 3,183; sh: 1,139; lex: 176; yacc: 101; sed: 16
file content (1172 lines) | stat: -rw-r--r-- 52,296 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
%-------------------------------------------------------------------------------

% This file is part of Code_Saturne, a general-purpose CFD tool.
%
% Copyright (C) 1998-2016 EDF S.A.
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later
% version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
% details.
%
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 02110-1301, USA.

%-------------------------------------------------------------------------------

\programme{clptur}

\vspace{1cm}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Function}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
This subroutine is dedicated to the calculation of the wall boundary conditions. The notations introduced in \var{CONDLI} for the general boundary conditions will be used.

The wall boundary conditions refer to all the boundary conditions for the velocity, the turbulent variables ($k$, $\varepsilon$, $R_{ij}$), the temperature when it has a prescribed value at the wall (or the enthalpy and more generally the {\it VarScalaires}\footnote{As in \fort{condli} the {\it VarScalaire} are any solution of a convection-diffusion equation apart from the velocity, the pressure and the turbulent variables  $k$, $\varepsilon$ and $R_{ij}$. More specifically, the name {\it VarScalaire} can refer to the temperature, the enthalpy or a passive scalar.  } to treat at the wall by using a similarity law for the associated boundary layer). For the {\it VarScalaire} in particular, when the boundary conditions at the wall are of Neumann type (homogeneous or not), they are treated in  \fort{condli} and don't present them here. In particular, the boundary conditions of the {\it VarScalaires} are not treated here because their treatment at the wall is of homogeneous Neumann type.

We present the calculation of the pair of coefficients $A_b$ and $B_b$ which are used during the computation of certain discretized terms of the equations to solve, and which allow in particular to determine a value associated with the boundary faces $f_{b,int}$ (at a point located at the "centre" of the boundary face, the barycentre of its vertices) using the formulae   $f_{b,int} = A_b+B_b\,f_{I'}$ ($f_{I'}$ is the value of the variable at point $I'$, the projection of the centre of the boundary cell onto the line normal to the boundary face and passing through its centre~: see figure~\ref{Base_Clptur_fig_flux_clptur}).


\begin{figure}[h]
\centerline{\includegraphics[height=7cm]{fluxbord}}
\caption{\label{Base_Clptur_fig_flux_clptur}Boundary cell.}
\end{figure}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Discretisation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\etape{Notations\vspace{0,3cm}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The velocity of the wall is noted
$\vect{v}_p$. We assume it is projected onto the plane tangent to the wall (if it is not, then the code projects it).


The velocity of the fluid is noted $\vect{u}$. Index $I$, $I'$ or $F$ denotes the point at which the velocity is estimated. The component tangent to the wall writes $u_\tau$. The fluid velocity in the coordinate system attached to the wall ("relative" velocity) writes $\vect{u}^r=\vect{u} - \vect{v}_p$.



The orthonormal coordinate system attached to the wall writes
$\hat {\mathcal R}=(\vect{\tau},\vect{\tilde{n}},\vect{b})$.
\begin{itemize}
\item [$\bullet$] $\vect{\tilde{n}}=-\vect{n}$ is the unit vector orthogonal to the wall and directed towards the interior of the computational domain.
\item [$\bullet$] $\vect{\tau} = \displaystyle\frac{1}{\|\vect{u}^r_{I'}-(\vect{u}^r_{I'}\,.\,\vect{\tilde{n}})\|}\left[\vect{u}^r_{I'}-(\vect{u}^r_{I'}\,.\,\vect{\tilde{n}})\right]$ is the unit vector parallel to the projection of the relative velocity at $I'$, $\vect{u}^r_{I'}$, in the plane tangent to the wall
 ({\it i.e.} orthogonal to $\vect{\tilde{n}}$)~: see
figure~\ref{Base_Clptur_fig_flux_clptur}.
\item [$\bullet$] $\vect{b}$ is the unit vector which completes the positively oriented coordinate system.
\end{itemize}
\vspace{0.2cm}

The dimensionless limit distance which separates the viscous sublayer from the logarithmic region writes $y^+_{lim}$. Its value is $1/\kappa$ (with $\kappa = 0,42$) in general (to ensure the continuity of the velocity gradient) and 10.88 in LES (to ensure the continuity of the velocity).

In the case of the {\bf two velocity scale model},
\begin{itemize}
\item [-] $u_k$ is the friction velocity at the wall obtained from the turbulent kinetic energy.
We write $u^*$ the friction velocity at the wall calculated from the equation
 $ \displaystyle\frac{u^r_{\tau,I'}}{u^*} = f(y^+_k)$.

\item [-]
$y^+_k$  represents a dimensionless wall distance,
$y^+_k= \displaystyle\frac{u_k\,I'F}{\nu}$ ($\nu$ is the molecular kinematic viscosity
taken at the centre $I$ of the boundary cell).
The function $f$ gives the ideal shape of the velocity profile.
It is piecewisely approximated by the logarithmic law
 $f(z)=f_1(z)= \displaystyle\frac{1}{\kappa}ln(z)+5,2$ for
$z> y^+_{lim}$
and by the linear law $f(z)=f_2(z)=z$ otherwise.

\item [-] The two velocity scale $u_k$ and $u^*$ are simple to compute
but their computation requires the knowledge of the turbulent kinetic energy $k_I$
at the centre of cell adjoint to the boundary face  (with the $R_{ij}-\varepsilon$ model, we use half the trace of the Reynolds stress tensor).


\item [-] The two velocity scale model is the default model in \CS.
It often permits, and in particular in cases with heat transfer, to reduce the
effects of certain flaws associated to the $k-\varepsilon$ model.
\end{itemize}


Later on, we will use $u^*$ and $u_k$ for the boundary conditions of the velocity and scalars (in particular the temperature).


\begin{equation}\label{Base_Clptur_Eq_Mod_'2ech_Vit}
\begin{array}{l}
\text{\bf Two velocity scale model}\\
\left\{\begin{array}{l}
u_k = C_\mu^\frac{1}{4}k_I^\frac{1}{2}\\
u^* \text{is solution of }
\left\{\begin{array}{lll}
\displaystyle\frac{u^r_{\tau,I'}}{u^*} &=
\displaystyle\frac{1}{\kappa}ln(y^+_k)+5,2 &\text { for }y^+_k>y^+_{lim}\\
\displaystyle\frac{u^r_{\tau,I'}}{u^*} &= y^+_k                &\text { for }
y^+_k \leqslant y^+_{lim}
\end{array}\right.    \\
\qquad\qquad
\text{   with   } C_\mu =0,09\qquad y^+_k=\displaystyle\frac{u_k\,I'F}{\nu}
                                                      \text{  and }\kappa = 0,42
\end{array}\right.
\end{array}
\end{equation}



In the case of the {\bf one velocity scale model},

we write $u^*$ the only
friction velocity at the wall solution of the equation
$\displaystyle\frac{u^r_{\tau,I'}}{u^*} = f(y^+)$.
$y^+$  represents a dimensionless wall distance
$y^+=\displaystyle\frac{u^*\,I'F}{\nu}$ ($\nu$ is the molecular kinematic viscosity
taken at the centre $I$ of the boundary cell).
The function $f$ gives the ideal shape of the velocity profile, as in the case of the two velocity scale model. One can note that this friction velocity, calculated using a more complicated approach (Newton method), can however be obtained without making any reference to the turbulent variables ($k$, $\varepsilon$, $R_{ij}$). For convenience in the case of the one velocity scale model, we write $u_k=u^*$.

Later on, we will use $u^*$ and $u_k$ for the boundary conditions of the velocity and scalars (in particular the temperature).

\begin{equation}
\begin{array}{l}
\text{\bf Mod\`ele \`a une \'echelle de vitesse}\\
\left\{\begin{array}{l}
u_k = u^*\\
u^* \text{ solution de } \left\{\begin{array}{lll}
\displaystyle\frac{u^r_{\tau,I'}}{u^*} &=
\displaystyle\frac{1}{\kappa}ln(y^+)+5,2 &\text { pour }y^+>y^+_{lim}\\
\displaystyle\frac{u^r_{\tau,I'}}{u^*} &= y^+                         &\text
{pour } y^+\leqslant y^+_{lim}
\end{array}\right.\\
\qquad\qquad\text{   avec   } y^+=\displaystyle\frac{u^*\,I'F}{\nu}
                                                      \text{  et }\kappa=0,42
\end{array}\right.
\end{array}
\end{equation}


{\bf Remark~:} Hereafter, we provide three exemples
based on the two velocity scale model.
\begin{itemize}
\item In this way, one can implement a specific wall function~:
$$\displaystyle\frac{u_{\tau,I'}}{u^*}=g(y^+)$$
by simply imposing
$\displaystyle{u^*}=u_{\tau,I'}/g(y^+)$.
\item It is also possible to use a rough-wall wall function such as~:
$$\displaystyle\frac{u_{\tau,I'}}{u^*}=\displaystyle\frac{1}{\kappa}\,ln(\frac{y}{\xi})+8,5$$
where $\xi$ is the height of the roughness elements at the wall~: one just has to impose
$\displaystyle u^*=u_{\tau,I'}/\left[\frac{1}{\kappa}ln(\frac{y}{\xi})+8,5\right]$,
 $y$ being deduced from $y^+$, available as an argument, by the equation
$\displaystyle y=y^+\frac{\nu}{u_k}$.
\item Even a more general correlation could be used of
Colebrook type~:
$$u^*=u_{deb}/\left[-4\sqrt{2}log_{10}\left(\displaystyle\frac{2,51}{2\sqrt{2}D_H^+}+\frac{\xi}{3,7\,D_H}\right)\right]$$
where $D_H^+$ is the hydraulic diameter made dimensionless using $u_k$, $\nu$,
$u_{deb}$ the mean streamwise velocity
and $\displaystyle\frac{\xi}{D_H}$ the relative roughness.
\end{itemize}



\etape{Boundary conditions for the velocity in $k-\varepsilon$\vspace{0,3cm}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
We first consider the boundary conditions used in the case of calculation using the
 $k-\varepsilon$ model. Indeed these cases are the most complex and general.

The boundary conditions are necessary to prescribe at the boundary
 the correct tangential stress $\sigma_\tau=\rho_Iu^*u_k$ in the momentum
equation\footnote{Proposition de modification des conditions aux limites de
paroi turbulente pour le Solveur Commun dans le cadre du mod\`ele
$k-\varepsilon$ standard, rapport EDF HI-81/00/019/A, 2000, M. Boucker, J.-D. Mattei.}
($\rho_I$ is the density at the centre of cell $I$).
The term which requires boundary conditions is the one containing the
velocity derivative in the normal direction to the wall\footnote{The transpose gradient term is treated in \fort{visecv}
and thus will not be considered here.}~:
$(\mu_I+\mu_{t,I})\ggrad{\vect{u}}\,\vect{n}$. It appears on the
right-hand side of the usual momentum equation (see \fort{bilsc2} and \fort{predvv}).

In the case where the  $k-\varepsilon$  model tends to surestimate
the production of turbulent kinetic energy, the length scale of the model,
$L_{k-\varepsilon}$,
can become significantly larger than the maximum theoretical length scale
of the turbulent boundary layer eddies  $L_{\text{theo}}$. We write~:
\begin{equation}
\left\{\begin{array}{l}
L_{k-\varepsilon} = C_{\mu}\displaystyle\frac{k^\frac{3}{2}}{\varepsilon}\\
L_{\text{theo}} = \kappa\, I'F
\end{array}\right.
\end{equation}

In the case where $L_{k-\varepsilon}>L_{\text{th\'eo}}$, we thus have
$\mu_{t,I}>\mu_{t}^{lm}$ with $\mu_{t,I}$ the turbulent viscosity of the
$k-\varepsilon$ model at point $I$ and $\mu_{t}^{lm}=\rho_I L_{\text{theo}}u_k$
the turbulent viscosity of the mixing length model. Additionally, the
tangential stress can write by making the turbulent viscosity appear~:
\begin{equation}
\sigma_\tau = \rho_Iu^*u_k = \displaystyle\frac{u^*}{\kappa\, I'F}\underbrace{\rho_I\kappa\, I'F\, u_k}_{\mu^{lm}_t}
\end{equation}
The viscosity scale introduced in the stress thus contradicts the one deduced
from the neighbouring turbulence calculated by the model.
Consequently we prefer to write the stress, by using the velocity scale of the $k-\varepsilon$ model when it is lower than
the limit $L_{\text{th\'eo}}$~:
\begin{equation}
\sigma_\tau = \displaystyle\frac{u^*}{\kappa\, I'F} max(\mu_{t}^{lm},\mu_{t,I})
\end{equation}

One can then use this value to calculate the diffusive flux
which depends upon it in the Navier-Stokes equations~:
\begin{equation}\label{Base_Clptur_eq_grad_sigma_clptur}
(\mu_I+\mu_{t,I})\ggrad{\vect{u}}\,\vect{n}=-\sigma_\tau \vect{\tau}.
\end{equation}

But the velocity gradient (face gradient) is computed in the code as~:
\begin{equation}\label{Base_Clptur_eq_grad_uf_clptur}
(\mu_I+\mu_{t,I})\ggrad{\vect{u}}\,\vect{n}=
\displaystyle\frac{(\mu_I+\mu_{t,I})}{\overline{I'F}}(\vect{u}_F-\vect{u}_{I'})
\end{equation}

Using (\ref{Base_Clptur_eq_grad_sigma_clptur}) and
(\ref{Base_Clptur_eq_grad_uf_clptur}) we obtain the value of $\vect{u}_F$
to be prescribed, referred to as $\vect{u}_{F,flux}$~(conservation of the momentum flux)~:
\begin{equation}\label{Base_Clptur_eq_uf_flux_clptur}
\begin{array}{ll}
\vect{u}_{F,flux}&=\vect{u}_{I'}-\displaystyle\frac{\overline{I'F}}{\mu_I+\mu_{t,I}}\sigma_\tau \vect{\tau}\\
                 &=\vect{u}_{I'}-\displaystyle\frac{u^*}{\kappa\, (\mu_I+\mu_{t,I})} max(\mu_{t}^{lm},\mu_{t,I}) \vect{\tau}
\end{array}
\end{equation}

In reality, an extra approximation is made. It consists in imposing a zero
 normal velocity at the wall and in using equation (\ref{Base_Clptur_eq_uf_flux_clptur})
 projected on the plane parallel to the wall~:
\begin{equation}
\vect{u}_{F,flux}=\left[u_{\tau,I'}-\displaystyle\frac{u^*}{\kappa\,
(\mu_I+\mu_{t,I})} max(\mu_{t}^{lm},\mu_{t,I}) \right]\vect{\tau}
\end{equation}

Moreover, if the value obtained for $y^+$ is
lower than  $y^+_{lim}$ a no-slip condition is applied.
Finally, one can also make the wall velocity appear in the final expression~:
\begin{equation}
\begin{array}{l}
\text{\bf "Flux" boundary conditions of the velocity}\,(k-\varepsilon)\\
\left\{\begin{array}{llr}
\vect{u}_{F,flux}&=\vect{v}_p& \text{ if\ }  y^+\leqslant
                           y^+_{lim} \\
\vect{u}_{F,flux}&=\vect{v}_p+&\left[u^r_{\tau,I'}-\displaystyle\frac{u^*}{\kappa\,
(\mu_I+\mu_{t,I})} max(\mu_{t}^{lm},\mu_{t,I}) \right]\vect{\tau}
\text{ otherwise }
\end{array}\right.
\end{array}
\end{equation}

A first pair of coefficients $A_{flux}$ and $B_{flux}$ can then be deduced
(for each component of the velocity separately) and it is used only
 to compute the tangential stress dependent term  (see \fort{bilsc2})~:
\begin{equation}
\begin{array}{l}
\text{\bf Coefficients associated with  the "flux" boundary conditions of the velocity } (k-\varepsilon)\\
\left\{\begin{array}{l}
\left\{\begin{array}{llr}
\vect{A}_{flux}&=\vect{v}_p& \text{ if\ } y^+\leqslant y^+_{lim} \\
\vect{A}_{flux}&=\vect{v}_p+&\left[u^r_{\tau,I'}-\displaystyle\frac{u^*}{\kappa\,
(\mu_I+\mu_{t,I})} max(\mu_{t}^{lm},\mu_{t,I}) \right]\vect{\tau} \text{ otherwise }
\end{array}\right.  \\
\vect{B}_{flux} = \vect{0}
\end{array}\right.
\end{array}
\end{equation}

We saw above how to impose a boundary condition to compute directly the stress term.
Further analysis is necessary to calculate correctly the velocity gradients. We
want to find a boundary face value which permits to obtain,
with the chosen expression for the gradient,
 the value the turbulent production as close as possible to its theoretical value
(determined by using the logarithmic law), in order to evaluate the normal
derivative the tangential velocity.
Thus, we define (at point $I$)~:
\begin{equation}\label{Base_Clptur_eq_ptheo_clptur}
P_{\text{th\'eo}} = \rho_I u^* u_k
\|\displaystyle\frac{\partial u_\tau}{\partial\vect{n}}\|_{I} =
\rho_I \displaystyle\frac{u_k(u^*)^2}{\kappa\, I'F}
\end{equation}

Morevoer, the dominant term of the production computed in cell $I$ is,
in classical situations ($y$ is the coordinate on the axis
whose direction vector is $\vect{\tilde{n}}$),
\begin{equation}
P_{\text{calc}} =
\mu_{t,I}\left(\displaystyle\frac{\partial u_\tau}{\partial y}\right)^2_{I}
\end{equation}

The normal gradient of the tangential velocity (cell gradient)
is calculated in the code using finite volume, and its expression
on regular orthogonal meshes is (see the notations on
figure \ref{Base_Clptur_fig_bord_ortho_clptur})~:
\begin{equation}
P_{\text{calc}} =
\mu_{t,I}\left(\displaystyle\frac{u_{\tau,G}-u_{\tau,F}}{2d}\right)^2 =
\mu_{t,I}\left(\displaystyle\frac{u_{\tau,I}+u_{\tau,J}-2u_{\tau,F}}{4d}\right)^2
\end{equation}
We then assume that $u_{\tau,J}$ can be obtained from $u_{\tau,I}$
and from the normal gradient of $u_{\tau}$ calculated in G
from the logarithmic law~:
\begin{equation}
\label{Base_Clptur_eq_dvp_lim_utau}
u_{\tau,J}=u_{\tau,I}+ IJ\,.\,(\partial_y u_{\tau})_G+\mathcal{O} (IJ^{\,2}) \approx
u_{\tau,I}+ IJ\,.\,\left[\partial_y \left(\displaystyle
\frac{u^*}{\kappa}\,ln{ (y^+)} + 5,2 \right)\right]_G=
u_{\tau,I}+2d\displaystyle\frac{u^*}{\kappa\, 2d}
\end{equation}
and thus we obtain~:
\begin{equation}\label{Base_Clptur_eq_pcalc_clptur}
\begin{array}{lll}
P_{\text{calc}} &=&
\mu_{t,I}\left(\displaystyle\frac{u_{\tau,I}+u_{\tau,I}+2d\frac{u^*}{\kappa\, 2d}-2u_{\tau,F}}{4d}\right)^2 \\
&=&\mu_{t,I}\left(\displaystyle\frac{2u_{\tau,I}+2\frac{u^*}{2\kappa}-2u_{\tau,F}}{4d}\right)^2 =
\mu_{t,I}\left(\displaystyle\frac{u_{\tau,I}+\frac{u^*}{2\kappa}-u_{\tau,F}}{2d}\right)^2
\end{array}
\end{equation}

\begin{figure}[h]
\centerline{\includegraphics[height=7cm]{bordortho}}
\caption{\label{Base_Clptur_fig_bord_ortho_clptur}Cellule de bord - Maillage orthogonal.}
\end{figure}

We then use (\ref{Base_Clptur_eq_ptheo_clptur}) and
(\ref{Base_Clptur_eq_pcalc_clptur}) to impose that the calculated
production is equal to the theoretical production. The preceeding
formulae are extended with no precaution to non-orthogonal meshes (the velocity
at $I$ is then simply computed at $I'$).
The following expression for $u_{\tau,F}$ is then obtained~:
\begin{equation}
u_{\tau,F,grad} =u_{\tau,I'}-\displaystyle\frac{u^*}{\kappa}\left(
2\sqrt{\displaystyle\frac{\rho_I\kappa\, u_k I'F}{\mu_{t,I}} }-\displaystyle\frac{1}{2}\right)
\end{equation}

Additionally, we force the gradient to remain as stiff as the one
given by the normal derivative of the theoretical velocity profile
(logarithmic) at $I'$~:\\
$\partial_y u_{\tau} = \partial_y (\displaystyle
\frac{u^*}{\kappa}\,ln{ (y^+)} + 5,2 ) =\displaystyle\frac{u^*}{\kappa\, \overline{I'F}}$, thus~:
\begin{equation}
u_{\tau,F,grad} =u_{\tau,I'}-\displaystyle\frac{u^*}{\kappa}max\left(1,
2\sqrt{\displaystyle\frac{\rho_I\kappa\, u_k I'F}{\mu_{t,I}} }-\displaystyle\frac{1}{2}\right)
\end{equation}

Finally, we clip the velocity at the wall with a minimum value calculated
assuming that we are in the logarithmic layer~:
\begin{equation}\label{Base_Clptur_eq_ugrad_clptur}
u_{\tau,F,grad} =
max\left(u^*\left(\displaystyle\frac{1}{\kappa}ln(y^+_{lim})+5,2\right),
u_{\tau,I'}-\displaystyle\frac{u^*}{\kappa}\left[max\left(1,
2\sqrt{\displaystyle\frac{\rho_I\kappa\, u_k I'F}{\mu_{t,I}}
}-\displaystyle\frac{1}{2}\right)\right]\right)
\end{equation}


The normal derivative at the wall is prescribed to zero.
If the $y^+$ value at the wall is lower than  $y^+_{lim}$,
a no-slip condition is prescribed. Finally, one can also
make explicit the velocity of the wall in the final expression~:
\begin{equation}
\begin{array}{l}
\text{\bf "Gradient" boundary conditions of the velocity} (k-\varepsilon)\\
\left\{\begin{array}{l}
\vect{u}_{F,grad}=\vect{v}_p
          \qquad\qquad\text{ if }  y^+\leqslant y^+_{lim} \\
\vect{u}_{F,grad}=\vect{v}_p+\\
          \left\{
max\left(u^*\left(\displaystyle\frac{1}{\kappa}ln(y^+_{lim})+5,2\right),
u^r_{\tau,I'}-\displaystyle\frac{u^*}{\kappa}\left[max\left(1,
2\sqrt{\displaystyle\frac{\rho_I\kappa\, u_k I'F}{\mu_{t,I}}
}-\displaystyle\frac{1}{2}\right)\right]\right)
\right\}\vect{\tau}
          \text{ otherwise }
\end{array}\right.
\end{array}
\end{equation}

A second pair of coefficients $A_{grad}$ and $B_{grad}$ can then be deduced
(for each velocity component separately). It is used when the velocity
gradient is necessary (except for the terms depending on the tangential shear,
those being treated in \fort{bilsc2} using $A_{flux}$ and $B_{flux}$)~:
\begin{equation}
\begin{array}{l}
\text{\bf Coefficients associated to the "gradient" boundary conditions of }\\
\qquad\qquad\qquad\qquad\text{\bf the velocity}  (k-\varepsilon)\\
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\vect{A}_{grad}=\vect{v}_p
                    \qquad\qquad\text{ \ if\ } y^+\leqslant y^+_{lim} \\
\vect{A}_{grad}=\vect{v}_p+\\
\left\{
max\left(u^*\left(\displaystyle\frac{1}{\kappa}ln(y^+_{lim})+5,2\right),
u^r_{\tau,I'}-\displaystyle\frac{u^*}{\kappa}\left[max\left(1,
2\sqrt{\displaystyle\frac{\rho_I\kappa\, u_k I'F}{\mu_{t,I}}
}-\displaystyle\frac{1}{2}\right)\right]\right)
\right\}\vect{\tau}
    \text{ otherwise }
\end{array}\right.  \\
\vect{B}_{grad} = \vect{0}
\end{array}\right.
\end{array}
\end{equation}


\etape{Boundary conditions of the velocity in $R_{ij}-\varepsilon$\vspace{0,3cm}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The boundary conditions of the velocity with the  $R_{ij}-\varepsilon$ model are
more simple, since there are only of one type.
Keeping the same notations as above, we want the tangential velocity gradient
(calculated at $I$, and to be used to evaluate the turbulent production)
to be consistent with the logarithmic law giving the ideal tangential
velocity profile. The theoretical gradient is~:

\begin{equation}\label{Base_Clptur_eq_grad_theo_clptur}
G_{\text{theo}} = \left(\displaystyle\frac{\partial u_\tau}{\partial y}\right)_{I'}=\frac{u^*}{\kappa\, I'F}
\end{equation}

The normal gradient of the tangential velocity (cell gradient) is
calculated in the code using finite volumes, and its expression in the case
of regular orthogonal meshes is (see notations in figure
\ref{Base_Clptur_fig_bord_ortho_clptur})~:
\begin{equation}
G_{\text{calc}}=\displaystyle\frac{u_{\tau,G}-u_{\tau,F}}{2d} =
\displaystyle\frac{u_{\tau,I}+u_{\tau,J}-2u_{\tau,F}}{4d}
\end{equation}
We then assume that $u_{\tau,J}$ can be obtained from $u_{\tau,I}$
and from the normal gradient of $u_{\tau}$ calculated in G
from the logarithmic law (see equation (\ref{Base_Clptur_eq_dvp_lim_utau}))
$u_{\tau,J}=u_{\tau,I}+2d\displaystyle\frac{u^*}{\kappa\, 2d}$ and we thus
obtain~:
\begin{equation}\label{Base_Clptur_eq_grad_calc_clptur}
G_{\text{calc}}=\displaystyle\frac{u_{\tau,I}+u_{\tau,I}+2d\displaystyle\frac{u^*}{\kappa\, 2d}-2u_{\tau,F}}{4d}=
\displaystyle\frac{2u_{\tau,I}+2\displaystyle\frac{u^*}{2\kappa}-2u_{\tau,F}}{4d}=
\displaystyle\frac{u_{\tau,I}+\displaystyle\frac{u^*}{2\kappa}-u_{\tau,F}}{2d}
\end{equation}
We then use the equations (\ref{Base_Clptur_eq_grad_theo_clptur}) and
(\ref{Base_Clptur_eq_grad_calc_clptur}) to derive an expression for
$u_{\tau,F}$ (the preceeding
formulae are extended with no precaution to the case non-orthogonal meshes,
the velocity at $I$ being simply computed at $I'$)~:
\begin{equation}
u_{\tau,F}= u_{\tau,I'}-\displaystyle\frac{3u^*}{2\kappa }
\end{equation}
The normal derivative at the wall is prescribed to zero.
If the value obtained for $y^+$ at the wall is lower than  $y^+_{lim}$,
a no-slip condition is prescribed. Finally, one can also
make explicit the velocity of the wall in the final expression~:
\begin{equation}\label{Base_Clptur_eq_CL_vitesse_rij_clptur}
\begin{array}{l}
\text{\bf Boundary conditions of the velocity }(R_{ij}-\varepsilon)\\
\left\{\begin{array}{lll}
\vect{u}_{F}&=\vect{v}_p& \text{ \ if\ } y^+\leqslant
                           y^+_{lim} \\
\vect{u}_{F}&=\left[u^r_{\tau,I'}-\displaystyle\frac{3u^*}{2\kappa } \right]\vect{\tau} +\vect{v}_p &\text{ otherwise }
\end{array}\right.
\end{array}
\end{equation}


Un couple de coefficients $A$ et $B$ s'en d\'eduit (pour
chaque composante de vitesse s\'epar\'ement)~:
\begin{equation}\label{Base_Clptur_eq_AB_vitesse_rij_clptur}
\begin{array}{l}
\text{\bf Coefficients associ\'es aux conditions aux limites sur la vitesse }(R_{ij}-\varepsilon)\\
\left\{\begin{array}{l}
\left\{\begin{array}{lll}
\vect{A}&=\vect{v}_p& \text{ \ si\ } y^+\leqslant y^+_{lim} \\
\vect{A}&=\left[u^r_{\tau,I'}-\displaystyle\frac{3u^*}{2\kappa } \right]\vect{\tau}
+\vect{v}_p &\text{ sinon }
\end{array}\right.\\
\vect{B}= \vect{0}
\end{array}\right.
\end{array}
\end{equation}
A pair of coefficients $A_{grad}$ and $B_{grad}$ can be deduced
from the above equation
(for each velocity component separately).


\etape{Boundary conditions of the velocity in laminar\vspace{0,3cm}}
When no turbulence model is activated, we implicitly use a one velocity
scale model (there is no turbulent variables to compute  $u_k$), and the same
conditions
\footnote{In other words; the boundary conditions are given by
 (\ref{Base_Clptur_eq_CL_vitesse_rij_clptur}) and
(\ref{Base_Clptur_eq_AB_vitesse_rij_clptur}).}
 as in $R_{ij}-\varepsilon$ are used~: the model degenerates automatically.



\newpage

\etape{Boundary conditions for $k$ and $\varepsilon$ (standard
$k-\varepsilon$ model)\vspace{0,3cm}}

We impose $k$ with a Dirichlet condition using the friction velocity
$u_k$ (see equation~(\ref{Base_Clptur_Eq_Mod_'2ech_Vit})) :
\begin{equation}
k= \displaystyle\frac{u_k^2}{C_\mu^\frac{1}{2}}
\end{equation}

We want to impose the normal derivative of  $\varepsilon$ from
of the following theoretical law
 (see the notations in figure \ref{Base_Clptur_fig_bord_ortho_clptur})~:
\begin{equation}\label{Base_Clptur_eq_partialep_theo_clptur}
G_{\text{theo},\varepsilon} = \displaystyle\frac{\partial \left(u_k^3/(\kappa\, y)\right)}{\partial y}
\end{equation}



We use point $M$ to impose a boundary condition with a higher order of
accuracy in space.
 Indeed, using the simple expression
$\varepsilon_F=\varepsilon_I+d\partial_y\varepsilon_I + O(d^2)$ leads to
first order accuracy.
 A second order accuracy can be reached
 using the following Taylor series expansion:
\begin{equation}
\left\{\begin{array}{ll}
\varepsilon_M&=\varepsilon_I-\displaystyle\frac{d}{2}\partial_y\varepsilon_I+\displaystyle\frac{d^2}{8}\partial^2_y\varepsilon_I+O(d^3)\\
\varepsilon_M&=\varepsilon_F+\displaystyle\frac{d}{2}\partial_y\varepsilon_F+\displaystyle\frac{d^2}{8}\partial^2_y\varepsilon_F+O(d^3)
\end{array}\right.
\end{equation}
By substracting these twxo expression, we obtain
\begin{equation}\label{Base_Clptur_eq_epsf_clptur}
\varepsilon_F=\varepsilon_I-\displaystyle\frac{d}{2}(\partial_y\varepsilon_I+\partial_y\varepsilon_F)+O(d^3)
\end{equation}
Additionally, we have
\begin{equation}
\left\{\begin{array}{ll}
\partial_y\varepsilon_I&=\partial_y\varepsilon_M+d\partial^2_y\varepsilon_M+O(d^2)\\
\partial_y\varepsilon_F&=\partial_y\varepsilon_M-d\partial^2_y\varepsilon_M+O(d^2)
\end{array}\right.
\end{equation}
The sum of these last two expressions gives
$\partial_y\varepsilon_I+\partial_y\varepsilon_F=2\partial_y\varepsilon_M+O(d^2)$ and,
using equation
(\ref{Base_Clptur_eq_epsf_clptur}), we finally obtain a second order
approximation for $\varepsilon_F$~:
\begin{equation}
\varepsilon_F=\varepsilon_I-d\partial_y\varepsilon_M+O(d^3)
\end{equation}
The theoretical value (see equation \ref{Base_Clptur_eq_partialep_theo_clptur})
is then used in order to evaluate
 $\partial_y\varepsilon_M$ and thus the value to prescribe at
the boundary is obtained ($d=I'F$)~:
\begin{equation}
\varepsilon_F=\varepsilon_I+d\displaystyle\frac{ u_k^3}{\kappa\, (d/2)^2}
\end{equation}

This expression is extended to non-orthogonal mesh without any precautions
(which is bound to deteriorate the spatial accuracy ot the method).

Additionally, the velocity $u_k$ is set to zero for $y^+\leqslant y^+_{lim}$.
Consequently, the value of $k$ and the flux of $\varepsilon$ are both zero.

Finally we have~:

\begin{equation}
\begin{array}{l}
\text{\bf Boundary conditions for } k \text { \bf and } \varepsilon \\
\left\{\begin{array}{ll}
k_F&= \displaystyle\frac{u_k^2}{C_\mu^\frac{1}{2}}\\
\varepsilon_F&=\varepsilon_{I'}+I'F\displaystyle\frac{ u_k^3}{\kappa\, (I'F/2)^2}
\end{array}\right. \\
\text{with } u_k = 0 \text { if } y^+\leqslant y^+_{lim}
\end{array}
\end{equation}
and the associated pair of coefficients
\begin{equation}
\begin{array}{l}
\text{\bf Coefficients associated to the boundary conditions of }
k \text { \bf et } \varepsilon \\
\left\{\begin{array}{llll}
A_k&= \displaystyle\frac{u_k^2}{C_\mu^\frac{1}{2}} &\text{ and } B_k&= 0 \\
A_\varepsilon&=I'F\displaystyle\frac{ u_k^3}{\kappa\, (I'F/2)^2}&\text{ and } B_\varepsilon&= 1
\end{array}\right.\\
\text{with } u_k = 0 \text { if } y^+\leqslant y^+_{lim}
\end{array}
\end{equation}







\etape{Boundary conditions for $R_{ij}$ and $\varepsilon$
(standard $R_{ij}-\varepsilon$ model)\vspace{0,3cm}}

The boundary conditions for the Reynolds stresses in the coordinate system
attached to the wall write ($\hat R$ refers to the local coordinate system)~:
\begin{equation}
\begin{array}{lll}
\partial_{\tilde{n}} \hat R_{\tau\tau} = \partial_{\tilde{n}} \hat R_{\tilde{n}\tilde{n}}=\partial_{\tilde{n}} \hat R_{bb}=0  &
\text { et } \hat R_{\tau\tilde{n}} = -u^*u_k  &\text { et  } \hat R_{\tau b} = \hat R_{\tilde{n} b}
= 0
\end{array}
\end{equation}


Additionally, if the value obtained for $y^+$ is lower
than  $y^+_{lim}$, all Reynolds stresses are set to zero
(we assume that the turbulent stresses are negligible
compared to the viscous stresses).

Although it is done systematically in the code,
expressing the above boundary conditions in the computation coordinate
system is relatively complex (rotation of a tensor):~
the reader is referred to the documentation of \fort{clsyvt}
where more details are provided. In what follows,
the boundary conditions will only be presented in the local
coordinate system.

Thus we want to impose the boundary values~:
\begin{equation}
\begin{array}{l}
\text{\bf Boundary conditions of } R_{ij} \\
\left\{\begin{array}{lll}
\text{ if }y^+\leqslant y^+_{lim}&\hat R_{\alpha\alpha,F} = \hat R_{\alpha\beta,F} = 0 \\
\text { otherwise }                         &\left\{\begin{array}{l}
\hat R_{\alpha\alpha,F} = \hat R_{\alpha\alpha,I'}  \text{ with }\alpha \in \{\tau,\tilde{n},b\}\text{ (without summation)}\\
\hat R_{\tau\tilde{n}} = -u^*u_k  \text { and } \hat R_{\tau b} = \hat
R_{\tilde{n} b} =0
\end{array}\right.
\end{array}\right.
\end{array}
\end{equation}

For the dissipation, the boundary condition applied is identical to the
one applied with the $k-\varepsilon$ model~:
\begin{equation}
\begin{array}{l}
\text{\bf Boundary conditions of } \varepsilon  \text{ }(R_{ij}-\varepsilon)  \\
\left\{
\begin{array}{l}
\varepsilon_F=\varepsilon_{I'}+I'F\displaystyle\frac{ u_k^3}{\kappa\, (I'F/2)^2}\\
\text{with } u_k = 0 \text { if } y^+\leqslant y^+_{lim}
\end{array}\right.
\end{array}
\end{equation}


These boundary conditions can be imposed explicitly (by default,  ICLPTR=0)
or (semi-)implicitly ( ICLPTR=1). The standard option (explicit) leads to
the following values\footnote{It can be noticed
that the value of $\varepsilon$ is not reconstructed at $I'$. We thus wish
to improve the ''stability'' since $\varepsilon$ has a very steep gradient
at the wall ($\varepsilon \approx \displaystyle\frac{1}{y}$), and thus
only weak recontruction errors at $I'$ could lead to important
deterioration of the results. However, it would be necessary to
check if stability is altered with the gradient reconstruction of
\fort{gradrc}.}
of the coefficients  $A$ and $B$~:


\begin{equation}
\begin{array}{l}
\text{\bf Coefficients associated to the explicit boundary conditions of }
R_{ij} \text{\bf et } \varepsilon \\
\left\{\begin{array}{l}
\begin{array}{l}
\text{If }y^+\leqslant y^+_{lim}\text{~:}\\
\qquad\begin{array}{lll}
      A_{\hat R_{\alpha\alpha}} = A_{\hat R_{\alpha\beta}} = 0  &\text{ and } B_{\hat R_{\alpha\alpha}} =B_{\hat R_{\alpha\beta}}= 0 &
      \end{array}\\
\text{Otherwise~:}\\
\qquad\left\{\begin{array}{lll}
      A_{\hat R_{\alpha\alpha}} = (R_{\alpha\alpha})_I  &\text{ and } B_{\hat R_{\alpha\alpha}} = 0
         &\text{ with }\alpha \in \{\tau,\tilde{n},b\}\text{ (without summation)}\\
      A_{\hat R_{\tau \tilde{n}}} = -u^*u_k   &\text{ and } B_{\hat R_{\tau \tilde{n}}} = 0 &\\
      A_{\hat R_{\tau  b}} = A_{\hat R_{\tilde{n} b}} = 0   &\text{ and } B_{\hat R_{\tau b}} =B_{\hat R_{\tilde{n} b}} = 0 &\\
      \end{array}\right.
\end{array}\\
\text{And for all cases~:}\\
\qquad A_\varepsilon=\varepsilon_{I}+I'F\displaystyle\frac{ u_k^3}{\kappa\, (I'F/2)^2} \text{ and } B_\varepsilon= 0
\end{array}\right.\\
\text{with } u_k = 0 \text { if } y^+\leqslant y^+_{lim}
\end{array}
\end{equation}

The semi-implicit option leads to the following values for the
coefficients $A$ and $B$. They differ from the preceeding ones, only
as regards as the diagonal Reynolds stresses and dissipation.
In the general case, impliciting of some components of the tensor
in the local coordinate system leads to partially impliciting
all the components in the global computation coordinate system~:
\begin{equation}
\begin{array}{l}
\text{\bf Coefficients associated to the semi-implicit boundary conditions of}\\
\qquad\qquad\qquad\qquad\text {\bf sur les variables } R_{ij} \text{\bf et } \varepsilon \\
\left\{\begin{array}{l}
\begin{array}{l}
\text{If }y^+\leqslant y^+_{lim}\text{~:}\\
\qquad\begin{array}{lll}
      A_{\hat R_{\alpha\alpha}} = A_{\hat R_{\alpha\beta}} = 0  &\text{ and } B_{\hat R_{\alpha\alpha}} =B_{\hat R_{\alpha\beta}}= 0 &
      \end{array}\\
\text{Sinon~:}\\
\qquad\left\{\begin{array}{lll}
      A_{\hat R_{\alpha\alpha}} = 0  &\text{ and } B_{\hat R_{\alpha\alpha}} = 1 &\text{ with }\alpha \in \{\tau,\tilde{n},b\}\text{ (without summation)}\\
      A_{\hat R_{\tau \tilde{n}}} = -u^*u_k   &\text{ and } B_{\hat R_{\tau \tilde{n}}} = 0 &\\
      A_{\hat R_{\tau  b}} = A_{\hat R_{\tilde{n} b}} = 0   &\text{ and } B_{\hat R_{\tau b}} =B_{\hat R_{\tilde{n} b}} = 0 &\\
      \end{array}\right.
\end{array}\\
\text{And for all cases~:}\\
\qquad A_\varepsilon=I'F\displaystyle\frac{ u_k^3}{\kappa\, (I'F/2)^2}\text{ and } B_\varepsilon= 1
\end{array}\right.\\
\text{with } u_k = 0 \text { if } y^+\leqslant y^+_{lim}
\end{array}
\end{equation}




\newpage
\etape{Boundary conditions of the {\it VarScalaires}\vspace{0,3cm}}
Only the boundary conditions when a boundary value is imposed
(at the wall or away from the wall with a possible external exchange coefficient)
are treated here.
The reader is referred to the notations in figure
\ref{Base_Clptur_fig_flux_clptur} and to the general presentation provided in
\fort{condli} (in what follows only the most essential part of the
presentation is repeated).

The conservation of the normal flux at the boundary for variable $f$ writes~:
\begin{equation}\label{Base_Clptur_eq_flux_clptur}
\begin{array}{l}
    \underbrace{h_{int}(f_{b,int}-f_{I'})}_{\phi_{int}}
  = \underbrace{h_{b}(f_{b,ext}-f_{I'})}_{\phi_{b}}
  = \left\{\begin{array}{ll}
    \underbrace{h_{imp,ext}(f_{imp,ext}-f_{b,ext})}_{\phi_{\text{\it real
imposed}}} &\text{(Dirichlet condition)}\\
    \underbrace{\phi_{\text{\it imp,ext}}}_{\phi_{\text{\it real imposed}}}
            &\text{(Neumann condition)}
           \end{array}\right.
\end{array}
\end{equation}

The above two equation are rearranged in order to obtain the value of the
numerical flux $f_{b,int}=f_{F}$ to impose at the wall boundary face,
according to the values of $f_{imp,ext}$ and $h_{imp,ext}$ set by the user,
and to the value of  $h_{b}$ set by the similarity laws detailed hereafter.
The coefficients $A$ and $B$  can then be readily derived, and are presented here.

\begin{equation}\label{Base_Clptur_eq_fbint_clptur}
\begin{array}{l}
\text{\bf Boundary conditions of the {\it VarScalaires} }\\
f_{b,int} =
\underbrace{\displaystyle\frac{h_{imp,ext}}{h_{int}+h_r h_{imp,ext} } f_{imp,ext}}_{A} +
\underbrace{\displaystyle\frac{h_{int}+h_{imp,ext}(h_r-1)}{h_{int}+h_r h_{imp,ext} }}_{B} f_{I'}
\text{  with } h_r=\displaystyle\frac{h_{int}}{h_{b}}
\end{array}
\end{equation}


\newpage
{\bf Similarity principle~: calculation of } $h_b$.

The only remaining unknown in expression (\ref{Base_Clptur_eq_fbint_clptur})
is the value of $h_{b}$, since  $h_{int}$ has a numerical value which
is coherent with the face gradient computation options detailed in
 \fort{condli} ($h_{int}=\displaystyle\frac{\alpha}{\overline{I'F}}$).
The value of  $h_{b}$ must relate the flux to the values
$f_{I'}$ and $f_{b,ext}$ by taking into account the boundary layer
(the profile of $f$ is not always linear)~:
\begin{equation}
\phi_b=h_b\,(f_{b,ext}-f_{I'})
\end{equation}


The following considerations are presented using the general notations.
In particular, the Prandtl-Schmidt number writes
$\sigma=\displaystyle\frac{\nu\,\rho\,C}{\alpha}$.
When the considered scalar $f$ is the temperature,
we have (see \fort{condli})
\begin{list}{$\bullet$}{}
\item $C=C_p$ (specific heat capacity),
\item $\alpha=\lambda$ (molecular conductivity),
\item $\sigma = \displaystyle\frac{\nu\,\rho\,C_p}{\lambda} = Pr$
       (Prandtl number),
\item $\sigma_t = Pr_t$ (turbulent Prandtl number),
\item $\phi=\left(\lambda+\displaystyle\frac{C_p\mu_t}{\sigma_t}\right)
        \displaystyle\frac{\partial T}{\partial y}$ (flux in $Wm^{-2}$).
\end{list}

The reference "Convection Heat Transfer",
Vedat S. Arpaci and Poul S. Larsen, Prentice-Hall, Inc was used.

The flux at the wall writes for the scalar $f$ (the flux is positive
if it enters the fluid domain, as shown by the orientation of the
$y$ axis)~:
\begin{equation}\label{Base_Clptur_Eq_Flux_scalaire}
\phi = -\left(\alpha+C\,\frac{\mu_t}{\sigma_t}\right)
                  \frac{\partial f}{\partial y}
     = -\rho\,C \left(\displaystyle\frac{\alpha}{\rho\,C}+
                                \frac{\mu_t}{\rho\sigma_t}\right)
                  \frac{\partial f}{\partial y}
\end{equation}

Similarly for the temperature, with
 $a=\displaystyle\frac{\lambda}{\rho\,C_p}$ and
$a_t=\displaystyle\frac{\mu_t}{\rho\,\sigma_t}$,
we have~:
\begin{equation}
\phi = -\rho\,C_p(a+a_t)\frac{\partial T}{\partial y}
\end{equation}

In order to make $f$ dimensionless, we introduce $f^*$ defined using
the flux at the boundary  $\phi_b$~:
\begin{equation}
f^* = -\displaystyle\frac{\phi_b}{\rho\,C\,u_k}
\end{equation}
For the temperature, we thus have~:
\begin{equation}
T^* = -\displaystyle\frac{\phi_b}{\rho\,C_p\,u_k}
\end{equation}

We then divide both sides of equation~(\ref{Base_Clptur_Eq_Flux_scalaire})
by  $\phi_b$. For the left-hand side, we simplify using the conservation
of the flux (and thus the fact that $\phi=\phi_b$). For the right-hand
side, we replace $\phi_b$ by its value $-\rho\,C\,u_k\,f^*$.
With the notations~:
\begin{equation}
       \nu=\displaystyle\frac{\mu}{\rho}
\qquad \nu_t=\displaystyle\frac{\mu_t}{\rho}
\qquad y^+=\displaystyle\frac{y\,u_k}{\nu}
\qquad f^+=\displaystyle\frac{f-f_{b,ext}}{f^*}
\end{equation}
we have~:
\begin{equation}\label{Base_Clptur_Eq_Flux_scalaire_adim}
1 =  \left(\displaystyle\frac{1}{\sigma}+
              \displaystyle\frac{1}{\sigma_t}\frac{\nu_t}{\nu}\right)
                  \displaystyle\frac{\partial f^+}{\partial y^+}
\end{equation}

One can remark at this stage that with the notations used in the
preceeding,  $h_b$ can be expressed as a function of $f^+_{I'}$~:
\begin{equation}
h_b=\displaystyle\frac{\phi_b}{f_{b,ext}-f_{I'}}=\frac{\rho\,C\,u_k}{f^+_{I'}}
\end{equation}

In order to compute $h_b$, we integrate
equation ~(\ref{Base_Clptur_Eq_Flux_scalaire_adim}) to obtain
$f^+_{I'}$.
The only difficulty then consists in prescribing a variation law
$\mathcal{K}=\displaystyle\frac{1}{\sigma}+
              \displaystyle\frac{1}{\sigma_t}\frac{\nu_t}{\nu}$.


In the fully developed turbulent region
(far enough from the wall, for $y^+\geqslant y^+_2$),
a mixing length hypothesis models the variations of
$\nu_t$~:
\begin{equation}
\nu_t = l^2 \arrowvert \frac{\partial U}{\partial y} \arrowvert =
\kappa \,y\,u^*
\end{equation}
Additionally, the molecular diffusion of $f$
(or the conduction when $f$ represents the temperature)
is negligible compared to its turbulent diffusion~: therefore
we neglect
$\displaystyle\frac{1}{\sigma}$ compared to
$\displaystyle\frac{1}{\sigma_t}\frac{\nu_t}{\nu}$.
Finally we have
\footnote{We make the approximation that the definitions of $y^+$
from $u^*$ and $u_k$ are equivalent.}~:
\begin{equation}
\mathcal{K}= \displaystyle\frac{\kappa \,y^+}{\sigma_t}
\end{equation}

On the contrary, in the near-wall region (for $y^+ < y^+_1$)
the turbulent contribution becomes negligible
compared to the molecular contribution and we thus neglect
$\displaystyle\frac{1}{\sigma_t}\frac{\nu_t}{\nu}$ compared to
$\displaystyle\frac{1}{\sigma}$.

It would be possible to restrict ourselves to these
two regions, but Arpaci and Larsen suggest the model
can be improved by introducing an intermediate
region ($y^+_1 \leqslant y^+ < y^+_2$)
in which the following hypothesis is made~:
\begin{equation}
\frac{\nu_t}{\nu} = a_1 (y^+)^3
\end{equation}
where $a_1$ is a constant whose value is obtained from
experimental correlations~:
\begin{equation}
a_1 =\displaystyle\frac{\sigma_t}{1000}
\end{equation}

Thus the following model is used for $\mathcal{K}$
(see a sketch
in figure~\ref{Base_Clptur_Fig_a_plus_at_fonction_yplus})~:
\begin{equation}
\mathcal{K}=\left\{
\begin{array}{ll}
\displaystyle\frac{1}{\sigma}
             &\text{if } y^+ < y^+_1\\
\displaystyle\frac{1}{\sigma}
+\displaystyle\frac{a_1 (y^+)^3}{\sigma_t}
             &\text{if } y^+_1 \leqslant y^+ < y^+_2\\
\displaystyle\frac{\kappa \,y^+}{\sigma_t}
             &\text{if } y^+_2\leqslant y^+\\
\end{array}
\right.
\end{equation}

\begin{figure}[htp]\label{Base_Clptur_Fig_a_plus_at_fonction_yplus}
\centerline{\includegraphics[height=8cm]{clthermique}}
\caption{$(a+a_t)/\nu$ as a function of $y^+$ obtained
                       for $\sigma=1$ and $\sigma_t=1$.}
\end{figure}


The values of $y^+_1$ and $y^+_2$ are obtained by calculating
the intersection points of the variations laws used
for $\mathcal{K}$.

The existence of an intermediate region depends upon the
values of $\sigma$.
Let's first consider the case where $\sigma$ cannot be neglected
compared to 1. In practise we consider  $\sigma > 0,1$
(this is the common case when scalar $f$ represents
the air or the water temperature in normal temperature
and pressure conditions). It is assumed that
$\displaystyle\frac{1}{\sigma}$ can be neglected compared to
$\displaystyle\frac{a_1 (y^+)^3}{\sigma_t}$ in the
intermediate region.
We thus obtain~:
\begin{equation}
  y^+_1 =\left(\displaystyle\frac{1000}{\sigma}\right)^\frac{1}{3} \qquad\qquad
  y^+_2 = \sqrt{\displaystyle\frac{1000\kappa}{\sigma_t}}
\end{equation}
The dimensionless equation~(\ref{Base_Clptur_Eq_Flux_scalaire_adim})
is integrated under the same hypothesis and we obtain the law of $f^+$~:
\begin{equation}
\left\{
\begin{array}{ll}
f^+ = \sigma \,y^+ & \text{if } y^+ < y^+_1 \\
f^+ = a_2 -\displaystyle\frac{\sigma_t}{2\,a_1\,(y^+)^2}& \text{if } y_1^+ \leqslant y^+ < y_2^+ \\
f^+ = \displaystyle\frac{\sigma_t}{\kappa}\,ln(y^+)+a_3& \text{if } y^+_2 \leqslant y^+\\
\end{array}
\right.
\end{equation}
where $a_2$ and $a_3$ are integration constants,
which have been chosen to obtain
a continuous  profile of $f^+$~:
\begin{equation}
a_2=15\sigma^{\frac{2}{3}}\qquad\qquad
a_3=15\sigma^{\frac{2}{3}}-\displaystyle\frac{\sigma_t}{2\kappa}
\left(1+
ln\left(\displaystyle\frac{1000\kappa}{\sigma_t}\right)\right)
\end{equation}

Let's now study the case where  $\sigma$ is much smaller than 1.
In practise it is assumed that $\sigma \leqslant 0,1$ (this is for
instance the case for liquid metals whose thermal conductivity is very
large, and who have Prandtl number of values of the order of 0.01).
The intermediate region then disappears and the coordinate of the
interface between the law used in the near-wall region and the one
used away from the wall is given by~:
\begin{equation}
y^+_0= \displaystyle\frac{\sigma_t}{\kappa\sigma}
\end{equation}

The dimensionless equation~(\ref{Base_Clptur_Eq_Flux_scalaire_adim})
is then integrated under the same hypothesis, and the law of
 $f^+$ is obtained~:
\begin{equation}
\left\{
\begin{array}{ll}
f^+ = \sigma \,y^+ & \text{if } y^+ \leqslant y^+_0 \\
f^+ = \displaystyle\frac{\sigma_t}{\kappa}\,
        ln\left(\displaystyle\frac{y^+}{y^+_0}\right)+\sigma \,y^+_0
                   & \text{if } y^+_0 < y^+\\
\end{array}
\right.
\end{equation}


\newpage
To summarize, the computation of $h_b$
\begin{equation}
h_b=\displaystyle\frac{\phi_b}{f_{b,ext}-f_{I'}}=\frac{\rho\,C\,u_k}{f^+_{I'}}
\end{equation}
is performed by calculating  $f^+_{I'}$ from $y^+=y^+_{I'}$
using the following laws.

If $\sigma\leqslant 0,1$, a two-layer model is used~:
\begin{equation}
\left\{
\begin{array}{ll}
f^+ = \sigma \,y^+ & \text{if } y^+ \leqslant y^+_0 \\
f^+ = \displaystyle\frac{\sigma_t}{\kappa}\,
        ln\left(\displaystyle\frac{y^+}{y^+_0}\right)+\sigma \,y^+_0
                   & \text{if } y^+_0 < y^+\\
\end{array}
\right.
\end{equation}
with
\begin{equation}
y^+_0= \displaystyle\frac{\sigma_t}{\kappa\sigma}
\end{equation}


If $\sigma > 0,1$, a three-layer model is used~:
\begin{equation}
\left\{
\begin{array}{ll}
f^+ = \sigma \,y^+ & \text{if } y^+ < y^+_1 \\
f^+ = a_2 -\displaystyle\frac{\sigma_t}{2\,a_1\,(y^+)^2}& \text{if } y_1^+ \leqslant y^+ < y_2^+ \\
f^+ = \displaystyle\frac{\sigma_t}{\kappa}\,ln(y^+)+a_3& \text{if } y^+_2 \leqslant y^+\\
\end{array}
\right.
\end{equation}
with
\begin{equation}
  y^+_1 =\left(\displaystyle\frac{1000}{\sigma}\right)^\frac{1}{3} \qquad\qquad
  y^+_2 = \sqrt{\displaystyle\frac{1000\kappa}{\sigma_t}}
\end{equation}
and
\begin{equation}
a_2=15\sigma^{\frac{2}{3}}\qquad\qquad
a_3=15\sigma^{\frac{2}{3}}-\displaystyle\frac{\sigma_t}{2\kappa}
\left(1+
ln\left(\displaystyle\frac{1000\kappa}{\sigma_t}\right)\right)
\end{equation}

\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Points to treat}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


The use of \var{HFLUI/CPP} when \var{ISCSTH} is 2 (case with
radiation) needs to be checked (\var{CPP} is actually 1 in this case).

The boundary conditions of the velocity are based on derivations
focusing on only one term of the tangential stress
$(\mu_I+\mu_{t,I})(\ggrad{\vect{u}})\,\vect{n}$ without taking
into account the tranpose gradient.

In order to establish the boundary conditions of the velocity in
$k-\varepsilon$ based on the constraint , a projection onto the plane
tangent to the wall and an arbitrary zero normal velocity
are introduced.

The hypothesis made in order to establish formulae for the different types
of boundary conditions (dissipation, velocities) are based on the assumption
that the mesh is orthogonal at the wall. This assumption is extended
without any caution to the case of non-orthogonal meshes.

The one velocity scale (\fort{cs\_wall\_functions.c}) wall function requires
solving an equation using a Newton algorithm.
The computational cost of the latter is low. One can also used
a  $1/7$ power law (Werner et Wengle) which yields results which are as
accurate as the logarithmic law in the logarithmic region, and which permits
analytical resolutions (chosen option in LES mode). Be careful however,
since with this law, the intersection with the linear law is
slightly different, which thus requires some adaptations (intersection
around 11.81 instead of 10.88 for the law adopted here
$U^+=8,3\,(y^+)^\frac{1}{7}$).


The values of all the physical properties are taken at the cell centres,
without any reconstruction. Without modifying this approach, it would be
useful to keep this in mind.

%
%
%
%Pb de continuite si YPLULI.NE.10.88
%
% Le mode de r\'esolution permettant d'obtenir $u^*$ est particulier. Avec le
%mod\`ele \`a une \'echelle de vitesse, on \'evalue
%tout d'abord la vitesse de frottement $u^*$ issue de la loi logarithmique. On
%pose $u_k=u^*$, puis on calcule la valeur de $y^+$.  Avec le
%mod\`ele \`a deux \'echelles, on calcule tout d'abord $u_k$, on en d\'eduit
%$y^+$ puis $u^*$. Dans les deux cas, si
%$y^+\leqslant y^+_{lim}=\displaystyle\frac{2}{\kappa}$, on applique une condition
%d'adh\'erence (vitesse impos\'ee nulle \`a la paroi, \'energie turbulente et
%tensions de Reynolds impos\'ees nulles, flux nul pour la dissipation).
%Il serait bon de v\'erifier que cette m\'ethode, qui utilise une loi
%logarithmique jusqu'\`a de tr\`es petites
%valeurs de $y^+$, ne conduit pas \`a des valeurs trop faibles de la
%vitesse de frottement lorsqu'on s'approche de la paroi ($y^+ \leqslant 10$).
%La figure \ref{Base_Clptur_fig_loi_log_clptur} propose une illustration~: supposons qu'en un
%point on obtienne, avec la m\'ethode actuelle, $u+\approx 8,6$ et
%$y^+\approx 4,3$. On en d\'eduit alors que la vitesse de frottement est
%$u^*\approx 1$ (courbe logarithmique en trait plein (noire) repr\'esentant
%$ln(y^+)/0,42+5,2$).
%Toutes choses \'egales par ailleurs (ce qui constitue une
%hypoth\`ese en soi), avec une m\'ethode prenant en compte une loi lin\'eaire en
%dessous de $y^+\approx 10$, on aurait obtenu $u^*\approx 2$
%(courbe lin\'eaire en trait plein (rouge) repr\'esentant $2y^+$). Bien
%entendu, cette analyse est relativement na\"\i ve et ne prend pas en compte le
%caract\`ere implicite des r\'esolutions ainsi que le fait qu'il est d'ordinaire
%peu recommand\'e de placer la premi\`ere maille \`a des valeurs aussi faibles de
%$y^+$ avec les mod\`eles de type haut Reynolds.
%
%\begin{figure}[h]
%\centerline{\includegraphics[height=7cm]{loilog}}
%\caption{\label{Base_Clptur_fig_loi_log_clptur}D\'etermination de $y^+$.}
%\end{figure}



% Plus d'actualite a priori, mais pistes de reflexion quand meme
%La limitation par valeur minimale de la vitesse dans (\ref{Base_Clptur_eq_ugrad_clptur})
%a \'et\'e corrig\'ee dans la version 1.1.0.q.
%Auparavant, la formulation \'etait susceptible de conduire
%\`a une valeur trop faible du gradient de vitesse et donc de la production
%turbulente en paroi. Elle s'\'ecrivait~:
%\begin{equation}
%u_{\tau,F,grad} =u_{\tau,I'}-\displaystyle\frac{u^*}{\kappa}min\left[max\left(1,
%2\sqrt{\displaystyle\frac{\rho_I\kappa\, u_k I'F}{\mu_{t,I}}
%}-\displaystyle\frac{1}{2}\right),ln\frac{2}{\kappa}+5,2\kappa\right]
%\end{equation}
%La  formulation a \'et\'e modifi\'ee~:
%\begin{equation}\notag
%u_{\tau,F,grad} =max\left(u^*(\frac{1}{\kappa}ln\displaystyle\frac{2}{\kappa}+5,2),
%u_{\tau,I'}-\displaystyle\frac{u^*}{\kappa}\left[max\left(1,
%2\sqrt{\displaystyle\frac{\rho_I\kappa\, u_k I'F}{\mu_{t,I}}
%}-\displaystyle\frac{1}{2}\right)\right]\right)
%\end{equation}
%Elle a \'et\'e adopt\'ee apr\`es des tests sur des
%configurations de validation (canal, marche descendante,  jet impactant, dune,
%echo, rra) qui n'ont montr\'e aucune influence de la modification.
%\`A partir de la version 1.1.0.t, on a utilis\'e la valeur
%$y^+_\text{lim}=10,88$ et non plus $\frac{2}{\kappa}$ pour caract\'eriser le
%passage de la loi lin\'eaire \`a la loi logarithmique et la
%relation a donc \'et\'e modifi\'ee comme suit~:
%\begin{equation}\notag
%u_{\tau,F,grad} =max\left(u^*(\frac{1}{\kappa}ln(y^+_\text{lim})+5,2),
%u_{\tau,I'}-\displaystyle\frac{u^*}{\kappa}\left[max\left(1,
%2\sqrt{\displaystyle\frac{\rho_I\kappa\, u_k I'F}{\mu_{t,I}}
%}-\displaystyle\frac{1}{2}\right)\right]\right)
%\end{equation}
%Comme, pour des $y^+$ inf\'erieurs \`a $y^+_\text{lim}$, on applique une
%condition d'adh\'erence, cette approche n'est pas continue au voisinage de
%$y^+_\text{lim}$. Il serait utile de se pencher sur la question.
%Il faut cependant garder \`a l'esprit que la condition
%de Dirichlet pour $k$ est prise nulle quand  $y^+$ est inf\'erieur \`a
%$y^+_\text{lim}$, ce qui tend \'egalement  \`a annuler la production,
%quelle que soit la condition \`a la limite utilis\'ee pour la vitesse.


For the thermal law with very small Prandtl numbers compared to 1,
Arpaci and Larsen suggest $y_0^+ \simeq 5/Pr$ (with proof from
experimental data) rather than $Pr_t/(Pr\,\kappa)$  (current value,
computed as the analytical intersection of the linear and logarithmic
laws considered). One should address this question.