1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394

%
% This file is part of Code_Saturne, a generalpurpose CFD tool.
%
% Copyright (C) 19982016 EDF S.A.
%
% This program is free software; you can redistribute it and/or modify it under
% the terms of the GNU General Public License as published by the Free Software
% Foundation; either version 2 of the License, or (at your option) any later
% version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
% details.
%
% You should have received a copy of the GNU General Public License along with
% this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
% Street, Fifth Floor, Boston, MA 021101301, USA.
%
%==================================
%==================================
\section{Keyword list}
%==================================
%==================================
\label{sec:prg_motscles}
The keywords are classified under relevant headings. For each keyword of \CS Kernel,
the following informations are given:
\noindent
\makebox[2.5cm][l]{Variable name}\makebox[1.3cm][l]{Type}%
\makebox[5cm][l]{Allowed values}%
\makebox[4.cm][l]{[Default]}O/C\hspace{1cm}Level\\
\hspace*{2.5cm}Description\\
\hspace*{2.5cm}Potential dependences
\begin{list}{$\bullet$}{}
\item \textbf{Variable name}: Name of the variable containing the keyword.
\item \textbf{Type}: a (Array), i (Integer), r (Real number), c
(Character string).
\item \textbf{Allowed values}: list or range of allowed values.
\item \textbf{Default}: value defined by the code before any user
modification (every keyword has one). In some cases, a
nonallowed value is given (generally $999$ or $10^{12}$), forcing the
user to specify a value. If he does not do it, the code may:
\begin{list}{}{}
\item automatically use a recommended value (for example, automatic
choice of the variables for which chronological records will be
generated).
\item stop, if the keyword is essential.
\end{list}
\item \textbf{O/C}: Optional/Compulsory
\begin{list}{}{}
\item O: optional keyword, whose default value may be enough.
\item C: keyword which must imperatively be specified.
\end{list}
\item \textbf{Level}: L1, L2 or L3
\begin{list}{}{}
\item L1 (level 1): the users will have to modify it in the framework of
standard applications. The L1 keywords are written in bold.
\item L2 (level 2): the users may have to modify it in the framework of
advanced applications. The L2 keywords are all optional.
\item L3 (level 3): the developers may have to modify it; it keeps its
default value in any other case. The L3 keywords are all optional.
\end{list}
\item \textbf{Description}: keyword description, with its potential
dependences.
\end{list}
The L1 keywords can be modified through the Graphical Use Interface or
in the \texttt{cs\_user\_parameters.f90} file. L2 and L3 keywords can only be modified through
the \texttt{cs\_user\_parameters.f90} file, even if they do not appear in the version proposed
as example it the \texttt{SRC/REFERENCE/base} directory.\\
It is however recommended not to modify the keywords which do not belong to the L1
level.
The alphabetical keyword list is displayed in the index, in the end of
this report.
\minititre{Notes}
$\bullet\ $The notation ``d'' refers to a double precision real. For
instance, 1.8d2 means 0.018. \\
$\bullet\ $The notation ``{\tt grand}'' (which can be used in the code)
corresponds to $10^{12}$.
%==================================
\subsection{Inputoutput}
%==================================
\minititre{Notes}
\begin{list}{$\bullet$}{}
\item Two different files can have neither the same unit number nor the
same name.
\end{list}
%==================================
\subsubsection{''Calculation'' files}
%==================================
\minititre{General}
%\minititre{1D wall thermal module}
\minititre{Vortex method for LES}
\motcle{impmvo}{i}{strictly positive integer}{\tt impmvo}{O}{L3}
{unit of the upstream restart file for the vortex method\\
useful if and only if {\tt isuivo = 1} and {\tt ivrtex=1}}
\motcle{impvvo}{i}{strictly positive integer}{\tt impvvo}{O}{L3}
{unit of the downstream restart file for the vortex method\\
useful if and only if {\tt ivrtex=1}}
\motcle{impdvo}{i}{strictly positive integer}{\tt impdvo}{O}{L3}
{unit of the {\tt ficvor} data files for the vortex method. These
files are text files. Their number and names are specified by the user in
the \texttt{usvort} subroutine.\\
(Although it corresponds to an ``upstream'' data file, {\tt impdvo} is
initialized to 20 because, in case of multiple vortex entries,
it is opened at the same time as the {\tt ficmvo} upstream restart file,
which already uses unit 11)\\
useful if and only if {\tt ivrtex=1}}
%\minititre{Radiation}
\minititre{Thermochemistry}
\motcle{impfpp}{i}{strictly positive integer}{25}{O}{L3}
{unit of the thermochemical data file\\
useful in case of gas or pulverised coal combustion or electric arcs}
\motcle{ficfpp}{c}{string of 32 characters}{\tt dp\_tch}{O}{L3}
{name of the thermochemical data file. The launch script is designed to copy the
user specified thermochemical data file in the temporary execution directory
under the name \texttt{dp\_tch}, for \CS to open it properly. Should the value
of {\tt ficfpp} be changed, the launch script would have to be adapted.\\
useful in case of gas or pulverised coal combustion}
\motcle{impjnf}{i}{strictly positive integer}{\tt impfpp}{O}{L3}
{unit of the JANAF data file\\
useful in case of gas or pulverised coal combustion}
\motcle{ficjnf}{c}{string of 5 characters}{\tt JANAF}{O}{L3}
{name of the JANAF data file. The launch script is designed to copy the
user specified JANAF data file in the temporary execution directory
under the name \texttt{JANAF}, for \CS to open it properly. Should the value
of {\tt ficjnf} be changed, the launch script would have to be adapted.\\
useful in case of gas or pulverised coal combustion}
\minititre{Lagrangian}
\motcle{impla1}{i}{strictly positive integer}{50}{O}{L3}
{unit of a file specific to Lagrangian modelling\\
useful in case of Lagrangian modelling}
\motcle{impla2}{i}{strictly positive integer}{51}{O}{L3}
{unit of a file specific to Lagrangian modelling\\
useful in case of Lagrangian modelling}
\motcle{impla3}{i}{strictly positive integer}{52}{O}{L3}
{unit of a file specific to Lagrangian modelling\\
useful in case of Lagrangian modelling}
\motcle{impla4}{i}{strictly positive integer}{53}{O}{L3}
{unit of a file specific to Lagrangian modelling\\
useful in case of Lagrangian mode ling}
\motcle{impla5}{ia}{strictly positive integer}{54 to 68}{O}{L3}
{units of files specific Lagrangian modelling, 15dimension array\\
useful in case of Lagrangian modelling}
%==================================
\subsubsection{Postprocessing for {\em EnSight} or other tools}
%==================================
\minititre{Notes}
$\bullet\quad$The format depends on the user choices, and most options
are defined using the GUI or \\
\texttt{cs\_user\_postprocess.c}.\\
$\bullet\quad$The postprocessing files can be of the following formats: {\em Ensight Gold},
{\em MED} or {\em CGNS}. The use of the two latter formats depends on
the installation of the corresponding external libraries.\\
$\bullet\quad$For each quantity (problem unknown, preselected numerical
variable or preselected physical parameter), the user specifies if a
postprocessing output is wanted. The output frequency can be set.\\
\motcleb{keyvis}{ifk}{field key, 0, 1, 2, or 3}{0}{O}{L1}
{for each quantity defined at the cell centres (physical or numerical
variable), indicator of whether it should be postprocessed or not \\
\hspace*{1.3cm}= 999: not initialised. By default, the postprocessed
quantities are the unknowns (pressure, velocity, $k$, $\varepsilon$,
$R_{ij}$, $\omega$, $\varphi$, $\overline{f}$, scalars), density,
turbulent viscosity and the time step if is not uniform\\
\hspace*{1.3cm}= 0: not postprocessed\\
\hspace*{1.3cm}= 1: postprocessed on main location\\
\hspace*{1.3cm}= 2: nonreconstructed values postprocessed on boundary if main location is cells\\
\hspace*{1.3cm}= 3: both 1 and 2\\
useful if and only if the variable is defined at the cell centers or boundary faces:
calculation variable, physical property (time step, density,
viscosity, specific heat) or turbulent viscosity if {\tt iturb}
$\geqslant$ 10}
%==================================
\subsubsection{Chronological records of the variables on specific points}
%==================================
\minititre{Standard use through Interface or \texttt{cs\_user\_parameters.f90}}
For each quantity (problem unknown, preselected numerical variable or
preselected physical parameter), the user indicates whether chronological records
should be generated, the output period and the position of the
probes. The code generates chronological records at the cell centers located
closest to the geometric points defined by the user by means of their
coordinates. For each quantity, the number of probes and their
indexnumbers must be specified (it is not mandatory to generate all
the variables at all the probes).
\motcleb{ncapt}{i}{positive or null integer}{0}{O}{L1}
{total number of probes (limited to {\tt ncaptm}=200)\\
always useful }
\motcleb{xyzcap}{ra}{real numbers}{0.0}{O}{L1}
{3Dcoordinates of the probes\\
the coordinates are written: {\tt xyzcap(i,j)}, with $i$ = 1, 2 or 3 and $j$
$\leqslant$ {\tt ncapt}\\
useful if and only if {\tt ncapt} $>$ 0}
\motcleb{ihisvr}{ia}{999, 1 or positive or null integer}{999}{O}{L1}
{number {\tt ihisvr(n, 1)} and indexnumbers {\tt ihisvr(n, j$>$1)} of the recording
probes to be used for each variable, {\em i.e.} calculation variable
or physical property defined at the cell centers.
With {\tt ihisvr(n, 1)}=999 or 1, {\tt ihisvr(n, j$>$1)} is useless.\\
\hspace*{.5cm} $\bullet$ {\tt ihisvr(n, 1)}: number of recording probes to use
for the variable N\\
\hspace*{1.3cm}= 999: default value: chronological records are generated on
all the probes if N is one of the main variables (pressure, velocity,
turbulence, scalars), the local time step or the turbulent
viscosity. For the other quantities, no chronological record is generated.\\
\hspace*{1.3cm}= 1: chronological records are produced on all the probes\\
\hspace*{1.3cm}= 0: no chronological record on any probe\\
\hspace*{1.3cm}$>0$: chronological record on {\tt ihisvr(n, 1)} probes to be
specified with {\tt ihisvr(n, j$>$1)}\\
always useful, must be less than or equal to {\tt ncapt}\\
\hspace*{.5cm} $\bullet$ {\tt ihisvr(n, j$>$1)}: indexnumbers of the probes
used for the variable $n$\\
(with $j \leqslant${\tt ihisvr(n,1)+1)}\\
\hspace*{1.3cm}= 999: by default: if {\tt ihisvr(n, 1)} $\ne$
999, the code stops. Otherwise, refer to the description of the case
{\tt ihisvr(n, 1)}=999\\
useful if and only if {\tt ihisvr(n, 1)} $>$ 0 \\
The condition {\tt ihisvr(n, j)} $\leqslant${\tt ncapt} must be respected.\\
For ease to use, it is recommended to simply specify {\tt ihisvr(n,1)}=1 for
all of the interesting variables.}
\motcle{emphis}{c}{string of less than 80 characters}{\tt ./}{O}{L3}
{directory in which potential chronological record files generated by
the Kernel will be written (path related to the execution directory)\\
it is recommended to keep the default value and, if necessary, to modify the
launch script to copy the files in the alternate destination directory\\
useful if and only if chronological record files are generated ({\em
i.e.} there is {\tt n} for which {\tt ihisvr(n, 1)} $\ne$ 0)}
\motcleb{nthist}{i}{1 or strictly positive integer}{1 or 1}{O}{L1}
{output period of the chronological record files\\
\hspace*{1.3cm}= 1: no output\\
\hspace*{1.3cm}$>$ 0: period (every {\tt nthist} time step)\\
The default value is 1 when there is no chronological record file to
generate (if there is no probe, {\tt ncapt} = 0, or if {\tt ihisvr(n, 1)}=0 for
all the variables) and 1 otherwise\\
If chronological records are generated, it is usually best to keep the default
value {\tt nthist}=1, in order to avoid missing any high frequency evolution (unless
the total number of time steps is too large to do so)\\
useful if and only if chronological record files are generated ({\em
i.e.} there are probes ({\tt ncapt}$>$0) or there is {\tt n} for which
{\tt ihisvr(n, 1)} $\ne$ 0)}
\motcle{nthsav}{i}{1 or positive or null integer}{0}{O}{L3}
{saving period the chronological record files (they are first stored in a
temporary file and then saved every {\tt nthsav} time step)\\
\hspace*{1.3cm}= 0: by default (4 times during a calculation)\\
\hspace*{1.3cm}= 1: saving at the end of the calculation\\
\hspace*{1.3cm}$>$ 0: period (every {\tt nthsav} time step)\\
During the calculation, the user can read the chronological record files
in the execution directory when they have been saved, {\em i.e.} at the first
time step, at the tenth time step and when the time step number is a multiple of
{\tt nthsav} (multiple of {\tt (ntmabsntpabs)/4} if {\tt nthsav}=0)\\
{\em Note: using the \texttt{control\_file} file enables to update the value of
{\tt ntmabs}. Hence, if the calculation is at the time step n, a save of the
chronological record files can be forced by changing {\tt ntmabs} to
{\tt ntpabs}+4(n+1)
using \texttt{control\_file}; after the files have been saved, {\tt ntmabs} can be
reset to its original value, still using \texttt{control\_file}.}\\
useful if and only if chronological record files are generated ({\em
i.e.} there are probes ({\tt ncapt}$>$0) there is {\tt n} for which
{\tt ihisvr(n, 1)} $\ne$ 0)}
\minititre{Nonstandard use through \texttt{ushist}}
(see p.~\pageref{sec:prg_ushist})
\motcle{impush}{ia}{strictly positive integer}{33 to 32+\texttt{nushmx}=49}{O}{L3}
{units of the user chronological record files\\
useful if and only if the subroutine \texttt{ushist} is used}
\motcle{ficush}{ca}{strings of 13 characters}{\texttt{ush*} or
\texttt{ush*.n\_*}}{O}{L2}
{names of the user chronological record files.
In the case of a nonparallel calculation, the suffix applied the file
name is a three digit number: \texttt{ush001}, \texttt{ush002},
\texttt{ush003}...
In the case of a parallelrunning calculation, the processor
indexnumber is added to the suffix. For instance, for a calculation
running on two processors: \texttt{ush001.n\_0001},
\texttt{ush002.n\_0001}, \texttt{ush003.n\_0001}... and
\texttt{ush001.n\_0002},
\texttt{ush002.n\_0002}, \texttt{ush003.n\_0002}...
The opening, closing, format and location of these files must be managed
by the user.\\
useful if and only if the subroutine \texttt{ushist} is used}
%==================================
\subsubsection{Time averages}
%==================================
See \doxygenfile{parameters.html}{the dedicated \texttt{Doxygen} documentation}.
%==================================
\subsubsection{Others}
%==================================
\motcle{impusr}{ia}{strictly positive integer}{{\tt 70} to {\tt 69+nusrmx}=79}{O}{L3}
{unit numbers for potential user specified files\\
useful if and only if the user needs files (therefore always useful, by security)}
\motcleb{ficusr}{ca}{string of 13 characters}{\tt usrf* or usrf*.n\_*}{O}{L1}
{name of the potential user specified files. In the case of a nonparallel
calculation, the suffix applied the file name is a two digit number:
from \texttt{usrf01} to \texttt{usrf10}. In the case of a
parallelrunning calculation, the four digit processor indexnumber is
added to the suffix. For instance, for a calculation running on two
processors: from \texttt{usrf01.n\_0001} to \texttt{usrf10.n\_0001} and
from \texttt{usrf01.n\_0002} to \texttt{usrf10.n\_0002}. The opening,
closing, format and location of these files must be managed by the user.\\
useful if and only if the user needs files (therefore always useful, by security)}
\motcleb{keylog}{ifk}{1 or 0}{1}{O}{L1}
{for every quantity (variable, physical or numerical property ...),
indicator concerning the writing in the execution report file \\
\hspace*{1.3cm}= 1: writing in the execution listing.\\
\hspace*{1.3cm}= 0: no writing.\\
always useful}
\motcleb{iwarni}{ia}{integer}{0}{O}{L1}
{{\tt iwarni(ivar)} characterises the level of detail of the outputs for the
variable {\tt ivar} (from 1 to {\tt nvar}). The quantity of information
increases with its value.\\
Impose the value 0 or 1 for a reasonable listing size. Impose the value 2
to get a maximum quantity of information, in case of problem during the
execution.\\
always useful}
\motcleb{nomvar}{ca}{string of less than 80 characters}{``''}{O}{L1}
{name of the variables (unknowns, physical properties ...): used in the
execution listing, in the postprocessing files, etc.\\
{``''}: not initialised (the code chooses the manes by default)\\
It is recommended not to define variable names of more than 16
characters, to get a clear execution listing (some advanced writing
levels take into account only the first 16 characters).\\
always useful}
\motcleb{ntlist}{i}{1 or strictly positive integer}{1}{O}{L1}
{writing period in the execution report file\\
\hspace*{1.3cm}= 1: no writing\\
\hspace*{1.3cm}$>$ 0: period (every {\tt ntlist} time step)\\
The value of {\tt ntlist} must be adapted according to the number of iterations
carried out in the calculation. Keeping {\tt ntlist} to 1 will indeed provide
a maximum volume of information, but if the number of time steps is too large,
the execution report file might become too big and unusable
(problems with disk space, memory problems while opening the file with a text
editor, problems finding the desired information in the file, ...).\\
always useful}
\motcle{ntsuit}{i}{1, 0 or positive or null integer}{0}{O}{L3}
{saving period of the restart files\\
\hspace*{1.3cm}= 2: no restart at all\\
\hspace*{1.3cm}= 1: only at the end of the calculation\\
\hspace*{1.3cm}= 0: by default (four times during the calculation)\\
\hspace*{1.3cm}$>$ 0: period\\
always useful}
%==================================
\subsection{Numerical options}
%==================================
\subsubsection{Calculation management}
%==================================
\motcle{iecaux}{i}{0 or 1}{1}{O}{L2}
{indicates the writing (=1) or not (=0) of the auxiliary calculation
restart file\\
always useful}
\motcle{ileaux}{i}{0 or 1}{1}{O}{L2}
{indicates the reading (=1) or not (=0) of the auxiliary
calculation restart file\\
useful only in the case of a calculation restart}
\motcleb{inpdt0}{i}{0 or 1}{0}{O}{L1}
{indicates the calculation mode: 1 for a zero time step control
calculation, {\em i.e.} without solving the transport equations,
and 0 for a standard calculation.\\
In case of a calculation using the control mode ({\tt inpdt0}=1), when the
calculation is not a restart, the equations are not solved, but the
physical properties and the boundary conditions are calculated. When
the calculation is a restart, the physical properties and the boundary
conditions are those read from the restart file (note: in the case of a
secondorder time scheme, the mass flow is modified as if a normal
time step was realised: the mass flow generated in an potential
postprocessing is therefore not the mass flow read from the restart file).\\
In the control mode ({\tt inpdt0}=1), the variable {\tt ntmabs} is not used.\\
In the standard mode ({\tt inpdt0}=0), the code solves the equations at least
once, even if {\tt ntmabs}=0.\\
always useful}
\motcleb{isuite}{i}{0 or 1}{0}{C}{L1}
{indicator of a calculation restart (=1) or not (=0)\\
always useful. This value is set automatically by the code; depending on
whether a restart directory is present, and should not be modified by
the user}
\motcle{ntcabs}{i}{integer}{\tt ntpabs}{O}{L3}
{current time step number\\
always useful\\
{\tt ntcabs} is initialised and updated automatically by the code,
its value is not to be modified by the user}
\motcleb{ntmabs}{i}{integer $>$ {\tt ntpabs}}{10}{C}{L1}
{number of the last time step after which the calculation stops. It is
an absolute number: for the restart calculations, {\tt ntmabs} takes into
account the number of time steps of the previous calculations. For
instance, after a first calculation of 3 time steps, a restart file of 2
time steps is realised by setting {\tt ntmabs}=3+2=5\\
always useful}
\motcle{ntpabs}{i}{integer}{0, read}{O}{L3}
{number of the last time step in the previous calculation. In the case of
a restart calculation, {\tt ntpabs} is read from the restart file. Otherwise
it is initialised to 0\\
always useful\\
{\tt ntpabs} is initialised automatically by the code, its value is not to
be modified by the user}
\motcle{tmarus}{r}{1 or strictly positive real}{1}{O}{L3}
{margin in seconds on the remaining CPU time which is necessary to allow
the calculation to stop automatically and write all the required results
(for the machines having a queue manager)\\
\hspace*{1.3cm}= 1: calculated automatically\\
\hspace*{1.3cm}$>$ 0: margin defined by the user\\
always useful, but the default value should not be changed
unless absolutely necessary.}
\motcle{ttcabs}{r}{positive or null real number}{\tt ttpabs}{O}{L3}
{physical simulation time at the current time step. For the restart
calculations, \mbox{ttcabs} takes into account the physical time of the
previous calculations.\\
If the time step is uniform ({\tt idtvar}=0 or 1), {\tt ttcabs} increases
of {\tt dt} (value of the time step) at each iteration. If the time step is
nonuniform ({\tt idtvar}=2),
{\tt ttcabs} increases of {\tt dtref} at each time step.\\
always useful\\
{\tt ttcabs} is initialised and updated automatically by the code,
its value is not to be modified by the user}
\motcle{ttpabs}{r}{positive or null real number}{0, read}{O}{L3}
{simulation physical time at the last time step of the previous
calculation. In the case of a restart calculation, {\tt ttpabs} is read from
the restart file. Otherwise it is initialised to 0.\\
always useful\\
{\tt ttcabs} is initialised automatically by the code, its value is not to
be modified by the user}
%==================================
\subsubsection{Scalar unknowns}
%==================================
\motcleb{nscaus}{i}{0$\leqslant$ integer $\leqslant$ {\tt nscmax}}{0}{O}{L1}
{number of user scalars solutions of an advection equation\\
always useful}
\motcleb{itherm}{ia}{0, 1, 2 or 3}{0}{O}{L1}
{\hspace*{1.3cm}= 0: no thermal model\\
\hspace*{1.3cm}= 1: temperature\\
\hspace*{1.3cm}= 2: enthalpy\\
\hspace*{1.3cm}= 3: total energy (only for compressible module).\\
When a particular physics module is activated (gas combustion, pulverised coal,
electricity or compressible), the user must not modify {\tt itherm} (the choice
is made automatically: the solved variable is either the enthalpy or the total
energy). The user is also reminded that, in the case of a coupling with
\syrthes, the solved thermal variable should be the temperature
({\tt itherm}=1).
More precisely, everything is designed in the code to allow for the
running of a calculation coupled with \syrthes with the enthalpy as thermal
variable (the correspondence and conversion is then specified by the user in
the subroutine \texttt{usthht}).
However this case has never been used in practice and has therefore not been
tested. With the compressible model, it is possible to carry out calculations
coupled with \syrthes, although the thermal scalar represents the total
energy and not the temperature.}
\motcleb{iscalt}{ia}{1 or integer $>$ 0}{1}{O}{L1}
{{\tt iscalt} is the indexnumber of the scalar
representing the temperature or the enthalpy. If {\tt iscalt}=1, neither
the temperature nor the enthalpy is represented by a scalar. When a specific
physics module is activated (gas combustion, pulverised coal,
electricity or compressible),
the user must not modify {\tt iscalt} (the choice is made
automatically)\footnote{In the case of the compressible module, {\tt iscalt}
does not correspond to the temperature nor enthalpy but to the total energy}.\\
useful if and only if {\tt nscal} $\geqslant$ 1.}
\motcleb{iscacp}{ia}{0 or 1}{0}{O}{L2}
{\hspace*{1.3cm}= 0: scalar does not behave like a temperature\\
\hspace*{1.3cm}= 1: scalar behaves like a temperature
(use $C_p$ for wall law).\\
useful if and only if {\tt nscal} $\geqslant$ 1.}
\motcleb{itpscl}{ia}{0, 1 or 2}{0}{O}{L1}
{\hspace*{1.3cm}= 0: none\\
\hspace*{1.3cm}= 1: Kelvin\\
\hspace*{1.3cm}= 2: Celsius\\
The distinction between {\tt itpscl} = 1 or 2 is useful only in case of
radiation modelling. For calculations without radiation modelling,
use {\tt itpscl}=1 for the temperature.\\
useful if and only if {\tt nscal} $\geqslant$ 1.}
\motcle{iclvfl}{ia}{1, 0, 1 or 2}{1}{O}{L3}
{for every scalar {\tt iscal} representing the average of the square of the
fluctuations of another scalar {\tt ii=iscavr(iscal)} (noted $f$),
indicator of the clipping method\\
\hspace*{1.3cm}= 1: no clipping because the scalar does not represent
the average of the square of the fluctuations of another scalar\\
\hspace*{1.3cm}= 0: clipping to 0 for the lower range of values\\
\hspace*{1.3cm}= 1: clipping to 0 for the lower range of values and to
\mbox{$(ff_{min})(f_{max}f)$} for higher values, where $f$ is
the associated scalar, $f_{min}$ and $f_{max}$ its minimum and maximum
values specified by the user ({\em i.e.} {\tt scamin(ii)} and {\tt scamax(ii)}) \\
\hspace*{1.3cm}= 2: clipping to {\tt max(0,scamin(iscal))} for lower
values and to {\tt scamax(iscal)} for higher values. {\tt scamin} and {\tt scamax}
are limits specified by the user\\
useful for the scalars {\tt iscal} for which {\tt iscavr(iscal)}$>$0.}
\motcle{itbrrb}{i}{0 or 1}{0}{O}{L3}
{Reconstruction (=1) or not (=0) of the temperature, enthalpy or total energy
value in the boundary cells. Useful in the case of coupling with \syrthes
and with radiation.}
\motcle {icpsyr}{ia}{999,0,1}{999}{O}{L3}
{For each scalar {\tt iscal}, {\tt icpsyr(iscal)} indicates whether it is
coupled with \syrthes (=1) or not (=0).
There can be only one coupled scalar per calculation.\\
\hspace*{1.3cm}=999: by default\\
\hspace*{2.cm} $\bullet$ {\tt icpsyr(iscal)}=1 for the thermal scalar
{\tt iscal=(iscalt)} when a coupling with \syrthes has been specified\\
\hspace*{2.cm} $\bullet$ {\tt icpsyr(iscal)}=0 otherwise\\
\hspace*{1.3cm}= 0: the scalar {\tt iscal} is not coupled with \syrthes\\
\hspace*{1.3cm}= 1: the scalar {\tt iscal} is coupled with \syrthes\\
useful in case of coupling with \syrthes}
%==================================
\subsubsection{Definition of the equations}
%==================================
\motcle{istat}{ia}{0 or 1}{1 or 0}{O}{L2}
{for each unknown {\tt ivar} to calculate, indicates whether
unsteady terms are present ({\tt istat(ivar)}=1) or not (0) in the matrices.\\
By default, {\tt istat} is set to 0 for the pressure (variable {\tt ivar=ipr})
or $\overline{f}$ in v2f modelling (variable {\tt ivar=ifb}) and set to
1 for the other unknowns.\\
useful for all the unknowns}
\motcle{iconv}{ia}{0 or 1}{1 or 0}{O}{L2}
{for each unknown {\tt ivar} to calculate, indicates if the
convection is taken into account ({\tt iconv(ivar)}=1) or not (0).\\
By default, {\tt iconv} is set to 0 for the pressure (variable {\tt ivar=ipr})
or $\overline{f}$ in v2f modelling (variable {\tt ivar=ifb}) and set to
1 for the other unknowns.\\
useful for all the unknowns}
\motcle{idiff}{ia}{0 or 1}{1}{O}{L2}
{for each unknown {\tt ivar} to calculate, indicates whether the
diffusion is taken into account ({\tt idiff(ivar)}=1) or not (0)\\
useful for all the unknowns}
\motcle{idifft}{ia}{0 or 1}{1}{O}{L3}
{for each unknown {\tt ivar} to calculate, when diffusion is taken
into account ({\tt idiff(ivar)}=1), {\tt idifft(ivar)} indicates if the turbulent
diffusion is taken into account ({\tt idifft(ivar)}=1) or not (0)\\
useful for all the unknowns }
\motcle{idircl}{ia}{0 or 1}{1 or 0}{O}{L3}
{for each unknown {\tt ivar} to calculate, indicates whether the diagonal
of the matrix should be slightly shifted ({\tt idircl(ivar)}=1) or not (0) if there
is no Dirichlet boundary condition and if {\tt istat}=0. Indeed, in such a case,
the matrix for the general advection/diffusion equation is singular. A slight
shift in the diagonal will make it invertible again.\\
By default, {\tt idircl} is set to 1 for all the unknowns, except $\overline{f}$ in
v2f modelling, since its equation contains another diagonal term that ensures
the regularity of the matrix.\\
useful for all the unknowns}
\motcle{ivisse}{ia}{0 or 1}{1}{O}{L3}
{indicates whether the source terms in transposed gradient
and velocity divergence should be taken into account in the momentum
equation. In the compressible module, these terms also account for the volume
viscosity (cf. {\tt viscv0} and {\tt iviscv}):\\
$\partial_i \left[(\kappa 2/3\,(\mu+\mu_t))\partial_k U_k \right]
+ \partial_j \left[ (\mu+\mu_t)\partial_i U_j \right]$ \\
\hspace*{1.3cm}= 0: not taken into account\\
\hspace*{1.3cm}= 1: taken into account\\
always useful}
%==================================
\subsubsection{Definition of the time advancement}
%==================================
\motcleb{idtvar}{i}{1, 0, 1, 2}{0}{O}{L1}
{type of time step\\
\hspace*{1.3cm}= 0: constant in time and spatially uniform\\
\hspace*{1.3cm}= 1: variable in time and spatially uniform\\
\hspace*{1.3cm}= 2: variable in time and in space\\
\hspace*{1.3cm}= 1: steadystate algorithm\\
If the numerical scheme is a secondorder in time, only the option 0 is
allowed.\\
always useful}
\motcleb{idilat}{i}{1, 2, 3, 4}{1}{O}{L1}
{Algorithm to take into account the density variation in time\\
\hspace*{1.3cm}= 1: steady dilatable flow algorithm (default)\\
\hspace*{1.3cm}= 2: unsteady dilatable flow algorithm\\
\hspace*{1.3cm}= 3: lowMach number algorithm\\
\hspace*{1.3cm}= 4: non conservative algorithm for fire simulation\\
always useful}
\motcle{iptlro}{i}{0 or 1}{0}{O}{L2}
{when density gradients and gravity are present, a local thermal time
step can be calculated, based on the BruntVaisala frequency. In numerical
simulations, it is usually wise for the time step to be lower than this limit,
otherwise numerical instabilities may appear\\
{\tt iptlro} indicates whether the time step should be limited to the local thermal
time step (=1) or not (=0)\\
when {\tt iptlro}=1, the listing shows the number of cells where the time step has
been clipped due to the thermal criterion, as well as the maximum ratio between
the time step and the maximum thermal time step. If {\tt idtvar}=0, since the time
step is fixed and cannot be clipped, this ratio can be greater than
1\footnote{It is then the user's
choice to decide whether he should diminish DTREF or not}. When {\tt idtvar}$>$0, this
ratio will be less than 1, except if the constraint {\tt dtmin} has prevented the
code from reaching a sufficiently low value for {\tt dt}\\
useful when density gradients and gravity are present}
\motcleb{cdtvar}{ra}{strictly positive real number}{1}{O}{L1}
{multiplicative factor applied to the time step for each scalar\\
Hence, the time step used when solving the evolution equation for the
variable is the time step used for the dynamic equations (velocity/pressure)
multiplied by {\tt cdtvar}.\\
The size of the array {\tt cdtvar} is {\tt nvar}. For instance, the multiplicative
coefficient applied to the scalar 2 is {\tt cdtvar(isca(2))}). Yet, the value of
{\tt cdtvar} for the velocity components and the pressure is not used. Also,
although it is possible to change the value of {\tt cdtvar} for the turbulent
variables, it is highly not recommended\\
useful if and only if {\tt nscal} $\geqslant$ 1}
\motcle{coumax}{r}{strictly positive real number}{1}{O}{L1}
{target Courant number (local or maximum) in case of nonconstant time step\\
useful if {\tt idtvar} $\ne$ 0}
\motcle{foumax}{r}{strictly positive real number}{10}{O}{L1}
{target Fourrier nmber (local or maximum) in case of nonconstant time step\\
useful if {\tt idtvar} $\ne$ 0}
\motcleb{dtref}{r}{strictly positive real number}{\tt grand*10}{C}{L1}
{reference time step value\\
always useful.\\
This is the time step value used in the case of a calculation run with a
uniform and constant time step, {\em i.e.} {\tt idtvar}=0 (restart calculation
or not). It is the value used to initialise the time step in the case of
an initial calculation run with a nonconstant time step
({\tt idtvar}=1 or 2). It is also the value used to initialise the time step
in the case of a restart calculation in which the type of
time step has been changed (for instance, {\tt idtvar}=1 in the new
calculation and {\tt idtvar}=0 or 2 in the previous calculation): see
\texttt{cs\_user\_initialization}}
\motcle{dtmin}{r}{positive or null real number}{\tt 0.1*dtref}{O}{L2}
{lower limit for the calculated time step when nonconstant time step is activated\\
useful if {\tt idtvar} $\ne$ 0}
\motcle{dtmax}{r}{strictly positive real number}{\tt 1000*dtref}{O}{L2}
{upper limit for the calculated time step when nonconstant time step is activated\\
useful if {\tt idtvar} $\ne$ 0}
\motcle{varrdt}{r}{strictly positive real number}{0.1}{O}{L3}
{maximum allowed relative increase in the calculated time step value
between two successive time steps (to ensure stability, any decrease in the time step
is immediate and without limit)\\
useful if {\tt idtvar} $\ne$ 0}
\motcle{relxst}{r}{0 $<$ real $\leqslant$ 1}{0.9}{O}{L2}
{relaxation coefficient for the steady algorithm
({\tt relaxp}=1: no relaxation)\\
useful if {\tt idtvar}=1}
\motcle{relaxv}{ra}{0 $\leqslant$ real $\leqslant$ 1}{0.7 or 1.}{O}{L3}
{for each variable {\tt ivar}, relaxation coefficient of the variable.
This relaxation parameter is only useful for the pressure with the unsteady
algorithm (so as to improve the convergence in case of meshes of insufficient
quality or and for some of the turbulent models ({\tt iturb} = 20, 21,
50 or 60 and {\tt ikecou}=0; if {\tt ikecou}=1, {\tt relaxv(ivar)}
is not used, whatever its value may be). Default values are 0.7 for turbulent
variables and 1. for pressure.\\
{\tt relaxv} also stores the value of the relaxation coefficient when using the steady
algorithm, deduced from the value of {\tt relxst} (defaulting to
{\tt relaxv(ivar} $eq$ {1.  \tt relxst})\\
useful only for the pressure and for turbulent variables
if and only if ($k\varepsilon$, v2f or $k\omega$ models without coupling)
with the unsteady algorithm\\
always useful with the steady algorithm}
\minititre{Nonconstant time step}
The calculation of the time step uses a reference time step DTREF (at
the calculation beginning). Later, every time step, the time step value
is calculated by taking into account the different existing limits, in
the following order: \\
\hspace*{1.cm}$\bullet$ {\tt coumax}, {\tt foumax}: the more restrictive limit between
both is used (in the compressible module, the acoustic limitation is added),\\
\hspace*{1.cm}$\bullet$ {\tt varrdt}: progressive increase and immediate
decrease in the time step,\\
\hspace*{1.cm}$\bullet$ {\tt iptlro}: limitation by the thermal time step,\\
\hspace*{1.cm}$\bullet$ {\tt dtmax} and {\tt dtmin}: clipping of the time step to
the maximum, then to the minimum limit.\\
%==================================
\subsubsection{Turbulence}
%==================================
\motcleb{iturb}{i}{
\begin{tabular}{l}
0, 10, 20, 21, 30, 31, 32, \\
40, 41, 42, 50, 51, 60, 70
\end{tabular}
}{999}{O}{L1}
{indicator of the turbulence model {\tt iturb}\\
\hspace*{1.3cm}= 999: not initialised. This value is not allowed and
must be modified by the user\\
\hspace*{1.3cm}= 0: laminar\\
\hspace*{1.3cm}= 10: mixing length (not valided)\\
\hspace*{1.3cm}= 20: $k\varepsilon$\\
\hspace*{1.3cm}= 21: $k\varepsilon$ with linear production (Laurence \& Guimet)\\
\hspace*{1.3cm}= 30: $R_{ij}\varepsilon$ ``standard'' LRR (Launder, Reece \& Rodi)\\
\hspace*{1.3cm}= 31: $R_{ij}\varepsilon$ SSG (Speziale, Sarkar \& Gatski)\\
\hspace*{1.3cm}= 32: $R_{ij}\varepsilon$ EBRSM (elliptic blending)\\
\hspace*{1.3cm}= 40: LES (Smagorinsky model) \\
\hspace*{1.3cm}= 41: LES (dynamic model) \\
\hspace*{1.3cm}= 42: LES (WALE model) \\
\hspace*{1.3cm}= 50: v2f, $\varphi$model version\\
\hspace*{1.3cm}= 51: v2f, BLv2/k version\\
\hspace*{1.3cm}= 60: $k\omega$, SST version \\
\hspace*{1.3cm}= 70: SpalartAllmaras \\
always useful}
The $k\varepsilon$ (standard and linearized production) and $R_{ij}\varepsilon$
(LRR and SSG) turbulence
models implemented in \CS are ``HighReynolds'' models. It is therefore
necessary to make sure that the thickness of the first cell neighboring
the wall is larger than the thickness of the viscous sublayer (at the
wall, $y^+>2.5$ is required as a minimum, and preferably between 30 and
100)\footnote{While creating the mesh, $y^+=\frac{yu*}{\nu}$ is
generally unknown. It can be roughly estimated as $\frac{yU}{10\nu}$, where
$U$ is the characteristic velocity, $\nu$ is the kinematic viscosity of the fluid
and $y$ is the midheight of the first cell near the wall.}. If the mesh does
not respect this condition, the results may be biased
(particularly if thermal processes are involved). Using scalable wallfunctions
(cf. keyword {\tt iwallf}) may help avoiding this problem.\\
The v2f model is a ``LowReynolds'' model, it is therefore necessary to
make sure that the thickness of the first cell neighboring the wall is
smaller than the thickness of the viscous sublayer ($y^+<1$).\\
The $k\omega$ SST model provides correct results whatever the thickness of the first cell.
Yet, it requires the knowledge of the distance to the wall in every
cell of the calculation domain. The user may refer to the keyword
{\tt icdpar\index{icdpar}} for more details about the potential limitations.\\
The $k\varepsilon$ model with linear production allows to correct the
known flaw of the standard $k\varepsilon$ model which overestimates the
turbulence level in case of strong velocity gradients (stopping point).\\
With LES, the wall functions are usually not greatly adapted. It is generally more advisable
(if possible) to refine the mesh towards the wall so that the first cell is in the
viscous sublayer, where the boundary conditions are simple natural noslip conditions.\\
Concerning the LES model, the user may refer to the subroutine
\texttt{ussmag} for complements about the dynamic model. Its usage
and the interpretation of its results require particular attention.
In addition, the user must pay further attention when using the dynamic
model with the least squares method based on a partial extended
neighbourhood ({\tt imrgra}=3). Indeed, the results may be degraded if the user
does not implement his own way of averaging the dynamic constant in
\texttt{ussmag} (\textit{i.e.} if the user keeps the local average based
on the extended neighbourhood).\\
\motcleb{iturt}{ia}{0, 10, 20 or 30}{0}{O}{L2}
{indicator of the turbulent flux model $ \overline{\varia^\prime \vect{u}^\prime}$
for any scalar $\varia$\\
\hspace*{1.3cm}= 0: Simple Gradient Diffusion Hypothesis (SGDH) (default value)\\
\hspace*{1.3cm}= 10: Generalized Gradient Diffusion Hypothesis (GGDH)\\
\hspace*{1.3cm}= 20: Algebraic Flux Model (AFM)\\
\hspace*{1.3cm}= 30: Differential Flux Model (DFM: transport equations of the turbulent flux)\\
GGDH, AFM and DFM are only available when a second order closure is used ({\em i.e.} {\tt iturb}=30, 31, 32).
}
\motcle{iwallf}{i}{0, 1, 2, 3, 4 or 5}{3}{O}{L2}
{indicates the type of wall function is used for
the velocity boundary conditions on a frictional wall.\\
\hspace*{1.3cm}= 0: no wall functions\\
\hspace*{1.3cm}= 1: one scale of friction velocities (power law)\\
\hspace*{1.3cm}= 2: one scale of friction velocities (log law)\\
\hspace*{1.3cm}= 3: two scales of friction velocities (log law)\\
\hspace*{1.3cm}= 4: two scales of friction velocities (log law)  scalable wall functions\\
\hspace*{1.3cm}= 5: two scales of friction velocities (mixing length based on V. Driest analysis)\\
{\tt iwallf} is initialised to 2 for {\tt iturb}=10, 40, 41 or 70
(mixing length, LES and Spalart Allmaras).\\
{\tt iwallf} is initialised to 0 for {\tt iturb}=0, 32, 50 or 51\\
{\tt iwallf} is initialised to 3 for {\tt iturb}=20, 21, 30, 31 or 60
($k\varepsilon$, $R_{ij}\varepsilon$ LRR, $R_{ij}\varepsilon$ SSG and
$k\omega$ SST models).\\
The v2f model ({\tt iturb}=50) is not designed to use wall functions
(the mesh must be ``low Reynolds'').\\
The value {\tt iwallf}=3 is not compatible with {\tt iturb}=0, 10, 40
or 41 (laminar, mixing length and LES).\\
Concerning the $k\varepsilon$ and $R_{ij}\varepsilon$ models, the
twoscales model is usually at least as satisfactory as the onescale
model.\\
The scalable wall function allows to virtually ``shift'' the wall when
necessary in order to be always in a logarithmic layer.
It is used to make up for
the problems related to the use of HighReynolds models on very refined
meshes.\\
useful if {\tt iturb} is different from 50}
\motcle{ilogpo}{i}{0 or 1}{1}{O}{L3}
{type of wall function used for the velocity: power law
({\tt ilogpo}=0, deprecated) or logarithmic law ({\tt ilogpo}=1)\\
always useful}
\motcle{ypluli}{r}{real number $>$ 0}{\tt 1/xkappa, 10.88}{O}{L3}
{limit value of $y^+$ for the viscous sublayer\\
{\tt ypluli} depends on the chosen wall function: it is
initialised to 10.88 for the scalable wall function ({\tt iwallf}=2),
otherwise it is initialised to $1/\kappa\approx 2,38$\\
In LES, {\tt ypluli} is taken by default to be 10.88\\
always useful}
\minititre{ $k\varepsilon$, $k\varepsilon$ with linear production,
v2f and $k\omega$ SST}
\motcle{igrake}{i}{0 or 1}{1}{O}{L1}
{indicates if the terms related to gravity in the
equations of $k$ and $\varepsilon$ or $\omega$ are taken into account
({\tt igrake}=1) or not (0)\\
useful if and only if {\tt iturb} = 20, 21, 50 or 60, ({\tt gx, gy, gz})
$\ne$ (0,0,0) and the density is not uniform}
\motcle{igrhok}{i}{0 or 1}{0}{O}{L2}
{indicates if the term $\frac{2}{3}\grad \rho k$
is taken into account\\ ({\tt igrhok}=1) or not (0) in the velocity
equation\\
useful if and only if {\tt iturb} = 20, 21, 50 or 60.\\
This term may generate
nonphysical velocities at the wall. When it is not explicitly taken into
account, it is implicitly included into the pressure.}
\motcle{ikecou}{i}{0 or 1}{0 or 1}{O}{L3}
{indicates if the coupling of the source terms of
$k$ and $\varepsilon$ or $k$ and $\omega$ is taken into account
({\tt ikecou}=1) or not (0)\\
if {\tt ikecou}=0 in $k\varepsilon$ model, the term in $\varepsilon$ in the
equation of $k$ in made implicit\\
{\tt ikecou} is initialised to 0 if {\tt iturb} = 21 or 60,
and to 1 if {\tt iturb}= 20\\
{\tt ikecou}=1 is forbidden when using the v2f model
({\tt iturb}=50)\\
useful if and only if {\tt iturb} = 20, 21 or 60 ($k\varepsilon$ and
$k\omega$ models)}
\motcle{iclkep}{i}{0 or 1}{0}{O}{L3}
{indicates the clipping method used for $k$ and
$\varepsilon$, for the $k\varepsilon$ and v2f models\\
\hspace*{1.3cm}= 0: clipping in absolute value\\
\hspace*{1.3cm}= 1: clipping from physical relations\\
useful if and only if {\tt iturb} = 20, 21 or 50 ($k\varepsilon$ and
v2f models). The results obtained with the method corresponding to
{\tt iclkep}=1 showed in some cases a substantial sensitivity to the
values of the length scale {\tt almax}.\\
The option {\tt iclkep}=1 is therefore not recommended, and,
if chosen, must be used cautiously.}
\motcle{irccor}{i}{0 or 1}{0}{O}{L2}
{Activation of rotation/curvature correction for eddy viscosity turbulence models.\\
\hspace*{1.3cm}= 0: activated\\
\hspace*{1.3cm}= 1: not activated\\
useful if and only if {\tt iturb} = 20, 21, 50, 51, 60, 70 (eddy viscosity models)
}
\motcle{itycor}{i}{1 or 2}{1 or 2}{O}{L2}
{Type of rotation/curvature correction for eddy viscosity turbulence models:\\
\hspace*{1.3cm}= 1: Cazalbou correction (default when {\tt irccor}=1 and {\tt iturb}=20, 21 or 50, 51)\\
\hspace*{1.3cm}= 2: SpalartShur correction (default when {\tt irccor}=1 and {\tt iturb}=60 or 70)
}
\minititre{ $R_{ij}\varepsilon$ (LRR and SSG)}
\motcle{iclptr}{i}{0 or 1}{0}{O}{L3}
{indicates if $R_{ij}$ is made partially implicit
({\tt iclptr}=1) or not (0) in the wall boundary conditions.\\
useful if and only if {\tt iturb} = 30 or 31 ($R_{ij}\varepsilon$ model)}
\motcle{iclsyr}{i}{0 or 1}{0}{O}{L3}
{indicates if $R_{ij}$ is made partially implicit
({\tt iclsyr}=1) or not (0) in the symmetry boundary conditions.\\
useful if and only if {\tt iturb} = 30 or 31 ($R_{ij}\varepsilon$ model)}
\motcle{idifre}{i}{0 or 1}{1}{O}{L3}
{complete ({\tt idifre=1}) or simplified (0)
taking into account of the diagonals of the diffusion tensors of $R_{ij}$
and $\varepsilon$, for the LLR model.\\
useful if and only if {\tt iturb} = 30 (LLR $R_{ij}\varepsilon$ model)}
\motcle{igrari}{i}{0 or 1}{1}{O}{L1}
{indicates if the terms related to gravity are
taken into account ({\tt igrari}=1) or not (0) in the equations of
$R_{ij}\varepsilon$. \\
useful if and only if {\tt iturb} = 30 or 31 and ({\tt gx, gy, gz}) $\ne$
(0,0,0) ($R_{ij}\varepsilon$ model with gravity) and the density is not uniform}
\motcle{idirsm}{i}{0 or 1}{1}{O}{L3}
{model for the turbulent diffusion of $R_{ij}$ and $\varepsilon$ in second moment closure. Shir model (isotropic diffusion) if 0, Daly and Harlow model if 1, default value.}
\motcle{irijec}{i}{0 or 1}{0}{O}{L2}
{indicates if the wall echo terms in
$R_{ij}\varepsilon$ LRR model are
taken into account ({\tt irijec}=1) or not (0).\\
useful if and only if {\tt iturb} = 30 ($R_{ij}\varepsilon$ LRR).\\
It is not recommended to take these terms into account:
they have an influence only near the walls, their expression is hardly
justifiable according to some authors and, in the configurations
studied with \CS, they did not bring any improvement in the results.\\
In addition, their use induces an increase in the calculation
time.\\
The wall echo terms imply the calculation of the distance to the wall
for every cell in the domain. See {\tt icdpar} for potential restrictions
due to this.}
\motcle{irijnu}{i}{0 or 1}{0}{O}{L3}
{addition ({\tt irijnu}=1) or not (0) of a
turbulent viscosity in the matrix of the incremental system solved
for the velocity in $R_{ij}\varepsilon$ models. The goal is to improve
the stability of the calculation. The usefulness of {\tt irijnu}=1 has
however not been clearly demonstrated.\\
Since the system is solved in incremental form, this extra turbulent
viscosity does not change the final solution for steady flows. However,
for unsteady flows, the parameter {\tt nswrsm} should be increased.\\
useful if and only if {\tt iturb} = 30 or 31 ($R_{ij}\varepsilon$ model).}
\motcle{irijrb}{i}{0 or 1}{0}{O}{L3}
{reconstruction ({\tt irijrb}=1)
or not (0) of the boundary conditions at the walls for $R_{ij}$ and $\varepsilon$.\\
useful if and only if {\tt iturb} = 30 or 31 ($R_{ij}\varepsilon$ model)}
\minititre{$LES$}
\motcle{ivrtex}{i}{0 or 1}{0}{O}{L1}
{activates (=1) or not (=0) the generation of synthetic turbulence at the
different inlet boundaries with the LES model (generation of unsteady synthetic
eddies)\\
useful if {\tt iturb}=40, 41 or 42\\
this keyword requires the completion of the routine
\texttt{usvort}}
\motcle{isuivo}{i}{0 or 1}{isuite}{O}{L1}
{for the vortex method, indicates whether the synthetic vortices at the inlet
should be initialised (=0) or read from the restart file.\\
useful if {\tt iturb}=40, 41, 42 and {\tt ivrtex}=1}
\motcle{isuisy}{i}{0 or 1}{isuite}{O}{L1}
{Reading of the LES inflow module restart file.\\
\hspace*{1.3cm}= 0: not activated \\
\hspace*{1.3cm}= 1: activated\\
If {\tt isuisy}=1, synthetic fluctuations are not reinitialized in case of restart calculation.
useful if {\tt iturb}=40, 41 or 42
}
\motcle{idries}{i}{0 or 1}{0,1}{O}{L2}
{{\tt idries} activates (1) or not (0) the van
Driest walldamping for the Smagorinsky constant (the Smagorinsky
constant is multiplied by the damping function
$1e^{y^+/{\tt cdries}}$, where $y^+$ designates the nondimensional
distance to the nearest wall). The default value is 1 for the
Smagorinsky model and 0 for the dynamic model.\\
the van Driest walldamping requires the knowledge of the distance to the
nearest wall for each cell in the domain. Refer to keyword {\tt icdpar}
for potential limitations\\
useful if and only if {\tt iturb} = 40 or 41}
\motcle{cdries}{r}{real number $>$ 0}{26}{O}{L3}
{{\tt cdries} is the constant appearing in the
van Driest damping function applied to the Smagorinsky constant:
$1e^{y^+/{\tt cdries}}$\\
useful if and only if {\tt iturb} = 40 or 41}
\motcle{csmago}{r}{real number $>$ 0}{0.065}{O}{L2}
{{\tt csmago} is the Smagorinsky constant used in
the Smagorinsky model for LES\\
the subgrid scale viscosity is calculated by
$\displaystyle\mu_{sg}=\rho C_{smago}^2\bar{\Delta}^2\sqrt{2\bar{S}_{ij}\bar{S}_{ij}}$
where $\bar{\Delta}$ is the width of the filter and $\bar{S}_{ij}$ the filtered
strain rate\\
useful if and only if {\tt iturb} = 40}
\motcle{smagmx}{r}{real number $>$ 0}{10*csmago}{O}{L3}
{${\tt smagmx}^2$ is
the maximum allowed value for the variable $C$ appearing in the LES dynamic
model (the ``square'' comes from the fact that the
variable of the dynamic model corresponds to the square of the
constant of the Smagorinsky model). Any larger value yielded by the calculation
procedure of the dynamic model will be clipped to ${\tt smagmx}^2$\\
useful if and only if {\tt iturb} = 41}
\motcle{xlesfl}{r}{real number $>$ 0}{2}{O}{L3}
{{\tt xlesfl} is a constant used to define, for
each cell $\Omega_i$, the width of the (implicit) filter:\\
$\overline{\Delta}=xlesfl(ales*\Omega_i)^{bles}$\\
useful if and only if {\tt iturb} = 40 or 41}
\motcle{ales}{r}{real number $>$ 0}{1}{O}{L3}
{{\tt ales} is a constant used to define, for
each cell $\Omega_i$, the width of the (implicit) filter:\\
$\overline{\Delta}=xlesfl(ales*\Omega_i)^{bles}$\\
useful if and only if {\tt iturb} = 40 or 41}
\motcle{bles}{r}{real number $>$ 0}{1/3}{O}{L3}
{{\tt bles} is a constant used to define, for
each cell $\Omega_i$, the width of the (implicit) filter:\\
$\overline{\Delta}=xlesfl(ales*\Omega_i)^{bles}$\\
useful if and only if {\tt iturb} = 40 or 41}
\motcle{xlesfd}{r}{real number $>$ 0}{1.5}{O}{L3}
{{\tt xlesfd} is the constant used to define, for
each cell $\Omega_i$, the width of the explicit filter used in the framework of
the LES dynamic model:\\
$\widetilde{\overline{\Delta}}=xlesfd\overline{\Delta}$\\
useful if and only if {\tt iturb} = 41}
%==================================
\subsubsection{Time scheme}
%==================================
By default, the standard time scheme is a firstorder.
A secondorder scheme is activated automatically with LES modelling.
On the other hand, when ``specific physics'' (gas combustion, pulverised coal,
compressible module) are activated, the secondorder scheme is not allowed.
In the current version, the secondorder time scheme is not compatible
with the estimators ({\tt iescal}), the velocitypressure coupling
({\tt ipucou}), the modelling of hydrostatic pressure ({\tt icalhy} and
{\tt iphydr}) and the time or spacevariable time step ({\tt idtvar}).
Also, in the case of a rotation periodicity, a proper secondorder is not
ensured for the velocity, but calculations remain possible.
It is recommended to keep the default values of the variables listed
below. Hence, in standard cases, the user does not need to specify these
options.
\motcle{ischtp}{i}{1 or 2}{1 or 2}{O}{L2}
{{\tt ischtp} indicates the order of the
activated time scheme (this indicator allows the code to automatically complete
the other indicators related to the time scheme)\\
\hspace*{1.3cm}= 1: firstorder \\
\hspace*{1.3cm}= 2: secondorder \\
when {\tt ischtp}=2, the physical properties are by default not
secondorder. It it possible to modify this by means of the
following indicators.\\
due to specific coupling between certain variables, the source terms in the
turbulence equations (except convection and diffusion) cannot be second order,
except with the $R_{ij}$ models (cf. keyword {\tt isto2t})\\
by default, {\tt ischtp} is initialised to 2 with the LES model and 1
otherwise\\
always useful}
\motcle{istmpf}{i}{0, 1 or 2}{0 or 1}{O}{L3}
{{\tt istmpf} specifies the time scheme activated
for the mass flow. The chosen value for {\tt istmpf} will automatically
determine the value given to the variable {\tt thetfl}\\
\hspace*{1.3cm}= 0: ``explicit'' firstorder: the mass flow calculated
at the previous time step (``n'') is used in the convective terms of all
the equations (momentum, turbulence and scalars\\
\hspace*{1.3cm}= 1: ``standard'' firstorder: the mass flow calculated
at the previous time step (``n'') is used in the convective terms of the
momentum equation, and the updated mass flow (time ``n+1'') is used in the
equations of turbulence and scalars\\
\hspace*{1.3cm}= 2: secondorder: the mass flow used in the momentum equations
is extrapolated at ``n+{\tt thetfl}'' (=n+1/2) from the values at the two former time
steps (Adams Bashforth); the mass flow used in the equations for turbulence and
scalars is interpolated at time ``n+{\tt thetfl}'' (=n+1/2) from the values at the
former time step and at the newly calculated ``n+1'' time step.\\
by default, {\tt istmpf}=2 is used in the case of a secondorder time
scheme (if {\tt ischtp}=2) and {\tt istmpf}=1 otherwise\\
always useful}
\motcle{isno2t}{i}{0, 1 or 2}{0 or 1}{O}{L3}
{{\tt isno2t} specifies the time scheme activated
for the source terms of the momentum equation, apart from convection and
diffusion (for instance: head loss, transposed gradient, ...).\\
\hspace*{1.3cm}= 0: ``standard'' firstorder: the terms which are linear
functions of the solved variable are implicit and the others are explicit\\
\hspace*{1.3cm}= 1: secondorder: the terms of the form $S_i\phi$ which are
linear functions of the solved variable
$\phi$ are expressed as secondorder terms by interpolation (according
to the formula
$(S_i\phi)^{n+\theta}=S_i^n[(1\theta)\phi^n+\theta\phi^{n+1}]$, $\theta$
being given by the value of {\tt thetav} associated with the variable $\phi$)
; the other terms $S_e$ are expressed as secondorder terms by
extrapolation (according to the formula
$(S_e)^{n+\theta}=[(1+\theta)S_e^n\theta S_e^{n1}]$, $\theta$ being
given by the value of {\tt thetsn}=0.5)\\
\hspace*{1.3cm}= 2: the linear terms $S_i\phi$ are treated in the same
way as when {\tt isno2t}=1;
the other terms $S_e$ are extrapolated according to the same formula
as when {\tt isno2t}=1, but with $\theta$={\tt thetsn}=1\\
by default, {\tt isno2t} is initialised to 1 (secondorder) when
the selected time scheme is secondorder ({\tt ischtp}=2), otherwise to 0.\\
always useful}
\motcle{isto2t}{i}{0, 1 or 2}{0}{O}{L3}
{{\tt isto2t} specifies the time scheme
activated for the source terms of the turbulence equations ({\em i.e.} related to $k$,
$R_{ij}$, $\varepsilon$, $\omega$, $\varphi$, $\overline{f}$), apart
from convection and diffusion.\\
\hspace*{1.3cm}= 0: ``standard'' firstorder: the terms which are linear
functions of the solved variable are implicit and the others are explicit\\
\hspace*{1.3cm}= 1: secondorder: the terms of the form $S_i\phi$ which are
linear functions of the solved variable
$\phi$ are expressed as secondorder terms by interpolation (according
to the formula
$(S_i\phi)^{n+\theta}=S_i^n[(1\theta)\phi^n+\theta\phi^{n+1}]$, $\theta$
being given by the value of {\tt thetav} associated with the variable $\phi$);
the other terms $S_e$ are expressed as secondorder terms by
extrapolation (according to the formula
$(S_e)^{n+\theta}=[(1+\theta)S_e^n\theta S_e^{n1}]$, $\theta$ being
given by the value of {\tt thetst}=0.5)\\
\hspace*{1.3cm}= 2: the linear terms $S_i\phi$ are treated in the same
way as when {\tt isto2t}=1;
the other terms $S_e$ are extrapolated according to the same formula
as when {\tt isto2t}=1, but with $\theta$={\tt thetst}=1\\
due to certain specific couplings between the turbulence equations,
{\tt isto2t} is allowed the value 1 or 2 only for the $R_{ij}$ models
({\tt iturb}=30 or 31); hence, it is always initialised to 0.\\
always useful}
\motcle{isso2t}{ia}{0, 1 or 2}{0 or 1}{O}{L3}
{for each scalar {\tt iscal}, {\tt isso2t(iscal)} specifies the time scheme activated
for the source terms of the equation for the scalar, apart from convection and
diffusion (for instance: variance production, userspecified terms, ...).\\
\hspace*{1.3cm}= 0: ``standard'' firstorder: the terms which are linear
functions of the solved variable are implicit and the others are explicit\\
\hspace*{1.3cm}= 1: secondorder: the terms of the form $S_i\phi$ which are
linear functions of the solved variable
$\phi$ are expressed as secondorder terms by interpolation (according
to the formula
$(S_i\phi)^{n+\theta}=S_i^n[(1\theta)\phi^n+\theta\phi^{n+1}]$, $\theta$
being given by the value of {\tt thetav} associated with the variable $\phi$);
the other terms $S_e$ are expressed as secondorder terms by
extrapolation (according to the formula
$(S_e)^{n+\theta}=[(1+\theta)S_e^n\theta S_e^{n1}]$, $\theta$ being
given by the value of {\tt thetss(iscal)}=0.5)\\
\hspace*{1.3cm}= 2: the linear terms $S_i\phi$ are treated in the same
way as when {\tt isso2t}=1;
the other terms $S_e$ are extrapolated according to the same formula
as when {\tt isso2t}=1, but with $\theta$={\tt thetss(iscal)}=1\\
by default, {\tt isso2t(iscal)} is initialised to 1 (secondorder) when the selected
time scheme is secondorder ({\tt ischtp}=2), otherwise to 0.\\
always useful}
\motcle{iroext}{i}{0, 1 or 2}{0}{O}{L3}
{{\tt iroext} specifies the time scheme activated
for the physical property $\phi$ ``density''.\\
\hspace*{1.3cm}= 0: ``standard'' firstorder: the value calculated at
the beginning of the current time step (from the
variables known at the end of the previous time step) is used \\
\hspace*{1.3cm}= 1: secondorder: the physical property $\phi$ is
extrapolated according to the formula
$\phi^{n+\theta}=[(1+\theta)\phi^n\theta \phi^{n1}]$, $\theta$ being
given by the value of {\tt thetro}=0.5 \\
\hspace*{1.3cm}= 2: firstorder: the physical property $\phi$ is
extrapolated at $n+1$ according to the
same formula as when {\tt iroext}=1 but with $\theta$={\tt thetro}=1\\
always useful}
\motcle{iviext}{i}{0, 1 or 2}{0}{O}{L3}
{{\tt iviext} specifies the time scheme activated
for the physical property $\phi$ ``total viscosity''
(molecular+turbulent or subgrid viscosities).\\
\hspace*{1.3cm}= 0: ``standard'' firstorder: the value calculated at
the beginning of the current time step (from the
variables known at the end of the previous time step) is used \\
\hspace*{1.3cm}= 1: secondorder: the physical property $\phi$ is
extrapolated according to the formula
$\phi^{n+\theta}=[(1+\theta)\phi^n\theta \phi^{n1}]$, $\theta$ being
given by the value of {\tt thetvi}=0.5 \\
\hspace*{1.3cm}= 2: firstorder: the physical property $\phi$ is
extrapolated at $n+1$ according to the
same formula as when {\tt iviext}=1, but with $\theta$={\tt thetvi}=1\\
always useful}
\motcle{icpext}{i}{0, 1 or 2}{0}{O}{L3}
{{\tt icpext} specifies the time scheme activated
for the physical property $\phi$ ``specific heat''.\\
\hspace*{1.3cm}= 0: ``standard'' firstorder: the value calculated at
the beginning of the current time step (from the
variables known at the end of the previous time step) is used \\
\hspace*{1.3cm}= 1: secondorder: the physical property $\phi$ is
extrapolated according to the formula
$\phi^{n+\theta}=[(1+\theta)\phi^n\theta \phi^{n1}]$, $\theta$ being
given by the value of {\tt thetcp}=0.5 \\
\hspace*{1.3cm}= 2: firstorder: the physical property $\phi$ is
extrapolated at $n+1$ according to the
same formula as when {\tt icpext}=1, but with $\theta$={\tt thetcp}=1\\
always useful}
\motcle{ivsext}{ia}{0, 1 or 2}{0}{O}{L3}
{for each scalar {\tt iscal}, {\tt ivsext(iscal)} specifies the time scheme
activated for the physical property $\phi$ ``diffusivity''.\\
\hspace*{1.3cm}= 0: ``standard'' firstorder: the value calculated at
the beginning of the current time step (from the
variables known at the end of the previous time step) is used \\
\hspace*{1.3cm}= 1: secondorder: the physical property $\phi$ is
extrapolated according to the formula
$\phi^{n+\theta}=[(1+\theta)\phi^n\theta \phi^{n1}]$, $\theta$ being
given by the value of {\tt thetvs(iscal)}=0.5 \\
\hspace*{1.3cm}= 2: firstorder: the physical property $\phi$ is
extrapolated at $n+1$ according to the
same formula as when {\tt ivsext}=1, but with $\theta$={\tt thetvs(iscal)}=1\\
always useful}
\motcle{thetav}{ra}{0 $\leqslant$ real $\leqslant$1}{1 or 0.5}{O}{L3}
{for each variable {\tt ivar}, {\tt thetav(ivar)} is the value of $\theta$ used to
express at the secondorder the terms of convection, diffusion and the
source terms which are linear functions of the solved variable
(according to the formula
$\phi^{n+\theta}=(1\theta)\phi^n+\theta\phi^{n+1}$). Generally,
only the values 1 and 0.5 are used. The user is not allowed to modify
this variable.\\
\hspace*{1.3cm}= 1: firstorder \\
\hspace*{1.3cm}= 0.5: secondorder \\
Concerning the pressure, the value of {\tt thetav} is always 1. Concerning
the other variables, the value {\tt thetav}=0.5 is used when the
secondorder time scheme is activated by {\tt ischtp}=2 (standard value for
LES calculations), otherwise {\tt thetav} is set to 1.\\
always useful}
\motcle{thetfl}{r}{0 $\leqslant$ real $\leqslant$1}{0 or 0.5}{O}{L3}
{{\tt thetfl} is the value of $\theta$ used to
interpolate the convective fluxes of the variables when a secondorder time
scheme has been activated for the mass flow (see {\tt istmpf})\\
generally, only the value 0.5 is used. The user is not allowed to
modify this variable.\\
\hspace*{1.3cm}= 0.0: ``explicit'' firstorder (corresponds to
{\tt istmpf}=0 or 1)\\
\hspace*{1.3cm}= 0.5: secondorder (corresponds to {\tt istmpf}=2). The mass
flux will be interpolated according to the formula
$Q^{n+\theta}=\frac{1}{2\theta}Q^{n+1}+\frac{1\theta}{2\theta}Q^{n+1\theta}$).\\
always useful}
\motcle{thetsn}{r}{0 $\leqslant$ real $\leqslant$1}{0, 0.5 or 1}{O}{L3}
{{\tt thetsn} is the value of $\theta$ used to
extrapolate the nonlinear explicit source terms $S_e$ of the momentum equation,
when the source term extrapolation has been activated (see {\tt isno2t}),
following the formula\\
$(S_e)^{n+\theta}=(1+\theta)S_e^n\theta S_e^{n1}$\\
the value
of $\theta$={\tt thetsn} is deduced from the value chosen for
{\tt isno2t}. Generally, only the value 0.5 is used. The user is not
allowed to modify this variable.\\
\hspace*{1.3cm}= 0: firstorder (unused, corresponds to {\tt isno2t}=0) \\
\hspace*{1.3cm}= 0.5: secondorder (used when {\tt isno2t}=1) \\
\hspace*{1.3cm}= 1: firstorder (used when {\tt isno2t}=2) \\
always useful}
\motcle{thetst}{r}{0 $\leqslant$ real $\leqslant$1}{0, 0.5 or 1}{O}{L3}
{{\tt thetst} is the value of $\theta$ used to
extrapolate the nonlinear explicit source terms $S_e$ of the turbulence equations,
when the source term extrapolation has been activated (see {\tt isto2t}),
following the formula\\
$(S_e)^{n+\theta}=(1+\theta)S_e^n\theta S_e^{n1}$\\
the value
of $\theta$={\tt thetsn} is deduced from the value chosen for
{\tt isto2t}. Generally, only the value 0.5 is used. The user is not
allowed to modify this variable.\\
\hspace*{1.3cm}= 0: firstorder (unused, corresponds to {\tt isto2t}=0) \\
\hspace*{1.3cm}= 0.5: secondorder (used when {\tt isto2t}=1) \\
\hspace*{1.3cm}= 1: firstorder (used when {\tt isto2t}=2) \\
always useful}
\motcle{thetss}{ra}{0 $\leqslant$ real $\leqslant$1}{0, 0.5 or 1}{O}{L3}
{for each scalar {\tt iscal}, {\tt thetss(iscal)} is the value of $\theta$ used to
extrapolate the nonlinear explicit source terms $S_e$ of the scalar equation,
when the source term extrapolation has been activated (see {\tt isso2t}),
following the formula\\
$(S_e)^{n+\theta}=(1+\theta)S_e^n\theta S_e^{n1}$\\
the value
of $\theta$={\tt thetss(iscal)} is deduced from the value chosen for
{\tt isso2t(iscal)}. Generally, only the value 0.5 is used. The user is not
allowed to modify this variable.\\
\hspace*{1.3cm}= 0: firstorder (unused, corresponds to {\tt isso2t(iscal)}=0) \\
\hspace*{1.3cm}= 0.5: secondorder (used when {\tt isso2t(iscal)}=1) \\
\hspace*{1.3cm}= 1: firstorder (used when {\tt isso2t(iscal)}=2) \\
useful if {\tt nscal}$>$1}
\motcle{thetro}{r}{0 $\leqslant$ real $\leqslant$1}{0, 0.5 or 1}{O}{L3}
{{\tt thetro} is the value of $\theta$ used to
extrapolate the physical property $\phi$ ``density'' when the extrapolation has
been activated (see {\tt iroext}),according to the
formula $\phi^{n+\theta}=(1+\theta)\phi^n\theta \phi^{n1}$\\
the value of $\theta$={\tt thetro} is deduced from the value chosen for
{\tt iroext}. Generally, only the value 0.5 is used. The user is not
allowed to modify this variable.\\
\hspace*{1.3cm}= 0: firstorder (unused, corresponds to
{\tt iroext}=0)\\
\hspace*{1.3cm}= 0.5: secondorder (corresponds to {\tt iroext}=1) \\
\hspace*{1.3cm}= 1: firstorder (corresponds to {\tt iroext}=2) \\
always useful}
\motcle{thetvi}{r}{0 $\leqslant$ real $\leqslant$1}{0, 0.5 or 1}{O}{L3}
{{\tt thetvi} is the value of $\theta$ used to
extrapolate the physical property $\phi$ ``total viscosity'' when the extrapolation has
been activated (see {\tt iviext}),according to the
formula $\phi^{n+\theta}=(1+\theta)\phi^n\theta \phi^{n1}$\\
the value of $\theta$={\tt thetvi} is deduced from the value chosen for
{\tt iviext}. Generally, only the value 0.5 is used. The user is not
allowed to modify this variable.\\
\hspace*{1.3cm}= 0: firstorder (unused, corresponds to
{\tt iviext}=0)\\
\hspace*{1.3cm}= 0.5: secondorder (corresponds to {\tt iviext}=1) \\
\hspace*{1.3cm}= 1: firstorder (corresponds to {\tt iviext}=2) \\
always useful}
\motcle{thetcp}{r}{0 $\leqslant$ real $\leqslant$1}{0, 0.5 or 1}{O}{L3}
{{\tt thetcp} is the value of $\theta$ used to
extrapolate the physical property $\phi$ ``specific heat'' when the extrapolation has
been activated (see {\tt icpext}),according to the
formula $\phi^{n+\theta}=(1+\theta)\phi^n\theta \phi^{n1}$\\
the value of $\theta$={\tt thetcp} is deduced from the value chosen for
{\tt icpext}. Generally, only the value 0.5 is used. The user is not
allowed to modify this variable.\\
\hspace*{1.3cm}= 0: firstorder (unused, corresponds to
{\tt icpext}=0)\\
\hspace*{1.3cm}= 0.5: secondorder (corresponds to {\tt icpext}=1) \\
\hspace*{1.3cm}= 1: firstorder (corresponds to {\tt icpext}=2) \\
always useful}
\motcle{thetvs}{ra}{0 $\leqslant$ real $\leqslant$1}{0, 0.5 or 1}{O}{L3}
{for each scalar {\tt iscal}, {\tt thetvs(iscal)} is the value of $\theta$ used to
extrapolate the physical property $\phi$ ``diffusivity'' when the extrapolation has
been activated (see {\tt ivsext}), according to the
formula $\phi^{n+\theta}=(1+\theta)\phi^n\theta \phi^{n1}$\\
the value of $\theta$={\tt thetvs(iscal)} is deduced from the value chosen for
{\tt ivsext(iscal)}. Generally, only the value 0.5 is used. The user is not
allowed to modify this variable.\\
\hspace*{1.3cm}= 0: firstorder (unused, corresponds to
{\tt ivsext(iscal)}=0)\\
\hspace*{1.3cm}= 0.5: secondorder (corresponds to {\tt ivsext(iscal)}=1) \\
\hspace*{1.3cm}= 1: firstorder (corresponds to {\tt ivsext(iscal)}=2) \\
useful if {\tt nscal}$>$1}
%==================================
\subsubsection{Gradient reconstruction}
%==================================
\motcle{imrgra}{i}{0, 1, 2, 3, 4, 5, or 6}{0}{O}{L2}
{indicates the type of gradient reconstruction (one method for all the
variables)\\
\hspace*{1.3cm}= 0: iterative reconstruction of the nonorthogonalities\\
\hspace*{1.3cm}= 1: least squares method based on the first neighbour cells
(cells which share a face with the treated cell)\\
\hspace*{1.3cm}= 2: least squares method based on the extended neighbourhood
(cells which share a node with the treated cell)\\
\hspace*{1.3cm}= 3: least squares method based on a partial extended
neighbourhood (all first neighbours plus the extended neighbourhood cells that
are connected to a face where the nonorthogonality angle is larger than
parameter {\tt anomax})\\
\hspace*{1.3cm}= 4: iterative reconstruction with initialisation using the least
squares method (first neighbours)\\
\hspace*{1.3cm}= 5: iterative reconstruction with initialisation using the least
squares method based on an extended neighbourhood\\
\hspace*{1.3cm}= 6: iterative reconstruction with initialisation using the least
squares method based on a partial extended neighbourhood\\
if {\tt imrgra} fails due to probable mesh quality problems, it is usually effective
to use {\tt imrgra}=3. Moreover, {\tt imrgra}=3 is usually faster than
{\tt imrgra}=0 (but with less feedback on its use).\\
It should be noted that {\tt imrgra}=1, 2 or 3 automatically triggers a gradient
limitation procedure. See {\tt imligr}.\\
useful if and only if there is {\tt n} so that {\tt nswrgr(n)} $>$ 1.
Also, pressure gradients (or other gradients deriving from a potential)
always use an iterative reconstruction. To force a noniterative
reconstruction for those gradients, a negative value of this keyword may be
used, in which case the method matching the absolute value of the keyword will
be used.}
\motcle{nswrgr}{ia}{positive integer}{100}{O}{L3}
{for each unknown {\tt ivar}, {\tt nswrgr(ivar)} $\leqslant$ 1 indicates that the
gradients are not reconstructed\\
\hspace*{1.3cm}if {\tt imrgra} = 0 or 4, {\tt nswrgr(ivar)} is the number of
iterations for the gradient reconstruction\\
\hspace*{1.3cm}if {\tt imrgra} = 1, 2 or 3, {\tt nswrgr(ivar)} $>$ 1 indicates that
the gradients are reconstructed (but the method is not iterative, so any value
larger than 1 for {\tt nswrgr} yields the same result)\\
useful for all the unknowns}
\motcle{epsrgr}{ra}{real number $>$ 0}{$10^{5}$}{O}{L3}
{for each unknown {\tt ivar}, relative precision for the iterative gradient
reconstruction: {\tt epsrgr(ivar)}\\
useful for all the unknowns when {\tt imrgra} = 0 or 4}
\motcle{imligr}{ia}{1, 0 or 1}{1 or 1}{O}{L3}
{for each unknown {\tt ivar}, indicates the type of gradient limitation:
{\tt imligr(ivar)}\\
\hspace*{1.3cm}=1: no limitation\\
\hspace*{1.3cm}= 0: based on the neighbours\\
\hspace*{1.3cm}= 1: superior order\\
for all the unknowns, {\tt imligr} is initialised to 1 if {\tt imrgra}=0 or 4
and to 1 if \mbox{{\tt imrgra} = 1, 2 or 3}\\
useful for all the unknowns}
\motcle{climgr}{ra}{real number $>$ 0}{1.5}{O}{L3}
{for each unknown {\tt ivar}, factor of gradient limitation: {\tt climgr(ivar)}
(high value means little limitation)\\
useful for all the unknowns {\tt ivar} for which {\tt imligr(ivar)} $\ne$ 1}
\motcle{extrag}{ra}{0, 0.5 or 1}{0}{O}{L3}
{for the variable ``pressure'' {\tt ivar=ipr}, extrapolation coefficient
of the gradients at the boundaries. It affects only the Neumann conditions.
The only possible values of {\tt extrag(ipr)} are:\\
\hspace*{1.3cm}= 0: homogeneous Neumann calculated at firstorder\\
\hspace*{1.3cm}= 0.5: improved homogeneous Neumann, calculated at
secondorder in the case of an orthogonal mesh and at firstorder otherwise\\
\hspace*{1.3cm}= 1: gradient extrapolation (gradient at the boundary face
equal to the gradient in the neighbour cell), calculated at
secondorder in the case of an orthogonal mesh and at firstorder otherwise\\
{\tt extrag} often allows to correct the nonphysical velocities that
appear on horizontal walls when density is variable and there is gravity.
It is strongly advised to keep {\tt extrag}=0 for the variables apart from
pressure. See also {\tt iphydr}.\\
In practice, only the values 0 and 1 are allowed. The
value 0.5 is not allowed by default (but the lock can be overridden if
necessary, contact the development team).\\
always useful}
\motcle{anomax}{r}{0 $\leqslant$ real $\leqslant\pi/2$}{$\pi/4$}{O}{L3}
{limit nonorthogonality angle used to restrict the extended neighbourhood for
the gradient calculation with {\tt imrgra}=3.\\
{\tt anomax}=0 will yield the same result as {\tt imrgra}=2 (full extended
neighbourhood). {\tt anomax}=$\pi/2$ will yield the same result as
{\tt imrgra}=1
(first neighbours only)\footnote{Except for pathological cases where the
nonorthogonality angle of a face would be larger than $\pi/2$}\\
useful if and only if {\tt imrgra}=3}
%==================================
\subsubsection{Solution of the linear systems}
%==================================
See \doxygenfile{parameters.html}{the dedicated \texttt{Doxygen} documentation}
for most settings related to linear solver options.
\motcle{epsilo}{ra}{real number $>$ 0}{$10^{8}$,$10^{5}$}{O}{L3}
{for each unknown {\tt ivar}, relative precision for the solution of the linear
system. The default value is {\tt epsilo(ivar)=$10^{8}$}. This value is set low
on purpose. When there are enough iterations on the reconstruction of the
righthand side of the equation,
the value may be increased (by default, in case of secondorder in time,
with {\tt nswrsm} = 5 or 10, {\tt epsilo} is increased to $10^{5}$).\\
always useful}
%==================================
\subsubsection{Convective scheme}
%==================================
\motcleb{blencv}{ra}{0 $\leqslant$ real $\leqslant$ 1}{0 or 1}{O}{L1}
{for each unknown {\tt ivar} to calculate, {\tt blencv(ivar)} indicates the
proportion of secondorder convective scheme (0 corresponds to an
``upwind'' firstorder scheme); in case of LES calculation, a
secondorder scheme is recommended and activated by default ({\tt blencv=1})\\
useful for all the unknowns {\tt ivar} for which {\tt iconv(ivar)} = 1}
\motcle{ischcv}{ia}{0 or 1}{1}{O}{L2}
{for each unknown {\tt ivar} to calculate, {\tt ischcv(ivar)} indicates the type of secondorder
convective scheme\\
\hspace*{1.3cm}= 0: Second Order Linear Upwind\\
\hspace*{1.3cm}= 1: Centered\\
useful for all the unknowns {\tt ivar} which are convected
({\tt iconv(ivar)}=1) and
for which a secondorder scheme is used ({\tt blencv(ivar)} $>$ 0)}
\motcle{isstpc}{ia}{0 or 1}{0}{O}{L2}
{for each unknown {\tt ivar} to calculate, {\tt isstpc(ivar)}
indicates whether a ``slope test'' should
be used to switch from a secondorder to an ``upwind'' convective
scheme under certain conditions, to ensure stability.\\
\hspace*{1.3cm}= 0: ``slope test'' activated for the considered unknown\\
\hspace*{1.3cm}= 1: ``slope test'' deactivated for the considered unknown\\
useful for all the unknowns {\tt ivar} which are convected
({\tt iconv(ivar)}=1) and
for which a secondorder scheme is used ({\tt blencv(ivar)} $>$ 0).\\
the use of the ``slope test'' stabilises the calculation but may bring
the order in space to decrease quickly.}
%==================================
\subsubsection{Pressurecontinuity step}
%==================================
\motcle{iprco}{i}{0 or 1}{1}{O}{L3}
{indicates if the pressurecontinuity step is taken into account (1) or
not (0)\\
always useful}
\motcle{arak}{ra}{0 $<$ real $\leqslant$ 1}{1}{O}{L3}
{{\tt arak} is the Arakawa coefficient before the
Rhie\& Chow filter\\
always useful}
\motcle{irevmc}{i}{0}{0}{O}{L3}
{method used to update the velocity after the pressure
correction:\\
\hspace*{0,5cm} standard gradient of pressure increment
({\tt irevmc}=0)\\
always useful}
\motcle{iphydr}{i}{0 or 1 or 2}{0}{O}{L2}
{method for taking into account the balance between the pressure gradient and
the source terms (gravity and head losses): by extension it will be
referenced as ``taking into account of the hydrostatic pressure''\\
\hspace*{1.3cm}= 0: standard algorithm\\
\hspace*{1.3cm}= 1: improved algorithm\\
always useful\\
When the density effects are important, the choice of
{\tt iphydr}=1 allows to improve the interpolation of the pressure and correct the
nonphysical velocities which may appear in highly
stratified areas or near horizontal walls (thus
avoiding the use of {\tt extrag} if the nonphysical velocities are due only to
gravity effects).\\
The improved algorithm also allows eradicating the velocity oscillations
which tend to appear at the frontiers of areas with high head losses.\\
In the case of a stratified flow, the calculation cost is higher when the
improved algorithm is used (about 30\% depending on the case) because
the hydrostatic pressure must be recalculated at the outlet boundary
conditions: see {\tt icalhy}.\\
On meshes of insufficient quality, in order to
improve the convergence, it may be useful to increase the number of
iterations for the reconstruction of the pressure righthand side,
{\em i.e.} \mbox{\tt nswrsm(ipr)}.\\
If head losses are present just along an outlet boundary, it is necessary to
specify {\tt icalhy}=0 in order to deactivate the recalculation of the hydrostatic
pressure at the boundary, which may otherwise cause instabilities.}
\motcle{icalhy}{i}{0 or 1}{0 or 1}{O}{L3}
{activates the calculation of hydrostatic pressure boundary conditions at outlet
boundaries\\
\hspace*{1.3cm}= 0: no calculation of the hydrostatic pressure at the outlet boundary\\
\hspace*{1.3cm}= 1: calculation of the hydrostatic pressure at the outlet boundary\\
always useful\\
This option is automatically specified depending on the
choice of {\tt iphydr} and the value of gravity
({\tt icalhy}=1 if {\tt iphydr}=1 and gravity is different from 0; otherwise
{\tt icalhy}=0). The activation of this option generates an additional
calculation cost (about 30\% depending on the case).\\
If head losses are present just along an outlet boundary, it is necessary to
specify {\tt icalhy}=0 in order to deactivate the recalculation of the hydrostatic
pressure at the boundary, which may otherwise cause instabilities}
\motcle{epsdp}{r}{real number $>$ 0}{$10^{12}$}{O}{L3}
{Parameter of diagonal pressure strengthening
}
\motcle{iporos}{i}{0 or 1}{0}{O}{L2}
{indicates if the porosity formulation is taken into account\\
\hspace*{1.3cm}= 0: standard algorithm (without porosity)\\
\hspace*{1.3cm}= 1: porosity taken into account\\
useful when head losses are taken into account
}
%==================================
\subsubsection{Error estimators for NavierStokes}
%==================================
There are currently {\tt nestmx\index{nestmx}}=4 types of local estimators
provided at every time step, with two possible definitions for
each\footnote{Choice made by the user}. These scalars indicate the areas
(cells) in which some error types may be important. They are
stored in the array {\tt propce} containing the properties at the cells (see
{\tt iestim\index{iestim}}). For each estimator, the code writes the minimum and
maximum values in the listing and generates postprocessing outputs along with
the other variables.
The additional memory cost is about one real number per cell and per
estimator. The additional calculation cost is variable. For instance, on a
simple test case, the total estimator {\tt iestot} generates an additional cost
of 15 to 20 $\%$ on the CPU time\footnote{Indeed, all the firstorder in
space differential terms have to be recalculated at the time $t^{\,n+1}$};
the cost of the three others may be neglected. If the user wants to
avoid the calculation of the estimators during the computation, it is
possible to run a calculation without estimators first, and then activate them on
a restart of one or two time steps.
It is recommended to use the estimators only for visual and qualitative
analysis. Also, their use is compatible neither with a secondorder time scheme
nor with a calculation with a frozen velocity field.
{\tt \bf iest = iespre\index{iespre}: prediction} (default name: EsPre).
After the velocity prediction step (yielding $\vect{\widetilde{u}}$), the
estimator $\eta^{\,pred}_{\,i,k}(\vect{\widetilde{u}})$, local variable calculated
at every cell $\Omega_i$, is created from $\vect{\mathcal
R}^{\,pred}(\vect{\widetilde{u}})$, which represents the residual of the equation
solved during this step:
\begin{equation*}
\begin{array}{r c l}
\vect{\mathcal{R}}^{\,pred}(\vect{\widetilde{u}})&= & \rho^n
\dfrac{\vect{\widetilde{u}}\vect{u}^n}{\Delta t}
+ \gradt \left(\vect{\widetilde{u}} \right) \cdot \left(\rho \vect{u}\right)^n
 \divv \left((\mu+\mu_t)^n \gradt(\vect{\widetilde{u}}) \right)
+ \grad(P^n) \\
& &\text{rest of the righthand side}
(\vect{u}^n, P^n, \text{other variables}^n)
\end{array}
\end{equation*}
By definition:
$$ \eta^{\,pred}_{\,i,k}(\vect{\widetilde{u}})= {\Omega_i}^{\,(k2)/2}\ \vect{\mathcal R}^{\,pred}(\vect{\widetilde{u}})
_{{\mathbb{L}}^{2}(\Omega_i)}$$
%
\begin{itemize}
\item The first family, $k=1$, suppresses the
volume $\Omega_i$ which intrinsically appears with the norm
${{\mathbb{L}}^{2}(\Omega_i)}$.
\item The second family, $k=2$, exactly represents the norm
${{\mathbb{L}}^{2}(\Omega_i)}$. The size of the cell therefore
appears in its calculation and induces a weighting effect.
\end{itemize}
$ \eta^{\,pred}_{\,i,k}(\vect{\widetilde{u}})$ is ideally equal to zero when the
reconstruction methods are perfect and the associated system is
solved exactly.
{\tt \bf iest = iesder\index{iesder}: drift} (default name: EsDer).
The estimator $\eta^{\,der}_{\,i,k}(\vect{u}^{\,n+1})$ is based on the
following quantity (intrinsic to the code):
\begin{equation}
\begin{array}{lll}
\eta^{der}_{i,k}(\vect{u}^{n+1})
&=& {\Omega_i}^{\,(k2)/2}
\divs \left(\text{corrected mass flow after the pressure step}\right)
\ \Gamma_{{L}^{2}(\Omega_i)} \\
&=& {\Omega_i}^{\,(1k)/2}
div (\text{corrected mass flow after the pressure step})\ \Gamma
\end{array}
\end{equation}
Ideally, it is equal to zero when the Poisson equation related to the pressure is
solved exactly.
{\tt \bf iest = iescor\index{iescor}: correction} (default name: EsCor).
The estimator $ \eta^{\,corr}_{\,i,k}(\vect{u}^{\,n+1})$ comes directly
from the mass flow calculated with the updated velocity field:
\begin{eqnarray*}
\eta^{\,corr}_{\,i,k}(\vect{u}^{\,n+1})=
\Omega_i^{\,\delta_{\,2,k}}\ div (\rho^n \vect{u}^{n+1}) \ \Gamma
\end{eqnarray*}
The velocities $\vect{u}^{n+1}$ are taken at the cell centers,
the divergence is calculated after projection on the faces.\\
$ \,\delta_{\,2,k}$ represents the Kronecker symbol.\\
\hspace*{0.5cm}$\bullet$ The first family, $k=1$, is the absolute raw
value of the divergence of the mass flow minus the mass source term.\\
\hspace*{0.5cm}$\bullet$ The second family, $k=2$, represents a physical
property and allows to evaluate the difference in $kg.s^{\,1}$.\\
Ideally, it is equal to zero when the Poisson equation is solved exactly and
the projection from the mass flux at the faces to the velocity at the cell
centers is made in a set of functions with null divergence.
{\tt \bf iest = iestot\index{iestot}: total} (default name: EsTot).
The estimator $ \eta^{tot}_{\,i,k}(\vect{u}^{n+1})$, local variable
calculated at every cell $\Omega_i$, is based on the quantity
$\vect{\mathcal R}^{tot}(\vect{u}^{\,n+1})$, which represents the
residual of the equation using the updated values of
$\vect{u}$ and $P$:
\begin{equation*}
\begin{array}{@{}r@{\,} c@{\,} l}
\vect{\mathcal{R}}^{tot}({\vect{u}^{n+1}})&= & \rho^n
\dfrac{{\vect{u}^{n+1}}\vect{u}^n}{\Delta t}
+ \gradt \left({\vect{u}^{n+1}} \right) \cdot {\left(\rho \vect{u}\right)}^{n+1}
 \divv \left((\mu+\mu_t)^n \gradt({\vect{u}^{n+1}}) \right)
+ \grad({P^{n+1}}) \\
& &\text{rest of the righthand side}
({\vect{u}^{n+1}}, {P^{n+1}}, \text{other variables}^n)
\end{array}
\end{equation*}
%
By definition:
$$ \eta^{tot}_{i,k}(\vect{u}^{n+1})= {\Omega_i}^{\,(k2)/2}\ \vect{\mathcal R}^{tot}(\vect{u}^{\,n+1})
_{\mathbb{L}^{2}(\Omega_i)}$$
The mass flux in the convective term is recalculated from $\vect{u}^{n+1}$
expressed at the cell centres (and not taken from the updated mass flow at the
faces).\\
As for the prediction estimator:
\begin{itemize}
\item The first family, $k=1$, suppresses the
volume $\Omega_i$ which intrinsicly appears with the norm
${\mathbb{L}^{2}(\Omega_i)}$.
\item The second family, $k=2$, exactly represents the norm
${\mathbb{L}^{2}(\Omega_i)}$. The size of the cell therefore
appears in its calculation and induces a weighting effect.
\end{itemize}
The estimators are evaluated depending on the values of {\tt iescal}.
\motcleb{iescal}{ia}{0, 1 or 2}{0}{O}{L1}
{{\tt iescal(iest)} indicates the calculation mode
for the error estimator {\tt iest} ({\tt iespre}, {\tt iesder}, {\tt iescor} or
{\tt iestot}), for
the NavierStokes equation:\\
{\tt iescal} = 0: estimator not calculated, \\
{\tt iescal} = 1: the estimator $ \eta^{*}_{i,1}$ is calculated,
without contribution of the volume, \\
{\tt iescal} = 2: the estimator $ \eta^{*}_{i,2}$ is calculated,
with contribution of the volume ("norm $L^2$"),
except for {\tt iescor}, for which
$\Omega_i\ \eta^{corr}_{i,1}\ $
is calculated.
The names of the estimators appearing in the listing and the postprocessing are
made up of the default name (given before), followed by the value of
{\tt iescal}. For
instance, EsPre2 is the estimator {\tt iespre} calculated with {\tt iescal}=2.\\
always useful}
%==================================
\subsubsection{Calculation of the distance to the wall}
%==================================
\motcle{icdpar}{i}{1, 1, 2 or 2}{1}{O}{L2}
{specifies the method used to calculate the distance to the wall $y$ and the
nondimensional distance $y^+$ for all the
cells of the calculation domain (when necessary):\\
\hspace*{1.3cm}= 1: standard algorithm (based on a Poisson equation for $y$ and
convection equation for $y^+$),
with reading of the distance to the wall from the restart file
if possible\\
\hspace*{1.3cm}=1: standard algorithm (based on a Poisson equation for $y$ and
convection equation for $y^+$),
with systematic recalculation of the distance to the wall in case of
calculation restart\\
\hspace*{1.3cm}= 2: former algorithm (based on geometrical
considerations),
with reading of the distance to the wall from the restart file
if possible\\
\hspace*{1.3cm}=2: former algorithm (based on geometrical
considerations) with systematic recalculation of the distance to the
wall in case of calculation restart\\
In case of restart calculation, if the position of the walls haven't changed,
reading the distance to the wall from the restart file can save a fair amount of
CPU time.\\
Useful in $R_{ij}\varepsilon$ model with wall echo ({\tt iturb}=30 and
{\tt irijec}=1), in LES with van Driest damping ({\tt iturb}=40 and
{\tt idries}=1) and in $k\omega$ SST ({\tt iturb}=60). \\
By default, {\tt icdpar} is initialised to 1, in case there has been a change in the
definition of the boundary conditions between two computations (change in the
number or the positions of the walls). Yet, with the $k\omega$ SST model, the
distance to the wall is needed to calculate the turbulent viscosity, which is
done before the calculation of the distance to the wall. Hence, when this model
is used (and only in that case), {\tt icdpar} is set to 1 by default, to ensure total
continuity of the calculation at restart.\\
{\bf As a consequence, with the \boldmath$k\omega$\unboldmath\ SST model, if
the number and positions of the walls are changed at a calculation restart, it
is mandatory for the user to set {\tt icdpar} explicitly to 1}, otherwise the
distance to the wall used will not correspond to the actual position of the
walls.\\
The former algorithm is not compatible with parallelism nor periodicity. Also,
whatever the value chosen for {\tt icdpar}, the calculation of the distance to the
wall is made at the most once for all a the beginning of the calculation; it is
therefore not compatible with moving walls. Please contact the development team
if you need to override this limitation.}
The following options are related to {\tt icdpar} $\neq$\ 0. The options of
level 2 are described first. Some options are used only in the case of
the calculation of the nondimensional distance to the wall $y^+$ (LES model with
van Driest damping). Most of the following keywords are simple copies of the
keywords for the numerical options of the general equations, with a potentially
specific value in the case of the calculation of the distance to the wall.\\
\motcle{iwarny}{i}{integer}{0}{O}{L2}
{specifies the level of the output writing concerning the calculation of the
distance to the wall with {\tt icdpar} $\neq$\ 0. The higher the value, the more
detailed the outputs\\
useful when {\tt icdpar} $\neq$\ 0}
\motcle{ntcmxy}{i}{positive integer}{1000}{O}{L2}
{number of pseudotime iterations for the calculation of the nondimensional
distance to the wall $y^+$\\
useful when {\tt icdpar} $\neq$\ 0 for the calculation of $y^+$}
\motcle{nitmay}{i}{integer $>$ 0}{10000}{O}{L3}
{maximum number of iterations for the solution of the linear systems\\
useful when {\tt icdpar} $\neq$\ 0}
\motcle{nswrsy}{i}{positive integer}{1}{O}{L3}
{number of iterations for the reconstruction of the righthand sides:
corresponds to {\tt nswrsm}\\
useful when {\tt icdpar} $\neq$\ 0}
\motcle{nswrgy}{i}{positive integer}{100}{O}{L3}
{number of iterations for the gradient reconstruction: corresponds to {\tt nswrgr}\\
useful when {\tt icdpar} $\neq$\ 0}
\motcle{imligy}{i}{1, 0 or 1}{1 or 1}{O}{L3}
{type of gradient limitation: corresponds to {\tt imligr}\\
useful when {\tt icdpar} $\neq$\ 0}
\motcle{ircfly}{i}{0 or 1}{1}{O}{L3}
{indicates the reconstruction of the convective and diffusive fluxes at
the faces: corresponds to {\tt ircflu}\\
useful when {\tt icdpar} $\neq$\ 0}
\motcle{ischcy}{i}{0 or 1}{1}{O}{L3}
{indicates type of secondorder convective scheme: corresponds to {\tt ischcv}\\
useful when {\tt icdpar} $\neq$\ 0 for the calculation of $y^+$}
\motcle{isstpy}{i}{0 or 1}{0}{O}{L3}
{indicates if a ``slope test'' should be used for a secondorder convective
scheme: corresponds to {\tt isstpc}\\
useful when {\tt icdpar} $\neq$\ 0 for the calculation of $y^+$}
\motcle{imgrpy}{i}{0 or 1}{0}{O}{L3}
{indicates whether the algebraic
multigrid method should be used ({\tt imgr(ivar)}=1) or not (0): corresponds
to {\tt imgr}\\
useful when {\tt icdpar} $\neq$\ 0}
\motcle{blency}{r}{0 $\leqslant$ real $\leqslant$ 1}{0}{O}{L3}
{proportion of secondorder convective scheme: corresponds to {\tt blencv}\\
useful when {\tt icdpar} $\neq$\ 0 for the calculation of $y^+$}
\motcle{epsily}{r}{real number $>$ 0}{$10^{8}$}{O}{L3}
{relative precision for the solution of the linear systems:
corresponds to {\tt epsilo}\\
useful when {\tt icdpar} $\neq$\ 0}
\motcle{epsrgy}{r}{real number $>$ 0}{$10^{5}$}{O}{L3}
{relative precision for the iterative gradient reconstruction:
corresponds to {\tt epsrgr}\\
useful when {\tt icdpar} $\neq$\ 0}
\motcle{epsrsy}{r}{real number $>$ 0}{$10^{5}$}{O}{L3}
{relative precision for the righthand side reconstruction:
corresponds to {\tt epsrsm}\\
useful when {\tt icdpar} $\neq$\ 0}
\motcle{climgy}{r}{real number $>$ 0}{1.5}{O}{L3}
{limitation factor of the gradients: corresponds to {\tt climgr}\\
useful when {\tt icdpar} $\neq$\ 0}
\motcle{extray}{r}{0, 0.5 or 1}{0}{O}{L3}
{extrapolation coefficient of the gradients at the boundaries:
corresponds to {\tt extrag}\\
useful when {\tt icdpar} $\neq$\ 0}
\motcle{coumxy}{r}{strictly positive real number}{5000}{O}{L3}
{Target Courant number for the calculation of the nondimensional distance
to the wall\\
useful when {\tt icdpar} $\neq$\ 0 for the calculation of $y^+$}
\motcle{epscvy}{r}{strictly positive real number}{$10^{8}$}{O}{L3}
{relative precision for the convergence of the pseudotransient regime
for the calculation of the nondimensional distance to the wall\\
useful when {\tt icdpar} $\neq$\ 0 for the calculation of $y^+$}
\motcle{yplmxy}{r}{real number}{200}{O}{L3}
{value of the nondimensional distance to the wall above which the
calculation of the distance is not necessary (for the damping)\\
useful when {\tt icdpar} $\neq$\ 0 for the calculation of $y^+$}
%==================================
\subsubsection{Others}
%==================================
\motcleb{iccvfg}{i}{0 or 1}{0}{O}{L1}
{indicates whether the dynamic field should be frozen (1) or not (0)\\
in such a case, the values of velocity,
pressure and the variables related to the potential turbulence model
($k$, $R_{ij}$, $\varepsilon$, $\varphi$, $\bar{f}$, $\omega$, turbulent viscosity) are kept
constant over time and only the equations for the scalars are solved\\
also, if {\tt iccvfg}=1, the physical properties modified in \texttt{usphyv} will keep
being updated. Beware of nonconsistencies if these properties would normally
affect the dynamic field (modification of density for instance)\\
useful if and only if {\tt nscal} $>$ 0 and the calculation is a restart}
\motcleb{ivelco}{i}{0 or 1}{1}{O}{L1}
{indicates the algorithm for the velocity components coupling\\
\hspace*{1.3cm}= 0: segregated (deprecated)\\
\hspace*{1.3cm}= 1: coupled (default)\\
always useful
}
\motcleb{ipucou}{i}{0 or 1}{0}{O}{L1}
{indicates the algorithm for velocity/pressure coupling\\
\hspace*{1.3cm}= 0: standard algorithm\\
\hspace*{1.3cm}= 1: reinforced coupling in case calculation with long
time steps\\
always useful (it is seldom advised, but it can prove very useful, for instance,
in case of flows with weak convection effects and highly variable viscosity)}
\motcleb{nterup}{i}{real number $>$ 0}{1}{O}{L2}
{number of iterations on the pressurevelocity coupling in the NavierStokes equations (for the PISO algorithm).
useful for unsteady algorithm
}
\motcleb{epsup}{r}{real number $>$ 0}{$10^{5}$}{O}{L2}
{relative precision for the convergence test of the iterative process on
pressurevelocity coupling (PISO).
useful for unsteady algorithm
}
\motcleb{isuit1}{i}{0 or 1}{0}{O}{L1}
{for the 1D wall thermal module, activation (1) or not(0) of the reading
of the mesh and of the wall temperature from the {\tt ficmt1} restart file\\
useful if {\tt nfpt1d}$>$0.}
\motcle{imvisf}{i}{0 or 1}{0}{O}{L3}
{indicates the interpolation method used to project variables from the cell
centers to the faces\\
\hspace*{1.3cm}= 0: linear\\
\hspace*{1.3cm}= 1: harmonic\\
always useful}
\motcle{ircflu}{ia}{0 or 1}{1}{O}{L2}
{for each unknown {\tt ivar}, {\tt ircflu(ivar)} indicates whether the convective
and diffusive fluxes at the faces should be reconstructed: \\
\hspace*{1.3cm}= 0: no reconstruction\\
\hspace*{1.3cm}= 1: reconstruction\\
deactivating the reconstruction of the fluxes can have a stabilising effect on
the calculation. It is sometimes useful with the $k\varepsilon$ model, if the
mesh is strongly nonorthogonal in the nearwall region, where the gradients of
$k$ and $\varepsilon$ are strong. In such a case, setting {\tt ircflu(ik)}=0
and {\tt ircflu(iep)}=0 will probably help (switching to a first order
convective scheme, {\tt blencv=0}, for $k$ and $\varepsilon$ might also help in
that case)\\
always useful}
\motcle{nswrsm}{ia}{positive integer}{1, 2, 5 or 10}{O}{L3}
{for each unknown {\tt ivar}, {\tt nswrsm(ivar)} indicates the number of iterations for the
reconstruction of the righthand sides of the equations\\
with a firstorder scheme in time
(standard case), the default values are 2 for pressure and 1 for the
other variables. With a secondorder scheme in time ({\tt ischtp}=2) or LES, the
default values are 5 for pressure and 10 for the other variables.\\
useful for all the unknowns}
\motcle{epsrsm}{ra}{real number $>$ 0}{$10^{8}$,$10^{5}$}{O}{L3}
{for each unknown {\tt ivar}, relative precision on the reconstruction of the
right handside. The default value is {\tt epsrsm(ivar)}=$10^{8}$. This value is set low
on purpose. When there are not enough iterations on the reconstruction of the
righthand side of the equation,
the value may be increased (by default, in case of secondorder in time,
with {\tt nswrsm} = 5 or 10, {\tt epsrsm} is increased to $10^{5}$).\\
always useful}
%====================================================================================
\subsection{Numerical, physical and modelling parameters}
%=============================================================================
\subsubsection{Numeric parameters}
%================================
These parameters correspond to numeric reference values in the code.
They can be used but shall not be modified (they are defined as \texttt{parameter}).
\motcle{zero}{r}{0}{0}{O}{L3}
{Parameter containing the value 0}
\motcle{epzero}{r}{$10^{12}$}{$10^{12}$}{O}{L3}
{``Small'' real parameter, used for the comparisons of real numbers (absolute
value of the difference lower than {\tt epzero})}
\motcle{pi}{r}{3.141592653589793}{3.141592653589793}{O}{L3}
{Parameter containing an approximate value of $\pi$}
\motcle{grand}{r}{$10^{12}$}{$10^{12}$}{O}{L3}
{``Large'' real parameter, generally used by default as a non physical value for
the initialisations of variables which have to be modified by the user}
\motcle{rinfin}{r}{$10^{30}$}{$10^{30}$}{O}{L3}
{Real parameter used to represent ``infinity''}
%==================================
\subsubsection{Physical parameters}
%==================================
These parameters correspond to physical reference values in the code.
They can be used but shall not be modified (they are defined as {\tt parameter}).
\motcle{tkelvi}{r}{273.15}{273.15}{O}{L3}
{Temperature in Kelvin corresponding to 0 degrees Celsius.}
\motcle{tkelvn}{r}{273.15}{273.15}{O}{L3}
{Temperature in degrees Celsius corresponding to 0 Kelvin.}
\motcle{\footnotesize cs\_physical\_constants\_r}{~~~~~~~~~~~~r}{~~~~~~8.31446}{8.31446}{O}{L3}
{Perfect gas constant in $J/mol/K$}
\motcle{trefth}{r}{25 + tkelvi}{25 + tkelvi}{O}{L3}
{Reference temperature for the specific physics, in $K$}
\motcle{prefth}{r}{101325}{101325}{O}{L3}
{Reference pressure for the specific physics, in $Pa$}
\motcle{volmol}{r}{$22.41.10^{3}$}{$22.41.10^{3}$}{O}{L3}
{Molar volume under normal pressure and temperature conditions (1 atmosphere,
0\degresC) in $m^{3}$}
\motcle{stephn}{r}{$5.6703.10^{8}$}{$5.6703.10^{8}$}{O}{L3}
{Stephan's constant for the radiative module $\sigma$ in $W.m^{2}.K^{4}$}
\motcle{permvi}{r}{$1.2566.10^{6}$}{$1.2566.10^{6}$}{O}{L3}
{Vacuum magnetic permeability $\mu_0$ (=$4\pi.10^{7}$) in $kg.m.A^{2}.s^{2}$}
\motcle{epszer}{r}{$8.854.10^{12}$}{$8.854.10^{12}$}{O}{L3}
{Vacuum permittivity $\varepsilon_0$ in $F.m^{1}$}
%==================================
\subsubsection{Physical variables}
%==================================
\motcleb{gx,gy,gz}{r}{3 real numbers}{0,0,0}{O}{L1}
{gravity components\\
always useful }
\motcleb{irovar}{ia}{0 or 1}{\tt 1}{C}{L1}
{{\tt irovar}=0 indicates that the density is
constant. Its value is the reference density {\tt ro0}.\\
{\tt irovar}=1 indicates that the density is variable: its variation
law must be given in the user subroutine \texttt{usphyv}\\
negative value: not initialised\\
always useful}
\motcleb{ivivar}{ia}{0 or 1}{\tt 1}{C}{L1}
{{\tt ivivar}=0 indicates that the molecular
dynamic viscosity is constant. Its value is the reference molecular
dynamic viscosity {\tt viscl0}.\\
{\tt ivivar}=1 indicates that the molecular dynamic viscosity is
variable: its variation law must be given in the user subroutine
\texttt{usphyv}\\
negative value: not initialised\\
always useful}
\motcleb{ro0}{ra}{real number $\geqslant$ 0}{\tt grand*10}{C}{L1}
{{\tt ro0} is the reference density\\
negative value: not initialised\\
its value is not used in gas or coal combustion modelling (it
will be calculated following the perfect gas law, with $P0$ and $T0$). With the
compressible module, it is also not used by the code, but it may be (and often
is) referenced by the user in user subroutines; it is therefore better to
specify its value.\\
always useful otherwise, even if a law defining the density is given by
the user subroutine \texttt{usphyv} or \texttt{cs\_user\_physical\_properties.c}\\
indeed, except with the
compressible module, \CS does not
use the total pressure $P$ when solving the NavierStokes equation, but a
reduced pressure \\
$P^*=P\rho_0\vect{g}.(\vect{x}\vect{x}_0)+P^*_0P_0$\\
where
$\vect{x_0}$ is a reference point (see {\tt xyzp0}) and $P^*_0$ and $P_0$ are
reference values (see {\tt pred0} and {\tt p0}). Hence, the term
$\grad{P}+\rho\vect{g}$ in the equation is treated as
$\grad{P^*}+(\rho\rho_0)\vect{g}$. The closer {\tt ro0} is to the value of $\rho$,
the more $P^*$ will tend to represent only the dynamic part of the pressure and
the faster and more precise its solution will be. Whatever the value of {\tt ro0},
both $P$ and $P^*$ appear in the listing and the postprocessing outputs.\\
with the compressible module, the calculation is made directly on the total
pressure}
\motcleb{viscl0}{ra}{real number $>$ 0}{\tt grand*10}{C}{L1}
{ {\tt viscl0} is the reference molecular dynamic
viscosity\\
negative value: not initialised\\
always useful, it is the used value unless the user specifies the
viscosity in the \texttt{usphyv}} subroutine
\motcleb{srrom}{r}{$0 \leqslant \text{real number} < 1$}{\tt grand or 0}{c or O}{L1}
{With gas combustion, pulverised coal or the electric module, {\tt srrom}
is the subrelaxation coefficient for the density, following the formula:\\
$\rho^{n+1}$\,=\,srrom\,$\rho^n$+(1srrom)\,$\rho^{n+1}$\\
hence, with a zero value, there is no subrelaxation.
With combustion and pulverised coal, {\tt srrom} is initialised to {\tt grand}
and the user must specify a proper value through the Interface or the
initialisation subroutines (\texttt{cs\_user\_combustion}). With the electric module, {\tt srrom} is initialised in to 0
and may be modified by the user in \texttt{cs\_user\_parameters}.\\
With gas combustion, pulverised coal or electric arcs, {\tt srrom} is
automatically used after the second timestep.}\\
always useful with gas combustion, pulverized coal or the electric module.
\motcleb{p0}{ra}{real number}{$1.013e5$}{O}{L1}
{{\tt p0} is the reference pressure for the total
pressure\\
except with the compressible module, the total pressure $P$ is evaluated
from the reduced pressure $P^*$ so that $P$
is equal to {\tt p0} at the reference position $\vect{x}_0$ (given by {\tt xyzp0})\\
with the compressible module, the total pressure is solved directly\\
always useful}
\motcle{pred0}{ra}{real number}{0}{O}{L3}
{{\tt pred0} is the reference value for the reduced
pressure $P^*$ (see {\tt ro0})\\
it is especially used to initialise the reduced pressure and as a reference
value for the outlet boundary conditions\\
for an optimised precision in the resolution of $P^*$, it is better to keep {\tt pred0}
to 0\\
with the compressible module, the ``pressure'' variable appearing in the
equations directly represents the total pressure. It is therefore initialised
to {\tt p0} and not {\tt pred0} (see {\tt ro0})\\
always useful, except with the compressible module}
\motcleb{xyzp0}{ra}{3 real numbers}{0,0,0}{O}{L1}
{{\tt xyzp0(ii)} is the {\tt ii} coordinate
(1$\leqslant$II$\leqslant$3) of the reference point $\vect{x}_0$ for the
total pressure\\
when there are no Dirichlet conditions for the pressure (closed domain), {\tt xyzp0}
does not need to be specified (unless the total pressure has a clear physical
meaning in the configuration treated)\\
when Dirichlet conditions on the pressure are specified but only through standard
outlet conditions (as it is in most configurations),
{\tt xyzp0} does not need to be specified by the user, since it will be set to the
coordinates of the reference outlet face ({\em i.e.} the code will automatically
select a
reference outlet boundary face and set {\tt xyzp0} so that $P$ equals {\tt p0} at this
face). Nonetheless, if {\tt xyzp0} is specified by the user, the calculation will remain
correct\\
when direct Dirichlet conditions are specified by the user (specific value set
on specific boundary faces), it is better to specify the corresponding reference
point ({\em i.e.} specify where the total pressure is {\tt p0}). This way, the
boundary conditions for the reduced pressure will be close to {\tt pred0}, ensuring an
optimal precision in the resolution. If {\tt xyzp0} is not specified, the reduced
pressure will be shifted, but the calculations will remain correct.\\
with the compressible module, the ``pressure'' variable appearing in the
equations directly represents the total pressure. {\tt xyzp0} is therefore not used.\\
always useful, except with the compressible module}
\motcleb{t0}{ra}{real number}{0}{O}{L1}
{{\tt t0} is the reference temperature \\
useful for the specific physics gas or coal combustion (initialisation
of the density), for the electricity modules to initialise the domain
temperature and for the compressible module (initialisations). It must be given
in Kelvin.}
\motcleb{cp0}{ra}{real number $>$ 0}{\tt grand*10}{O}{L1}
{{\tt cp0} is the reference specific heat\\
useful if there is 1$\leqslant$n$\leqslant$nscaus\footnote{None of the scalars
from the specific physics is a temperature} so that {\tt iscsth(n)}=1
(there is a scalar ``temperature''); unless the user specifies the
specific heat in the user subroutine \texttt{usphyv}\footnote{When using the
Graphical Interface, {\tt cp0} is also used to calculate the diffusivity of the
thermal scalars, based on their conductivity; it is therefore needed, unless the
diffusivity is also specified in \texttt{usphyv}} ({\tt icp} $>$ 0)\\
with the compressible module or coal combustion, {\tt cp0} is also needed even when
there is no user scalar}
\motcleb{icp}{ia}{0 or 1}{0}{O}{L1}
{indicates if the specific heat $C_p$ is variable
({\tt icp}=1) or not (0)\\
When gas or coal combustion is activated, {\tt icp} is automatically set to 0
(constant $C_p$). With the electric module, it is automatically set to 1.
The user is not allowed to modify these default choices.\\
When {\tt icp}=1 is specified, the code automatically modifies this value to
make {\tt icp} designate the effective indexnumber of the property
``specific heat''. For each cell {\tt iel}, the value of
$C_p$ is then specified by the user in the appropriate subroutine
(\texttt{usphyv} for the standard physics) and stored in the array\\
{\tt propce(iel,ipproc(icp))}
({\em see p.~\pageref{sec:prg_propvar} for specific conditions of use})
useful if there is 1$\leqslant$N$\leqslant${\tt nscal} so that {\tt iscsth(n)}=1
(there is a scalar ``temperature'') or with the compressible module for non
perfect gases}
\motcleb{visls0}{ra}{real number $>$ 0}{\tt grand*10}{C}{L1}
{{\tt visls0(j)}: reference molecular diffusivity related to the scalar J
($kg.m^{1}.s^{1}$)\\
negative value: not initialised\\
useful if 1$\leqslant$J$\leqslant$ {\tt nscal}, unless the user specifies the
molecular diffusivity in the appropriate user subroutine (\texttt{usphyv} for
the standard physics) ({\tt field\_get\_key\_id(ivarfl(isca(iscal)),kivisl,...)} $>$ 1)\\
{\em Warning: {\tt visls0} corresponds to the diffusivity. For the temperature, it is
therefore defined as $\lambda/C_p$ where $\lambda$ and $C_p$ are the
conductivity and specific heat. When using the Graphical Interface, $\lambda$ and
$C_p$ are specified separately, and {\tt visls0} is calculated automatically\\
With the compressible module, {\tt visls0} (given in \texttt{uscfx2}) is directly the
thermal conductivity $W.m^{1}.K^{1}$\\
With gas or coal combustion, the molecular diffusivity of the enthalpy
($kg.m^{1}.s^{1}$) must be specified by the user in the variable {\tt diftl0}
(\texttt{cs\_user\_combustion})\\
With the electric module, for the Joule effect, the diffusivity is specified by
the user in \texttt{cs\_user\_physical\_properties.c} (even if it is constant). For the electric arcs, it
is calculated from the thermochemical data file}}
\motcleb{diftl0}{r}{real number $>$ 0}{\tt grand}{C}{L1}
{molecular diffusivity for the enthalpy ($kg.m^{1}.s^{1}$) for gas or coal
combustion (the code then automatically sets {\tt visls0} to {\tt diftl0} for the scalar
representing the enthalpy)\\
always useful for gas or coal combustion}
\motcleb{min\_scalar\_clipping}{ra}{real number}{\tt grand}{O}{L1}
{field key work (get the index of the key using
\code{call field\_get\_key\_id("min\_scalar\_clipping", kscmin)})
which is the lower limit value for the scalar {\tt iscal}. At each time step,
in every cell where the calculated value for the field \code{ivarfl(isca(iscal))}
is less than the set \code{min\_value}
(\code{call field\_set\_key\_double(ivarfl(isca(iscal)), kscmin, min\_value)})
the field will be reset to
\mbox{\code{min\_value}}\\
there is no limitation if \code{min\_value}$>$\code{max\_value}\\
\code{min\_value} shall not be specified for nonuser scalars (specific physics) or for
scalar variances
}
\motcleb{max\_scalar\_clipping}{ra}{real number}{\tt grand}{O}{L1}
{field key work (get the index of the key using
\code{call field\_get\_key\_id("max\_scalar\_clipping", kscmax)})
which is the upper limit value for the scalar {\tt iscal}. At each time step,
in every cell where the calculated value for the field \code{ivarfl(isca(iscal))}
is greater than the set \code{max\_value}
(\code{call field\_set\_key\_double(ivarfl(isca(iscal)), kscmax, max\_value)})
the field will be reset to
\mbox{\code{max\_value}}\\
there is no limitation if \code{max\_value}$>$\code{min\_value}\\
\code{max\_value} shall not be specified for nonuser scalars (specific physics) or for
scalar variances
}
\motcle{sigmas}{ra}{real number $>$ 0}{1}{O}{L2}
{{\tt sigmas(iscal)}: turbulent Prandtl (or Schmidt) number for the scalar
{\tt iscal}\\
useful if and only if 1$\leqslant${\tt iscal}$\leqslant$ {\tt nscaus}}
\motcle{rvarfl}{ra}{real number $>$ 0}{0.8}{O}{L2}
{when {\tt iscavr(iscal)}$>$0, {\tt rvarfl(iscal)} is the coefficient $R_f$ in
the dissipation term $\displaystyle \frac{\rho}{R_f}\frac{\varepsilon}{k}$
of the equation concerning the scalar {\tt iscal},
which represents the root mean square of the
fluctuations of the scalar {\tt iscavr(iscal)}\\
useful if and only if there is 1$\leqslant${\tt iscal}$\leqslant$ {\tt nscal} such as
{\tt iscavr(iscal)}$>$0}
%==================================
\subsubsection{Modelling parameters}
%==================================
\motcleb{xlomlg}{ra}{real number $>$ 0}{\tt grand*10}{O}{L1}
{{\tt xlomlg} is the mixing length\\
useful if and only if {\tt iturb}= 10 (mixing length)}
\motcle{almax}{ra}{\texttt{grand}, real number $>$ 0}{\tt grand*10}{O}{L2}
{{\tt almax} is a characteristic macroscopic
length of the domain, used for the initialisation of the turbulence and
the potential clipping (with {\tt iclkep}=1)\\
negative value: not initialised (the code then uses the cubic root of
the domain volume)\\
useful if and only if {\tt turb}= 20, 21, 30, 31, 50 or 60 (RANS models)}
\motcleb{uref}{ra}{real number $>$ 0}{\tt grand*10}{C}{L1}
{{\tt uref} is the characteristic flow velocity,
used for the initialisation of the turbulence\\
negative value: not initialised\\
useful if and only if {\tt iturb}= 20, 21, 30, 31, 50 or 60 (RANS model)
and the turbulence is not initialised somewhere
else (restart file or subroutine \texttt{cs\_user\_initialization})}
\minititre{Basic constants of the $k\varepsilon$ and the other RANS models}
\motcle{xkappa}{r}{real number $>$ 0}{0.42}{O}{L3}
{K\'arm\'an constant\\
useful if and only if {\tt iturb}$\geqslant$10
(mixing length, $k\varepsilon$, $R_{ij}\varepsilon$, LES, v2f or $k\omega$)}
\motcle{cstlog}{r}{real number $>$ 0}{5.2}{O}{L3}
{constant of the logarithmic wall function\\
useful if and only if {\tt iturb}$\geqslant$10
(mixing length, $k\varepsilon$, $R_{ij}\varepsilon$, LES, v2f or $k\omega$)}
\motcle{cmu}{r}{real number $>$ 0}{0.09}{O}{L3}
{constant $C_\mu$ for all the RANS turbulence models except for the v2f model
(see {\tt cv2fmu\index{cv2fmu}} for the value of $C_\mu$ in case of v2f modelling)\\
useful if and only if {\tt iturb}= 20,
21, 30, 31 or 60 ($k\varepsilon$, $R_{ij}\varepsilon$ or $k\omega$)}
\motcle{ce1}{r}{real number $>$ 0}{1.44}{O}{L3}
{constant $C_{\varepsilon 1}$ for all the RANS turbulence models except
for the v2f and the $k\omega$ models\\
useful if and only if {\tt iturb}= 20,
21, 30 or 31 ($k\varepsilon$ or $R_{ij}\varepsilon$)}
\motcle{ce2}{r}{real number $>$ 0}{1.92}{O}{L3}
{constant $C_{\varepsilon 2}$ for the $k\varepsilon$ and
$R_{ij}\varepsilon$ LRR models\\
useful if and only if {\tt iturb}= 20, 21 or 30
($k\varepsilon$ or $R_{ij}\varepsilon$ LRR)}
%\motcle{ce3}{r}{real number $>$ 0}{1}{O}{L3}
%{constante $C_{\varepsilon 3}$\\
%ne sert pas dans la version consid\'er\'ee}
\motcle{ce4}{r}{real number $>$ 0}{1.2}{O}{L3}
{constant $C_{\varepsilon 4}$ for the interfacial term (Lagrangian module) in
case of twoway coupling\\
useful in case of Lagrangian modelling, in $k\varepsilon$ and $R_{ij}\varepsilon$
with twoway coupling}
\motcle{sigmak}{r}{real number $>$ 0}{1.0}{O}{L3}
{Prandtl number for $k$ with $k\varepsilon$ and v2f models\\
useful if and only if {\tt iturb}=20, 21 or 50
($k\varepsilon$ or v2f)}
\motcle{sigmae}{r}{real number $>$ 0}{1.3}{O}{L3}
{Prandtl number for $\varepsilon$\\
useful if and only if {\tt iturb}= 20,
21, 30, 31 or 50 ($k\varepsilon$, $R_{ij}\varepsilon$ or v2f)}
\minititre{Constants specific to the $R_{ij}\varepsilon$ LRR model ({\tt iturb}=30)}
\motcle{crij1}{r}{real number $>$ 0}{1.8}{O}{L3}
{constant $C_1$ for the $R_{ij}\varepsilon$ LRR model\\
useful if and only if {\tt iturb}=30
($R_{ij}\varepsilon$ LRR)}
\motcle{crij2}{r}{real number $>$ 0}{0.6}{O}{L3}
{constant $C_2$ for the $R_{ij}\varepsilon$ LRR model\\
useful if and only if {\tt iturb}=30
($R_{ij}\varepsilon$ LRR)}
\motcle{crij3}{r}{real number $>$ 0}{0.55}{O}{L3}
{constant $C_3$ for the $R_{ij}\varepsilon$ LRR model\\
useful if and only if {\tt iturb}=30
($R_{ij}\varepsilon$ LRR)}
\motcle{csrij}{r}{real number $>$ 0}{0.22}{O}{L3}
{constant $C_s$ for the $R_{ij}\varepsilon$ LRR model\\
useful if and only if {\tt iturb}=30
($R_{ij}\varepsilon$ LRR)}
\motcle{crijp1}{r}{real number $>$ 0}{0.5}{O}{L3}
{constant $C_1^\prime$ for the $R_{ij}\varepsilon$ LRR model, corresponding to
the wall echo terms\\
useful if and only if {\tt iturb}=30
and {\tt irijec}=1
($R_{ij}\varepsilon$ LRR)}
\motcle{crijp2}{r}{real number $>$ 0}{0.3}{O}{L3}
{constant $C_2^\prime$ for the $R_{ij}\varepsilon$ LRR model, corresponding to
the wall echo terms\\
useful if and only if {\tt iturb}=30 and {\tt irijec}=1
($R_{ij}\varepsilon$ LRR)}
\minititre{Constants specific to the $R_{ij}\varepsilon$ SSG model}
\motcle{cssgs1}{r}{real number $>$ 0}{1.7}{O}{L3}
{constant $C_{s1}$ for the $R_{ij}\varepsilon$ SSG model\\
useful if and only if {\tt iturb}=31
($R_{ij}\varepsilon$ SSG)}
\motcle{cssgs2}{r}{real number $>$ 0}{1.05}{O}{L3}
{constant $C_{s2}$ for the $R_{ij}\varepsilon$ SSG model\\
useful if and only if {\tt iturb}=31
($R_{ij}\varepsilon$ SSG)}
\motcle{cssgr1}{r}{real number $>$ 0}{0.9}{O}{L3}
{constant $C_{r1}$ for the $R_{ij}\varepsilon$ SSG model\\
useful if and only if {\tt iturb}=31
($R_{ij}\varepsilon$ SSG)}
\motcle{cssgr2}{r}{real number $>$ 0}{0.8}{O}{L3}
{constant $C_{r2}$ for the $R_{ij}\varepsilon$ SSG model\\
useful if and only if {\tt iturb}=31
($R_{ij}\varepsilon$ SSG)}
\motcle{cssgr3}{r}{real number $>$ 0}{0.65}{O}{L3}
{constant $C_{r3}$ for the $R_{ij}\varepsilon$ SSG model\\
useful if and only if {\tt iturb}=31
($R_{ij}\varepsilon$ SSG)}
\motcle{cssgr4}{r}{real number $>$ 0}{0.625}{O}{L3}
{constant $C_{r4}$ for the $R_{ij}\varepsilon$ SSG model\\
useful if and only if {\tt iturb}=31
($R_{ij}\varepsilon$ SSG)}
\motcle{cssgr5}{r}{real number $>$ 0}{0.2}{O}{L3}
{constant $C_{r1}$ for the $R_{ij}\varepsilon$ SSG model\\
useful if and only if {\tt iturb}=31
($R_{ij}\varepsilon$ SSG)}
\motcle{cssge2}{r}{real number $>$ 0}{1.83}{O}{L3}
{constant $C_{\varepsilon 2}$ for the $R_{ij}\varepsilon$ SSG model\\
useful if and only if {\tt iturb}=31
($R_{ij}\varepsilon$ SSG)}
\minititre{Constants specific to the v2f $\varphi$model}
\motcle{cv2fa1}{r}{real number $>$ 0}{0.05}{O}{L3}
{constant $a_1$ for the v2f $\varphi$model\\
useful if and only if {\tt iturb}=50
(v2f $\varphi$model)}
\motcle{cv2fe2}{r}{real number $>$ 0}{1.85}{O}{L3}
{constant $C_{\varepsilon 2}$ for the v2f $\varphi$model\\
useful if and only if {\tt iturb}=50
(v2f $\varphi$model)}
\motcle{cv2fmu}{r}{real number $>$ 0}{0.22}{O}{L3}
{constant $C_\mu$ for the v2f $\varphi$model\\
useful if and only if {\tt iturb}=50
(v2f $\varphi$model)}
\motcle{cv2fc1}{r}{real number $>$ 0}{1.4}{O}{L3}
{constant $C_1$ for the v2f $\varphi$model\\
useful if and only if {\tt iturb}=50
(v2f $\varphi$model)}
\motcle{cv2fc2}{r}{real number $>$ 0}{0.3}{O}{L3}
{constant $C_2$ for the v2f $\varphi$model\\
useful if and only if {\tt iturb}=50
(v2f $\varphi$model)}
\motcle{cv2fct}{r}{real number $>$ 0}{6}{O}{L3}
{constant $C_T$ for the v2f $\varphi$model\\
useful if and only if {\tt iturb}=50
(v2f $\varphi$model)}
\motcle{cv2fcl}{r}{real number $>$ 0}{0.25}{O}{L3}
{constant $C_L$ for the v2f $\varphi$model\\
useful if and only if {\tt iturb}=50
(v2f $\varphi$model)}
\motcle{cv2fet}{r}{real number $>$ 0}{110}{O}{L3}
{constant $C_\eta$ for the v2f $\varphi$model\\
useful if and only if {\tt iturb}=50
(v2f $\varphi$model)}
\minititre{Constants specific to the $k\omega$ SST model}
\motcle{ckwsk1}{r}{real number $>$ 0}{1/0.85}{O}{L3}
{constant $\sigma_{k1}$ for the $k\omega$ SST model\\
useful if and only if {\tt iturb}=60
($k\omega$ SST)}
\motcle{ckwsk2}{r}{real number $>$ 0}{2}{O}{L3}
{constant $\sigma_{k2}$ for the $k\omega$ SST model\\
useful if and only if {\tt iturb}=60
($k\omega$ SST)}
\motcle{ckwsw1}{r}{real number $>$ 0}{2}{O}{L3}
{constant $\sigma_{\omega 1}$ for the $k\omega$ SST model\\
useful if and only if {\tt iturb}=60
($k\omega$ SST)}
\motcle{ckwsw2}{r}{real number $>$ 0}{1/0.856}{O}{L3}
{constant $\sigma_{\omega 2}$ for the $k\omega$ SST model\\
useful if and only if {\tt iturb}=60
($k\omega$ SST)}
\motcle{ckwbt1}{r}{real number $>$ 0}{0.075}{O}{L3}
{constant $\beta_1$ for the $k\omega$ SST model\\
useful if and only if {\tt iturb}=60
($k\omega$ SST)}
\motcle{ckwbt2}{r}{real number $>$ 0}{0.0828}{O}{L3}
{constant $\beta_2$ for the $k\omega$ SST model\\
useful if and only if {\tt iturb}=60
($k\omega$ SST)}
\motcle{ckwgm1}{r}{real number $>$ 0}
{$\frac{\beta_1}{C_\mu}\frac{\kappa^2}{\sqrt{C_\mu}\sigma_{\omega 1}}$}{O}{L3}
{constant $\gamma_1$ for the $k\omega$ SST model\\
useful if and only if {\tt iturb}=60
($k\omega$ SST)\\
{\em Warning: $\gamma_1$ is calculated before the call to
\texttt{usipsu}. Hence, if $\beta_1$, $C_\mu$, $\kappa$ or $\sigma_{\omega 1}$
is modified in \texttt{usipsu}, \texttt{ckwgm1} must also be modified in accordance}}
\motcle{ckwgm2}{r}{real number $>$ 0}
{$\frac{\beta_2}{C_\mu}\frac{\kappa^2}{\sqrt{C_\mu}\sigma_{\omega 2}}$}{O}{L3}
{constant $\gamma_2$ for the $k\omega$ SST model\\
useful if and only if {\tt iturb}=60
($k\omega$ SST)\\
{\em Warning: $\gamma_2$ is calculated before the call to
\texttt{usipsu}. Hence, if $\beta_2$, $C_\mu$, $\kappa$ or $\sigma_{\omega 2}$
is modified in \texttt{usipsu}, \texttt{ckwgm2} must also be modified in
accordance}}
\motcle{ckwa1}{r}{real number $>$ 0}{0.31}{O}{L3}
{constant $a_1$ for the $k\omega$ SST model\\
useful if and only if {\tt iturb}=60
($k\omega$ SST)}
\motcle{ckwc1}{r}{real number $>$ 0}{10}{O}{L3}
{constant $c_1$ for the $k\omega$ SST model\\
useful if and only if {\tt iturb}=60
($k\omega$ SST)}
%==================================
\subsection{ALE}
%==================================
\motcleb{iale}{i}{0 or 1}{C}{O}{L1}
{activates (=1) or not (=0) the ALE module}
\motcleb{nalinf}{i}{0 or positive integer}{0}{C}{L2}
{The number of subiterations of initialization of the fluid}
\motcleb{nbstru}{i}{0 or positive integer}{0}{C}{L1}
{number of structures, automatically computed}
\motcleb{alpnmk}{r}{real}{0}{C}{L3}
{$alpha$ Newmark's method}
\motcleb{betnmk}{r}{real}{\texttt{grand}}{C}{L3}
{$beta$ Newmark's method}
\motcleb{gamnmk}{r}{real}{\texttt{grand}}{C}{L3}
{$gamma$ Newmark's method}
\motcleb{nalimx}{i}{positive integer}{15}{C}{L2}
{maximum number of implicitation iterations for the structure displacement}
\motcleb{epalim}{r}{positive real}{$1.10^{5}$}{C}{L2}
{Relative precision of implicitation of the structure displacement }
\motcleb{iflxmw}{i}{0 or 1}{1}{O}{L2}
{method to compute interior mass flux due to ALE mesh velocity\\
\hspace*{1.3cm} = 1: based on cell center mesh velocity\\
\hspace*{1.3cm} = 0: based on nodes displacement
}
%==================================
\subsection{Thermal radiative transfers: global settings}
%==================================
All the following keywords may be modified in the user subroutines
\texttt{usray*} (or, for some of them, through the thermochemical data files).
It is however not recommended to modify those which do not belong to
level L1.
\motcleb{iirayo}{ia}{0, 1, 2}{0}{O}{L1}
{{\tt iirayo} activates ($>0$) or deactivates
(=0) the radiation module\\
The different values correspond to the following modelling methodes:\\
\hspace*{1.3cm} = 1: discrete ordinates method
(DOM standard option for radiation in semitransparent media)\\
\hspace*{1.3cm} = 2: ``P1'' methode\\
{\em Warning: the P1 methode allows faster computations, but it
may only be applied to media with uniform large optical thickness, such as
some cases of pulverised coal combustion}}
\motcle{imodak}{i}{0 or 1}{0}{O}{L3}
{when gas or coal combustion is activated, {\tt imodak} indicates whether the
absorption coefficient shall be calculated ``automatically'' (=1) or read from
the data file (=0)\\
useful if the radiation module is activated}
\motcleb{isuird}{i}{0 or 1}{isuite}{C}{L1}
{indicates whether the radiation variables should be initialised (=0) or read
from a restart file (=1)\\
useful if and only if the radiation module is activated (in this case, a
restart file {\em rayamo} must be available)}
\motcleb{nfreqr}{i}{strictly positive integer}{1}{O}{L1}
{period of the radiation module\\
the radiation module is called every {\tt nfreqr} time steps (more precisely,
every time {\tt ntcabs} is a multiple of {\tt nfreqr}). Also, in order to
have proper initialisation of the variables, whatever the value of {\tt nfreqr},
the radiation module is called at the first time step of a calculation
(restart or not)\\
useful if and only if the radiation module is activated}
\motcleb{ndirec}{i}{32 or 128}{32}{O}{L1}
{number of directions for the angular discretisation of the radiation
propagation with the DOM model ({\tt iirayo}=1)\\
no other possible value, because of the way the directions are calculated\\
the calculation with 32 directions may break the symmetry of
physically axisymmetric cases (but the cost in CPU time is much lower
than with 128 directions)\\
useful if and only if the radiation module is activated with the DOM method}
\motcle{xnp1mx}{r}{real number}{10}{O}{L3}
{with the P1 model ({\tt iirayo}=2), {\tt xnp1mx} is the percentage of cells of
the calculation domain for which it is acceptable that the optical
thickness is lower than unity\footnote{more precisely, where $KL$ is lower than
1, where $K$ is the absorption coefficient of the medium and $L$ is a
characteristic length of the domain}, although it is not to be desired\\
useful if and only if the radiation module is activated with the P1 method}
\motcleb{idiver}{i}{0, 1 or 2}{2}{C}{L1}
{indicates the method used to calculate the radiative source term:\\
\hspace*{1.3cm}= 0: semianalytic calculation (compulsory with transparent
media)\\
\hspace*{1.3cm}= 1: conservative calculation\\
\hspace*{1.3cm}= 2: semianalytic calculation corrected in order to be
globally conservative\\
useful if and only if the radiation module is activated\\
{\em Note: if the medium is transparent, the choice has no effect on the calculation}}
\motcleb{iimpar}{i}{0, 1 or 2}{1}{O}{L1}
{Verbosity level in the listing concerning the calculation of
the wall temperatures:\\
\hspace*{1.3cm}= 0: no display\\
\hspace*{1.3cm}= 1: standard\\
\hspace*{1.3cm}= 2: complete\\
useful if and only if the radiation module is activated}
\motcleb{iimlum}{i}{0, 1 or 2}{1}{O}{L1}
{Verbosity level in the listing concerning the solution of
the radiative transfer equation:\\
\hspace*{1.3cm}= 0: no display\\
\hspace*{1.3cm}= 1: standard\\
\hspace*{1.3cm}= 2: complete\\
useful if and only if the radiation module is activated}
\motcleb{nbrvaf}{ca}{string of less than 80 characters}{name}{O}{L1}
{name associated for the postprocessing to each of the following variables,
defined at the boundary faces ({\it see}
\cite{Douce02} for more details concerning their definitions):\\
\hspace*{1.3cm} {\tt nbrvaf(itparp)}: wall temperature at the boundary
faces ($K$)\\
\hspace*{1.3cm} {\tt nbrvaf(iqincp)}: radiative incident flux density
($W/m^2$)\\
\hspace*{1.3cm} {\tt nbrvaf(ixlamp)}: thermal conductivity of the
boundary faces ($W/m/K$)\\
\hspace*{1.3cm} {\tt nbrvaf(iepap)}: wall thickness ($m$)\\
\hspace*{1.3cm} {\tt nbrvaf(iepsp)}: wall emissivity \\
\hspace*{1.3cm} {\tt nbrvaf(ifnetp)}: net radiative flux density ($W/m^2$)\\
\hspace*{1.3cm} {\tt nbrvaf(ifconp)}: convective flux density ($W/m^2$)\\
\hspace*{1.3cm} {\tt nbrvaf(ihconp)}: convective exchange coefficient
($W/m^2/K$)\\
The default values are: \\
\hspace*{1.3cm} {\tt nbrvaf(itparp)} = Wall\_temp \\
\hspace*{1.3cm} {\tt nbrvaf(iqincp)} = Incident\_flux \\
\hspace*{1.3cm} {\tt nbrvaf(ixlamp)} = Th\_conductivity \\
\hspace*{1.3cm} {\tt nbrvaf(iepap)} = Thickness \\
\hspace*{1.3cm} {\tt nbrvaf(iepsp)} = Emissivity \\
\hspace*{1.3cm} {\tt nbrvaf(ifnetp)} = Net\_flux \\
\hspace*{1.3cm} {\tt nbrvaf(ifconp)} = Convective\_flux \\
\hspace*{1.3cm} {\tt nbrvaf(ihconp)} = Convective\_exch\_coef \\
useful if and only if the radiation module is activated}
\motcleb{irayvf}{ia}{1 or 1}{1}{O}{L1}
{activates (=1) or deactivates (=1) the postprocessing for each of the
following variables defined at the boundary faces:\\
\hspace*{1.3cm} {\tt irayvf(itparp)}: wall temperature at the boundary
faces ($K$)\\
\hspace*{1.3cm} {\tt irayvf(iqincp)}: incident radiative flux density
($W/m^2$)\\
\hspace*{1.3cm} {\tt irayvf(ixlamp)}: thermal conductivity of the
boundary faces ($W/m/K$)\\
\hspace*{1.3cm} {\tt irayvf(iepap)}: wall thickness ($m$)\\
\hspace*{1.3cm} {\tt irayvf(iepsp)}: wall emissivity \\
\hspace*{1.3cm} {\tt irayvf(ifnetp)}: net radiative flux density ($W/m^2$)\\
\hspace*{1.3cm} {\tt irayvf(ifconp)}: convective flux density ($W/m^2$)\\
\hspace*{1.3cm} {\tt irayvf(ihconp)}: convective exchange coefficient
($W/m^2/K$)\\
useful if and only if the radiation module is activated}
\motcle{tmin}{r}{positive real number}{0}{O}{L3}
{minimum allowed value for the wall temperatures in Kelvin\\
useful if and only if the radiation module is activated}
\motcle{tmax}{r}{positive real number}{{\tt grand} + 273.15}{O}{L3}
{maximum allowed value for the wall temperatures in Kelvin\\
useful if and only if the radiation module is activated}
%==================================
\subsection{Electric module (Joule effect and electric arcs): specificities}
%==================================
The electric module is composed of a Joule effect module
(\texttt{ippmod(ieljou)\index{ieljou}}) and an electric arcs module
(\texttt{ippmod(ielarc)\index{ielarc}}).
The Joule effect module is designed to take into account the Joule effect
(for instance in glass furnaces) with real or complex potential in the
enthalpy equation. The Laplace forces are not taken into account in the
impulse momentum equation. Specific boundary conditions can be applied to
account for the coupled effect of transformers (offset) in glass furnaces.
The electric arcs module is designed to take into account the Joule effect
(only with real potential) in the enthalpy equation. The Laplace forces
are taken into account in the impulse momentum equation.
The keywords used in the global settings are quite few. They are
found in the subroutine \texttt{cs\_user\_parameters}.
\motcleb{ielcor}{i}{0, 1}{0}{O}{L1}
{when \texttt{ielcor}=1, the boundary conditions for the potential will be
tuned at each time step in order to reach a userspecified target dissipated
power \texttt{puisim} (Joule effect) or a userspecified target current
intensity \texttt{couimp} (electric arcs)\\
the boundary condition tuning is controlled by subroutines \texttt{elreca} or
\texttt{cs\_user\_electric\_scaling}\\
always useful}
\motcleb{couimp}{r}{real number $\geqslant 0$}{0}{O}{L1}
{with the electric arcs module, \texttt{couimp} is the target current intensity ($A$)
for the calculations with boundary condition tuning for the potential\\
the target intensity will be reached if the boundary conditions are expressed
using the variable \texttt{dpot} or if the initial boundary conditions are multiplied by
the variable \texttt{coejou}\\
useful with the electric arcs module if \texttt{ielcor}=1}
\motcleb{puisim}{r}{real number $\geqslant 0$}{0}{O}{L1}
{with the Joule effect module, \texttt{puisim} is the target dissipated power ($W$)
for the calculations with boundary condition tuning for the potential\\
the target power will be reached if the boundary conditions are expressed
using the variable \texttt{dpot} or if the initial boundary conditions are multiplied by
the variable \texttt{coejou}\\
useful with the Joule effect module if \texttt{ielcor}=1}
\motcleb{dpot}{r}{real number $\geqslant 0$}{0}{O}{L1}
{\texttt{dpot} is the potential difference ($V$) which generates the current (and the Joule effect) for the
calculations with boundary conditions tuning for the potential. This value is
initialised set by the user (\texttt{cs\_user\_parameters}). It is then automatically tuned
depending on the value of dissipated power (Joule effect module) or the
intensity of current (electric arcs module).
In order for the correct power or intensity to be reached, the boundary
conditions for the potential must be expressed with \texttt{dpot}
. The tuning can be controlled in \texttt{cs\_user\_electric\_scaling}\\
useful if \texttt{ielcor}=1}
\motcleb{modrec}{i}{0, 1, 2}{1}{O}{L1}
{when \texttt{ielcor}=0, we use user function \texttt{cs\_user\_electric\_scaling} for boundary condition tuning\\
when \texttt{ielcor}=1, we use standard model for boundary condition tuning\\
when \texttt{ielcor}=2, we use plane scaling model for boundary condition tuning. In this case, we need
define plane and current density component used to}
\motcleb{idreca}{i}{1, 2, 3}{3}{O}{L1}
{defines current density component used to calculate current in plane\\
useful if \texttt{modrec}=2}
\motcleb{crit\_reca}{r}{real number $\geqslant 0$}{0}{O}{L1}
{defines plane coordinates component used to calculate current in plane\\
useful if \texttt{modrec}=2}
%=================================================
\subsection{Compressible module: specificities}
%==================================
The keywords used in the global settings are quite few. They are
found in the subroutines \texttt{uscfx1} and \texttt{uscfx2}, in
the \texttt{cs\_user\_parameters.f90} file (see the
description of these user subroutines, \S\ref{prg_uscfx12}).
\motcleb{ieos}{i}{1}{1}{C}{L1}
{\texttt{ieos} indicates the equation of state. Only perfect gas with a constant adiabatic coefficient,
\texttt{ieos=1} is available, but the user can complete the subroutine
\texttt{cfther}, which is not a user subroutine, to add new equations of state.\\
always useful
}
\motcleb{xmasmr}{r}{1}{1}{C}{L1}
{\texttt{xmasmr} is the molar mass of the perfect gas in kg/mol (\texttt{ieos=1})\\
always useful
}
\motcleb{icfgrp}{ia}{0 or 1}{1}{C}{L1}
{\texttt{icfgrp} indicates if the boundary
conditions should take into account (=1) or not (=0) the hydrostatic balance.\\
always useful.\\
In the cases where gravity is predominant, taking into account the hydrostatic
pressure allows to get rid of the disturbances which may appear near the
horizontal walls when the flow is little convective.\\
%
Otherwise, when \texttt{icfgrp}=0, the pressure condition is calculated
from the solution of the onedimensional Euler equations for a perfect
gas near a wall, for the variables ``normal velocity'', ``density'' and
``pressure'':
\vspace{0.2cm}
\begin{list}{}{}
\item Case of an expansion ($M \leqslant 0$):\\
$$
\begin{array}{l}
\left\{\begin{array}{lll}
P_p=0 & \text{if} & 1 + \displaystyle\frac{\gamma1}{2}M<0\\
P_p = P_i \left(1 + \displaystyle\frac{\gamma1}{2}M\right)
^{\frac{2\gamma}{\gamma1}} & \text{otherwise}\\
\end{array}\right.\\
\end{array}
$$
\item Case of a shock ($M > 0$):\\
$$
\begin{array}{l}
P_p = P_i \left(1 + \displaystyle\frac{\gamma(\gamma+1)}{4}M^2
+\gamma M \displaystyle\sqrt{1+\displaystyle\frac{(\gamma+1)^2}{16}M^2}\right)
\end{array}
$$
with $M = \displaystyle\frac{\vect{u}_i \cdot \vect{n}}{c_i}$, internal
Mach number calculated with the variables taken in the cell
adjacent to the wall.\\
\end{list}
}
\motcleb{iviscv}{i}{0 or 1}{\texttt{0}}{C}{L1}
{\texttt{iviscv=0} indicates that
the volume viscosity is constant and equal to the reference volume viscosity
\texttt{viscv0}.\\
\texttt{iviscv}=1 indicates that the volume viscosity is variable: its
variation law must be specified in the user subroutine \texttt{usphyv}.\\
always useful\\
The volume viscosity $\kappa$ is defined by the formula expressing the stress:
\begin{equation}
\tens{\sigma} = P\,\tens{Id} + \mu (\grad\,\vect{u} + \ ^{t}\ggrad\,\vect{u})
+(\kappa\frac{2}{3}\mu)\,\dive(\vect{u})\,\tens{Id}
\end{equation}
}
\motcleb{viscv0}{r}{real number $\ge$ 0}{0}{O}{L1}
{\texttt{viscv0} is the reference volume
viscosity (noted $\kappa$ in the equation expressing $\tens{\sigma}$ in the
paragraph dedicated to \texttt{iviscv})\\
always useful, it is the used value, unless the user specifies the volume
viscosity in the user subroutine \texttt{usphyv}}
\motcle{igrdpp}{i}{0 or 1}{1}{O}{L3}
{indicates whether the pressure should be updated (=1) or not (=0) after the
solution of the acoustic equation\\
always useful}
%==================================================
\subsection{Lagrangian multiphase flows}
%==================================================
\label{sec:prg_motscles_lagr}
Most of these keywords may be modified in the user subroutines
\texttt{uslag1}, \texttt{uslag2}, \texttt{uslaen},
\texttt{uslast} and \texttt{uslaed}. It is however strongly recommended
not to modify those belonging to the level L3.
First of all, it should be noted that the Lagrangian module is compliant with
almost all the RANS turbulence models and with laminar flows. However, the standard particle
turbulent dispersion model does not take fully advantage of the secondorder
$R_{ij}\varepsilon$ models. The same isotropic model is used as in the
$k\varepsilon$ models, with $k$ calculated from the trace of $R_{ij}$. Also,
twoway coupling is not compatible with the $k\omega$ SST model.
\subsubsection{Global settings}
\motcleb{iilagr}{I}{0, 1, 2, 3}{0}{C}{L1}
{activates ($>$0) or deactivates (=0) the Lagrangian module\\
the different values correspond to the following modellings: \\
\hspace*{1.3cm} = 1 Lagrangian twophase flow in oneway coupling (no influence of
the particles on the continuous phase)\\
\hspace*{1.3cm} = 2 Lagrangian twophase flow with twoway coupling (influence of
the particles on the dynamics of the continuous phase). Dynamics, temperature and mass may be coupled independently\\
\hspace*{1.3cm} = 3 Lagrangian twophase flow on frozen continuous phase. This option can
only be used in case of a calculation restart. All the
Eulerian fields are frozen (including the scalar fields). This option
automatically implies \texttt{iccvfg} = 1\\
always useful}
\motcleb{isuila}{i}{0, 1}{0}{C}{L1}
{activation (=1) or not (=0) of a Lagrangian calculation restart.
The calculation restart file read when this option is activated (\texttt{ficaml})
only contains the data related to the particles (see also \texttt{isuist})\\
the global calculation must also be a restart calculation\\
always useful}
\motcleb{isuist}{i}{0, 1}{0}{C}{L1}
{during a Lagrangian calculation restart, indicates whether the particle
statistics (volume and boundary) and twoway coupling terms are to be read from
a restart file (=1) or reinitialised (=0). The file to be read is
\texttt{ficmls}\\
useful if \texttt{isuila} = 1}
\motcleb{nbpmax}{i}{positive or null integer}{1000}{C}{L1}
{maximum number of particles allowed simultaneously in the calculation
domain. It must be reminded that the required memory evolves accordingly}
\motcle{nbpart}{i}{positive or null integer}{0}{O}{L3}
{number of particles treated during one Lagrangian time step\\
\texttt{nbpart} must always be lower than \texttt{nbpmax}\\
always useful, but initialised and updated without intervention of the user}
\motcle{nvls}{i}{integer between 0 and 10}{0}{O}{L2}
{number of additional variables related to the particles\\
the additional variables can be accessed in the arrays
\texttt{eptp\index{eptp}} and \texttt{eptpa\index{eptpa}} by means of the
pointer \texttt{jvls\index{jvls}}: \texttt{eptp(jvls(ii),nbpt)} and
\texttt{eptpa(jvls(ii),nbpt)} (\texttt{nbpt} is
the indexnumber of the treated particle, and \texttt{ii} an integer
between 1 and \texttt{nvls})}
\motcleb{isttio}{i}{0, 1}{0}{C}{L1}
{indicates the steady (=1) or unsteady (=0) state of the
continuous phase flow\\
in particular, \texttt{isttio} = 1 is needed in order to: \\
\hspace*{1cm}calculate steady statistics in the volume or at the boundaries
(starting respectively from the Lagrangian iterations \texttt{nstist} and
\texttt{nstbor}) \\
\hspace*{1cm}calculate timeaveraged twoway coupling source terms (from the
Lagrangian iteration \texttt{nstits}) \\
useful if \texttt{iilagr}=1 or \texttt{iilagr}=2 (if \texttt{iilagr}=3,
then \texttt{isttio}=1 is automatically set)}
\motcleb{injcon}{i}{0, 1}{0}{O}{L1}
{activates (=1) or not (=0) the continuous injection of particles\\
this option allows to inject particles continuously during the duration of the
Lagrangian time step \texttt{dtp\index{dtp}} rather than only once at the
beginning of the Lagrangian iteration. It helps avoiding the fractioning of
the particle cloud close to the injection areas}
\motcleb{iroule}{i}{0, 1}{0}{O}{L1}
{activates (=1) or not (=0) of the particle cloning/fusion technique
(option also called ``Russian roulette'')\\
when \texttt{iroule} = 1, the importance function must be specified {\em via} the
array \texttt{croule\index{croule}} in the user subroutine \texttt{uslaru}}
\motcle{\texttt{ttclag}}{r}{positive real number}{0}{O}{L3}
{physical time of the Lagrangian simulation \\
always useful}
\motcle{iplas}{i}{integer $>$ 0}{1}{O}{L3}
{absolute iteration number (including the restarts) in the Lagrangian
module ({\em i.e.} Lagrangian time step number) \\
always useful}
%==================================================
\subsubsection{Specific physics models associated with the particles}
%==================================================
\motcleb{iphyla}{i}{0, 1, 2}{0}{C}{L1}
{activates ($>$0) or deactivates (=0) the physical models associated to the
particles:\\
\hspace*{1.3cm} = 1: allows to associate with the particles evolution
equations on their temperature (in degrees Celsius), their diameter and
their mass\\
\hspace*{1.3cm} = 2: the particles are pulverised coal particles.
Evolution equations on temperature (in degree Celsius), mass of
reactive coal, mass of char and diameter of the shrinking core are
associated with the particles. This option is available only if the
continuous phase represents a pulverised coal flame\\
always useful}
\motcleb{idpvar}{i}{0, 1}{0}{O}{L1}
{activation (=1) or not (=0) of an evolution equation on the particle
diameter\\
useful if \texttt{iphyla} = 1}
\motcleb{itpvar}{i}{0, 1}{0}{O}{L1}
{activation (=1) or not (=0) of an evolution equation on the particle
temperature (in degrees Celsius)\\
useful if \texttt{iphyla} = 1 and if there is a thermal scalar associated with
the continuous phase}
\motcleb{impvar}{i}{0, 1}{0}{O}{L1}
{activation (=1) or not (=0) of an evolution equation on the
particle mass\\
useful if si \texttt{iphyla} = 1}
\motcleb{tpart}{r}{real number $>$ \texttt{tkelvn}}{700}{O}{L1}
{initialisation temperature (in degree Celsius) for the particles already
present in the calculation domain when an evolution equation on
the particle temperature is activated during a calculation (\texttt{iphyla} =
1 and \texttt{itpvar} = 1)\\
useful if \texttt{isuila} = 1 and \texttt{itpvar} = 0 in the previous
calculation}
\motcleb{cppart}{r}{positive real number}{5200}{O}{L1}
{initialisation value for the specific heat ($J.kg^{1}.K^{1}$) of the
particles already present in the calculation domain when an evolution equation
on the particle temperature is activated during a calculation
(\texttt{iphyla} = 1 and \texttt{itpvar} = 1)\\
useful if \texttt{isuila} = 1 and \texttt{itpvar} = 0 in the previous calculation}
\motcleb{iencra}{i}{0, 1}{0}{O}{L1}
{activates (=1) or not (=0) the option of coal particle
fouling. It then is necessary to specify the domain boundaries
on which fouling may take place.\\
useful if \texttt{iphyla} = 2}
\motcleb{tprenc}{r}{real number $>$ \texttt{tkelvn}}{600}{O}{L1}
{limit temperature (in degree Celsius) below which the coal particles do
not cause any fouling (if the fouling model is activated)\\
useful if \texttt{iphyla} = 2 and \texttt{iencra} = 1}
\motcleb{visref}{r}{positive real number}{10000}{O}{L1}
{ash critical viscosity in $kg.m^{1}.s^{1}$, in the fouling model
\footnote{J.D. Watt
and T. Fereday (\textit{J.Inst.Fuel}, Vol.42p99)}\\
useful if \texttt{iphyla} = 2 and \texttt{iencra} = 1}
%==================================================
\subsubsection{Options for twoway coupling}
%==================================================
\motcleb{nstits}{i}{strictly positive integer}{1}{O}{L1}
{number of absolute Lagrangian iterations (including the restarts)
after which a timeaverage of the twoway coupling source terms is
calculated\\
indeed, if the flow is steady (\texttt{isttio}=1), the average quantities
that appear in the twoway coupling source terms can be calculated over
different time steps, in order to get a better precision\\
if the number of absolute Lagrangian iterations is strictly inferior to
\texttt{nstits}, the code considers that the flow has not yet reached its
steady state (transition period) and the averages appearing in the source
terms are reinitialised at each time step, as it is the case for unsteady
flows (\texttt{isttio}=0)\\
useful if \texttt{iilagr} = 2 and \texttt{isttio} = 1}
\motcleb{ltsdyn}{i}{0, 1}{0}{O}{L1}
{activates (=1) or not (=0) of the twoway coupling on the dynamics of the
continuous phase\\
useful if \texttt{iilagr} = 2 and \texttt{iccvfg} = 0}
\motcleb{ltsmas}{i}{0, 1}{0}{O}{L1}
{activation (=1) or not (=0) of the twoway coupling on the mass\\
useful if \texttt{iilagr} = 2, \texttt{iphyla} = 1 and \texttt{impvar} = 1}
\motcleb{ltsthe}{i}{0, 1}{0}{O}{L1}
{if \texttt{iphyla} = 1 and \texttt{itpvar} = 1, \texttt{ltsthe}
activates (=1) or not (=0) the twoway coupling on temperature\\
if \texttt{iphyla} = 2, \texttt{ltsthe} activates (=1) or not (=0) the
twoway coupling on the Eulerian variables related to pulverised coal
combustion\\
useful if \texttt{iilagr} = 2}
%==================================================
\subsubsection{Numerical modelling}
%==================================================
\motcle{nordre}{i}{1, 2}{2}{O}{L2}
{order of integration for the stochastic differential equations\\
\hspace*{1.3cm} = 1 integration using a firstorder scheme\\
\hspace*{1.3cm} = 2 integration using a secondorder scheme\\
always useful}
\motcle{ilapoi}{i}{0, 1}{0}{O}{L3}
{activation (=1) or not (=0) of the solution of a Poisson's equation for
the correction of the particle instantaneous velocities (in order to obtain a
null divergence)\\
this option is not validated and reserved to the development team. The user must not change
the default value}
\motcle{idistu}{i}{0, 1}{1}{O}{L3}
{activation (=1) or not (=0) of the particle turbulent dispersion\\
the turbulent dispersion is compatible only with the RANS turbulent models
($k\varepsilon$, $R_{ij}\varepsilon$, v2f or $k\omega$)\\
(\texttt{iturb}=20, 21, 30, 31, 50 or 60)\\
always useful}
\motcle{idiffl}{i}{0, 1}{0}{O}{L3}
{\texttt{idiffl}=1 suppresses the crossing trajectory effect, making
turbulent dispersion for the particles identical to the turbulent
diffusion of fluid particles\\
useful if \texttt{idistu}=1}
\motcleb{modcpl}{i}{positive integer}{0}{O}{L1}
{activates ($>$0) or not (=0) the complete turbulent dispersion model\\
when \texttt{modcpl} is strictly positive, its value is interpreted as the
absolute Lagrangian time step number (including restarts) after which the
complete model is applied\\
since the complete model uses volume statistics, \texttt{modcpl} must
either be 0 or be greater than \texttt{idstnt}\\
useful if \texttt{istala} = 1}
\motcleb{idirla}{i}{1, 2, 3}{1}{O}{L1}
{$x$, $y$ or $z$ direction of the complete model\\
it corresponds to the main directions of the flow\\
useful if \texttt{modcpl} $>$ 0}
%==================================================
\subsubsection{Volume statistics}
%==================================================
\motcleb{istala}{i}{0, 1}{0}{C}{L1}
{activation (=1) or not (=0) of the calculation of the volume
statistics related to the dispersed phase\\
if \texttt{istala} = 1, the calculation of the statistics is activated
starting from the absolute iteration (including the restarts) \texttt{idstnt}\\
by default, the statistics are not steady (reset to zero at every
Lagrangian iteration). But if \texttt{isttio}=1, since the flow is steady,
the statistics will be averaged overt he different time steps\\
the statistics represent the significant results on the particle cloud\\
always useful}
\motcleb{seuil}{r}{positive real number}{0}{O}{L1}
{every cell of the calculation domain contains a certain quantity of
particles, representing a certain statistical weight (sum of the
statistical weights of all the particles present in the cell). \texttt{seuil}
is the limit statistical weight value, below which the contribution of the
cell in term of statistical weight is not taken into account in the volume
statistics (for the complete turbulent dispersion model, in the
Poisson's equation used to correct the mean velocities or in the listing and
postprocessing outputs)\\
useful if \texttt{istala} = 1}
\motcleb{idstnt}{i}{strictly positive integer}{1}{C}{L1}
{absolute Lagrangian iteration number (including the restarts) after
which the calculation of the volume statistics is activated\\
useful if \texttt{istala} = 1}
\motcleb{nstist}{i}{integer $\geqslant$ \texttt{idstnt}}{\texttt{idstnt}}{O}{L1}
{absolute Lagrangian iteration number (including the restarts) after
which the volume statistics are cumulated over time (they are then said to be
steady)\\
if the absolute Lagrangian iteration number is less than \texttt{nstist},
or if the flow is unsteady (\texttt{isttio}=0), the statistics are reset
to zero at each Lagrangian iteration (the volume statistics are then said
to be unsteady)\\
useful if \texttt{istala}=1 and \texttt{isttio}=1}
\motcleb{nomlag}{ca}{string of less than 50 characters}{VarLagXXXX}{O}{L1}
{name of the volumetric statistics, displayed in the listing
and the postprocessing files. The default value is given above, with ``XXXX''
representing a four digit number (for instance 0001, 0011 ...)\\
useful if \texttt{istala} = 1\\
{\em Warning: this name is also used to reference information in the restart file
\mbox{(\texttt{isuist} =1)}. If the name of a variable is changed between two
calculations, then it will not be possible to read its value from the restart file}}
\motcleb{nvlsts}{i}{0 $\leqslant$ integer $\leqslant$ \texttt{nussta}=20}{0}{O}{L1}
{number of additional user volume statistics\\
the additional statistics (or their cumulated value in the steady
case) can be accessed in the array \texttt{statis} by means of the pointer
\texttt{ilvu\index{ilvu}}: \texttt{statis(iel,ilvu(ii)\index{statis}})
(\texttt{iel} is the cell indexnumber and \texttt{ii} an integer between
1 and \texttt{nvlsts})\\
useful if \texttt{istala} = 1}
\motcle{npst}{i}{positive integer}{0}{O}{L3}
{number of iterations during which steady volume statistics have
been cumulated\\
useful if \texttt{istala}=1, \texttt{isttio}=1 and if \texttt{nstist} is
less than or equal to the current Lagrangian iteration\\
\texttt{npst} is initialised and updated automatically by the code, its
value is not to be modified by the user}
\motcle{npstt}{i}{positive integer}{0}{O}{L3}
{number of iterations during which volume statistics have been
calculated (the potential iterations during which unsteady
statistics have been calculated are counted in \texttt{npstt})\\
useful if \texttt{istala}=1\\
\texttt{npstt} is initialised and updated automatically by the code,
its value is not to be modified by the user}
\motcle{tstat}{r}{positive real number}{\texttt{dtp}}{O}{L3}
{if the volume statistics are calculated in a steady way, \texttt{tstat}
represents the physical time during which the statistics have been cumulated\\
if the volume statistics are calculated in a unsteady way,
then \texttt{tstat=dtp\index{dtp}} (it is the Lagrangian time step, because the
statistics are reset to zero at every iteration)\\
useful if \texttt{istala}=1\\
\texttt{tstat} is initialised and updated automatically by the code,
its value is not to be modified by the user}
%==================================================
\subsubsection{Display of particles and trajectories}
%==================================================
The definition of the particle visualization output meshes
itself is done with that of all other postprocessing mesh zones, either
using the GUI, or the \texttt{cs\_user\_postprocess\_meshes} function of
\texttt{cs\_user\_postprocess.c}.
The following options determine which variables are output on those particle
or particle trajectory segment output meshes for which the ``automatic output''
is activated.
\motcleb{ivisv1}{i}{0, 1}{0}{O}{L1}
{associates (=1) or not (=0) the variable ``velocity of the locally
undisturbed fluid flow field'' with the output of particles or trajectories\\
always useful}
\motcleb{ivisv2}{i}{0, 1}{0}{O}{L1}
{associates (=1) or not (=0) the variable ``particle velocity''
with the output of particles or trajectories\\
always useful}
\motcleb{ivistp}{i}{0, 1}{0}{O}{L1}
{associates (=1) or not (=0) the variable ``residence time''
with the output of particles or trajectories\\
always useful}
\motcleb{ivisdm}{i}{0, 1}{0}{O}{L1}
{associates (=1) or not (=0) the variable ``particle diameter''
with the output of particles or trajectories\\
always useful}
\motcleb{iviste}{i}{0, 1}{0}{O}{L1}
{associates (=1) or not (=0) the variable ``particle temperature''
with the output of particles or trajectories\\
always useful}
\motcleb{ivismp}{i}{0, 1}{0}{O}{L1}
{associates (=1) or not (=0) the variable ``particle mass''
with the output of particles or trajectories\\
always useful}
\motcleb{ivisdk}{i}{0, 1}{0}{O}{L1}
{associates (=1) or not (=0) the variable ``shrinking core diameter of
the coal particles'' with the output of particles or trajectories\\
useful only if \texttt{iphyla} = 2}
\motcleb{ivisch}{i}{0, 1}{0}{O}{L1}
{associates (=1) or not (=0) the variable ``mass of reactive coal of the
coal particles'' with the output of particles or trajectories\\
useful only if \texttt{iphyla} = 2}
\motcleb{ivisck}{i}{0, 1}{0}{O}{L1}
{associates (=1) or not (=0) the variable ``mass of coal of the
coal particles'' with the output of particles or trajectories\\
useful only if \texttt{iphyla} = 2}
%==================================================
\subsubsection{Display of the particle/boundary interactions and the statistics at the boundaries}
%==================================================
\motcleb{iensi3}{i}{0, 1}{0}{C}{L1}
{activates (=1) or not (=0) of the recording of the particle/boundary
interactions in \texttt{parbor\index{parbor}}, and of the calculation of the
statistics at the corresponding boundaries, for postprocessing
(\textit{EnSight6} format)\\
By default, the statistics are unsteady (reset to zero at every
Lagrangian iteration). They may be steady if \texttt{isttio}=1 ({\em i.e.}
calculation of a cumulated value over time, and then calculation of an
average over time or over the number of interactions with the boundary)\\
always useful}
\motcleb{nstbor}{i}{strictly positive integer}{1}{O}{L1}
{number of absolute Lagrangian iterations (including the restarts)
after which the statistics at the boundaries are considered steady and are
averaged (over time or over the number of interactions)\\
If the number of absolute Lagrangian iterations is less than \texttt{nstbor},
or if \texttt{isttio}=0, the statistics are reset to zero at every
Lagrangian iteration (unsteady statistics)\\
useful if \texttt{iensi3}=1 and \texttt{isttio}=1}
\motcleb{seuilf}{r}{positive real number}{0}{O}{L1}
{every boundary face of the mesh undergoes a certain number of
interactions with particles, expressed in term of statistical weight
(sum of the statistical weights of all the particles which have
interacted with the boundary face). \texttt{seuilf} is
the limit statistical weight value, below which the contribution of the
face is not taken into account in the
statistics at the boundaries for postprocessing\\
useful if \texttt{iensi3}=1}
\motcleb{inbrbd}{i}{0, 1}{1}{O}{L1}
{activates (=1) or not (=0) of the recording of the number of particle/boundary
interactions, and of the calculation of the associated boundary statistics.\\
\texttt{inbrd} = 1 is a compulsory condition to use the particulate average
\texttt{imoybr} = 2\\
useful if \texttt{iensi3}=1}
\motcleb{iflmbd}{i}{0, 1}{0}{O}{L1}
{activates (=1) or not (=0) of the recording of the particulate mass flow
related to the particle/boundary interactions, and of the calculation of
the associated boundary statistics\\
\texttt{inbrd} = 1 is a compulsory condition to use \texttt{iflmbd}=1\\
useful if \texttt{iensi3}=1 and \texttt{inbrbd}=1}
\motcleb{iangbd}{i}{0, 1}{0}{O}{L1}
{activates (=1) or not (=0) of the recording of the angle between a
particle trajectory and a boundary face involved in a particle/boundary
interaction, and of the calculation of the associated boundary statistics\\
useful if \texttt{iensi3}=1}
\motcleb{ivitbd}{i}{0, 1}{0}{O}{L1}
{activates (=1) or not (=0) of the recording of the velocity of a particle
involved in a particle/boundary interaction, and of the calculation of
the associated boundary statistics\\
useful if \texttt{iensi3}=1}
\motcleb{iencbd}{i}{0, 1}{0}{O}{L1}
{activates (=1) or not (=0) of the recording of the mass of coal particles
stuck to the wall due to fouling, on the boundary faces of the \texttt{iencrl}
interaction type\\
useful if \texttt{iensi3}=1, \texttt{iphyla}=2, \texttt{iencra}=1, and if
there is at least one boundary face of the \texttt{iencrl} interaction
type}
\motcleb{nusbor}{i}{positive integer}{0}{O}{L1}
{number of additional user data to record for the calculation
of additional boundary statistics in \texttt{parbor\index{parbor}}\\
useful if \texttt{iensi3}=1}
\motcleb{nombrd}{ca}{string of less than 50 characters}{see
\texttt{uslag1}}{O}{L1}
{name of the boundary statistics, displayed in the listing
and the postprocessing files\\
useful if \texttt{iensi3}=1\\
{\em Warning: this name is also used to reference information in the restart file
\mbox{(\texttt{isuist} =1)}. If the name of a variable is changed between two
calculations, it will not be possible to read its value from the restart file}}
\motcleb{imoybr}{ia}{0, 1, 2}{0 , 1 or 2}{O}{L1}
{the recordings in \texttt{parbor} at every particle/boundary interaction are
cumulated values (possibly reset to zero at every iteration in the
unsteady case). They must therefore be divided by a quantity to
get boundary statistics. The user can choose between two average types:\\
\hspace*{1.3cm} = 0: no average is applied to the recorded cumulated values\\
\hspace*{1.3cm} = 1: a timeaverage is calculated. The cumulated value
is divided by the physical duration in the case of steady
averages (\texttt{isttio}=1). The cumulated value is divided by the value of
the last time step in the case of unsteady averages (\texttt{isttio}=0),
and also in the case of steady averages while the
absolute Lagrangian iteration number is inferior to \texttt{nstbor}\\
\hspace*{1.3cm} = 2: a particulate average is calculated. The cumulated
value is divided by the number of particle/boundary interactions (in terms of
statistical weight) recorded in \texttt{parbor(nfabor,inbr)}. This average
can only be calculated when \texttt{inbrbd}=1. The average is calculated if
the number of interactions (in statistical weight) of the considered
boundary face is strictly higher than \texttt{seuilf}, otherwise the average
at the face is set to zero\\
only the cumulated value is recorded in the restart file\\
useful if \texttt{iensi3}=1}
\motcle{npstf}{i}{positive integer}{0}{O}{L3}
{number of iterations during which steady boundary statistics have
been cumulated\\
useful if \texttt{iensi3}=1, \texttt{isttio}=1 and \texttt{nstbor} less than
or equal to the current Lagrangian iteration\\
\texttt{npstf} is initialised and updated automatically by the code,
its value is not to be modified by the user}
\motcle{npstft}{i}{positive integer}{0}{O}{L3}
{number of iterations during which boundary statistics have
been calculated
(the potential iterations during which unsteady
statistics have been calculated are counted in \texttt{npstft})\\
useful if \texttt{iensi3}=1\\
\texttt{npstft} is initialised and updated automatically by the code,
its value is not to be modified by the user}
\motcle{tstatp}{r}{positive real number}{\texttt{dtp}}{O}{L3}
{if the recording of the boundary statistics is steady, \texttt{tstatp}
contains the cumulated physical duration of the recording of the boundary
statistics\\
if the recording of the boundary statistics is unsteady, then
\texttt{tstat=dtp\index{dtp}} (it is the Lagrangian time step, because the
statistics are reset to zero at every time step)\\
useful if \texttt{iensi3}=1}
