File: cs_evaluate.c

package info (click to toggle)
code-saturne 4.3.3%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 77,992 kB
  • sloc: ansic: 281,257; f90: 122,305; python: 56,490; makefile: 3,915; xml: 3,285; cpp: 3,183; sh: 1,139; lex: 176; yacc: 101; sed: 16
file content (1090 lines) | stat: -rw-r--r-- 38,254 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
/*============================================================================
 * Functions and structures to deal with evaluation of quantities
 *============================================================================*/

/*
  This file is part of Code_Saturne, a general-purpose CFD tool.

  Copyright (C) 1998-2016 EDF S.A.

  This program is free software; you can redistribute it and/or modify it under
  the terms of the GNU General Public License as published by the Free Software
  Foundation; either version 2 of the License, or (at your option) any later
  version.

  This program is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
  FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
  details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
  Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/

#include "cs_defs.h"

/*----------------------------------------------------------------------------
 * Standard C library headers
 *----------------------------------------------------------------------------*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <float.h>

/*----------------------------------------------------------------------------
 * Local headers
 *----------------------------------------------------------------------------*/

#include <bft_mem.h>
#include <bft_printf.h>

#include "cs_math.h"
#include "cs_mesh_location.h"

/*----------------------------------------------------------------------------
 * Header for the current file
 *----------------------------------------------------------------------------*/

#include "cs_evaluate.h"

/*----------------------------------------------------------------------------*/

BEGIN_C_DECLS

/*=============================================================================
 * Local Macro definitions and structure definitions
 *============================================================================*/

/* Pointer to shared structures (owned by a cs_domain_t structure) */
static const cs_cdo_quantities_t  *cs_cdo_quant;
static const cs_cdo_connect_t  *cs_cdo_connect;
static const cs_time_step_t  *cs_time_step;

static const char _err_empty_array[] =
  " Array storing the evaluation should be allocated before the call"
  " to this function.";
static const char _err_not_handled[] = " This case is not handled yet.";

/*============================================================================
 * Private function prototypes
 *============================================================================*/

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Compute the integral over a tetrahedron of the barycentric subdiv.
 *         using a barycentric quadrature rule
 *
 * \param[in]  tcur   current physical time of the simulation
 * \param[in]  xv     first point of the tetrahedron
 * \param[in]  xe     second point of the tetrahedron
 * \param[in]  xf     third point of the tetrahedron
 * \param[in]  xc     fourth point of the tetrahedron
 * \param[in]  ana    pointer to the analytic function
 *
 * \return the result of the integration
 */
/*----------------------------------------------------------------------------*/

inline static double
_analytic_quad_tet1(double                 tcur,
                    const cs_real_3_t      xv,
                    const cs_real_3_t      xe,
                    const cs_real_3_t      xf,
                    const cs_real_3_t      xc,
                    cs_analytic_func_t    *ana)
{
  int  k;
  cs_real_3_t  xg;
  cs_get_t  evaluation;

  const double  vol_tet = cs_math_voltet(xv, xe, xf, xc);

  for (k = 0; k < 3; k++)
    xg[k] = 0.25*(xv[k] + xe[k] + xf[k] + xc[k]);

  ana(tcur, xg, &evaluation);

  return vol_tet * evaluation.val;
}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Compute the integral over a tetrahedron of the barycentric subdiv.
 *         with a quadrature rule using 4 Gauss points and a unique weight
 *
 * \param[in]  tcur   current physical time of the simulation
 * \param[in]  xv     first point of the tetrahedron
 * \param[in]  xe     second point of the tetrahedron
 * \param[in]  xf     third point of the tetrahedron
 * \param[in]  xc     fourth point of the tetrahedron
 * \param[in]  ana    pointer to the analytic function
 *
 * \return the result of the integration
 */
/*----------------------------------------------------------------------------*/

inline static double
_analytic_quad_tet4(double                tcur,
                    const cs_real_3_t     xv,
                    const cs_real_3_t     xe,
                    const cs_real_3_t     xf,
                    const cs_real_3_t     xc,
                    cs_analytic_func_t   *ana)
{
  double  weight;
  cs_real_3_t  gauss_pts[4];
  cs_get_t  evaluation;

  double  result = 0.0;
  const double  vol_tet = cs_math_voltet(xv, xe, xf, xc);

  /* Compute Gauss points and its unique weight */
  cs_quadrature_tet_4pts(xv, xe, xf, xc, vol_tet, gauss_pts, &weight);

  for (int p = 0; p < 4; p++) {
    ana(tcur, gauss_pts[p], &evaluation);
    result += evaluation.val;
  }
  result *= weight;

  return result;
}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Compute the integral over a tetrahedron of the barycentric subdiv.
 *         with a quadrature rule using 5 Gauss points and 5 weights
 *
 * \param[in]  tcur   current physical time of the simulation
 * \param[in]  xv     first point of the tetrahedron
 * \param[in]  xe     second point of the tetrahedron
 * \param[in]  xf     third point of the tetrahedron
 * \param[in]  xc     fourth point of the tetrahedron
 * \param[in]  ana    pointer to the analytic function
 *
 * \return the result of the integration
 */
/*----------------------------------------------------------------------------*/

inline static double
_analytic_quad_tet5(double                tcur,
                    const cs_real_3_t     xv,
                    const cs_real_3_t     xe,
                    const cs_real_3_t     xf,
                    const cs_real_3_t     xc,
                    cs_analytic_func_t   *ana)
{
  double  weights[5];
  cs_real_3_t  gauss_pts[5];
  cs_get_t  evaluation;

  double  result = 0.0;
  const double  vol_tet = cs_math_voltet(xv, xe, xf, xc);

  /* Compute Gauss points and its unique weight */
  cs_quadrature_tet_5pts(xv, xe, xf, xc, vol_tet, gauss_pts, weights);

  for (int p = 0; p < 5; p++) {
    ana(tcur, gauss_pts[p], &evaluation);
    result += evaluation.val*weights[p];
  }

  return result;
}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Compute the integral over dual cells of a scalar density field
 *         defined by an analytical function on a selection of (primal) cells
 *
 * \param[in]      ana         pointer to the analytic function
 * \param[in]      n_loc_elts  number of elements to consider
 * \param[in]      elt_ids     pointer to the list od selected ids
 * \param[in]      quad_type   type of quadrature to use
 * \param[in, out] values      pointer to the computed values
 */
/*----------------------------------------------------------------------------*/

static void
_dcsd_by_analytic(cs_analytic_func_t       *ana,
                  const cs_lnum_t           n_elts,
                  const cs_lnum_t          *elt_ids,
                  cs_quadra_type_t          quad_type,
                  double                    values[])
{
  const cs_cdo_quantities_t  *quant = cs_cdo_quant;
  const cs_cdo_connect_t  *connect = cs_cdo_connect;
  const cs_sla_matrix_t  *c2f = connect->c2f;
  const cs_sla_matrix_t  *f2e = connect->f2e;
  const double  tcur = cs_time_step->t_cur;

  /* Compute dual volumes */
  for (cs_lnum_t  id = 0; id < n_elts; id++) {

    const cs_lnum_t  c_id = (elt_ids == NULL) ? id : elt_ids[id];
    const cs_real_t  *xc = quant->cell_centers + 3*c_id;

    for (cs_lnum_t i = c2f->idx[c_id]; i < c2f->idx[c_id+1]; i++) {

      const cs_lnum_t  f_id = c2f->col_id[i];
      const cs_quant_t  f = quant->face[f_id];

      for (cs_lnum_t j = f2e->idx[f_id]; j < f2e->idx[f_id+1]; j++) {

        const cs_lnum_t  e_id = f2e->col_id[j];
        const cs_quant_t  e = quant->edge[e_id];
        const cs_lnum_t  v1_id = connect->e2v->col_id[2*e_id];
        const cs_lnum_t  v2_id = connect->e2v->col_id[2*e_id+1];
        const cs_real_t  *xv1 = quant->vtx_coord + 3*v1_id;
        const cs_real_t  *xv2 = quant->vtx_coord + 3*v2_id;

        double  add1 = 0.0, add2 = 0.0;

        switch(quad_type) {

        case CS_QUADRATURE_BARY: /* Barycenter of the tetrahedral subdiv. */
          add1 = _analytic_quad_tet1(tcur, xv1, e.center, f.center, xc, ana);
          add2 = _analytic_quad_tet1(tcur, xv2, e.center, f.center, xc, ana);
          break;
        case CS_QUADRATURE_HIGHER: /* Quadrature with a unique weight */
          add1 = _analytic_quad_tet4(tcur, xv1, e.center, f.center, xc, ana);
          add2 = _analytic_quad_tet4(tcur, xv1, e.center, f.center, xc, ana);
          break;
        case CS_QUADRATURE_HIGHEST: /* Most accurate quadrature available */
          add1 = _analytic_quad_tet5(tcur, xv1, e.center, f.center, xc, ana);
          add2 = _analytic_quad_tet5(tcur, xv1, e.center, f.center, xc, ana);
          break;
        default:
          bft_error(__FILE__, __LINE__, 0, _("Invalid quadrature type.\n"));

        } /* Quad rule */

        values[v1_id] += add1;
        values[v2_id] += add2;

      } // Loop on edges

    } // Loop on faces

  } // Loop on cells

}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Compute the integral over primal cells of a scalar density field
 *         defined by an analytical function on a selection of (primal) cells
 *
 * \param[in]      ana         pointer to the analytic function
 * \param[in]      n_loc_elts  number of elements to consider
 * \param[in]      elt_ids     pointer to the list od selected ids
 * \param[in]      quad_type   type of quadrature to use
 * \param[in, out] values      pointer to the computed values
 */
/*----------------------------------------------------------------------------*/

static void
_pcsd_by_analytic(cs_analytic_func_t       *ana,
                  const cs_lnum_t           n_elts,
                  const cs_lnum_t          *elt_ids,
                  cs_quadra_type_t          quad_type,
                  double                    values[])
{
  const cs_cdo_quantities_t  *quant = cs_cdo_quant;
  const cs_cdo_connect_t  *connect = cs_cdo_connect;
  const cs_sla_matrix_t  *c2f = connect->c2f;
  const cs_sla_matrix_t  *f2e = connect->f2e;
  const double  tcur = cs_time_step->t_cur;

  for (cs_lnum_t  id = 0; id < n_elts; id++) {

    const cs_lnum_t  c_id = (elt_ids == NULL) ? id : elt_ids[id];
    const cs_real_t  *xc = quant->cell_centers + 3*c_id;

    for (cs_lnum_t i = c2f->idx[c_id]; i < c2f->idx[c_id+1]; i++) {

      const cs_lnum_t  f_id = c2f->col_id[i];
      const cs_quant_t  f = quant->face[f_id];

      for (cs_lnum_t j = f2e->idx[f_id]; j < f2e->idx[f_id+1]; j++) {

        const cs_lnum_t  e_id = f2e->col_id[j];
        const cs_lnum_t  v1_id = connect->e2v->col_id[2*e_id];
        const cs_lnum_t  v2_id = connect->e2v->col_id[2*e_id+1];
        const cs_real_t  *xv1 = quant->vtx_coord + 3*v1_id;
        const cs_real_t  *xv2 = quant->vtx_coord + 3*v2_id;

        double  add = 0.0;

        switch(quad_type) {

        case CS_QUADRATURE_BARY: /* Barycenter of the tetrahedral subdiv. */
          add  = _analytic_quad_tet1(tcur, xv1, xv2, f.center, xc, ana);
          break;
        case CS_QUADRATURE_HIGHER: /* Quadrature with a unique weight */
          add = _analytic_quad_tet4(tcur, xv1, xv2, f.center, xc, ana);
          break;
        case CS_QUADRATURE_HIGHEST: /* Most accurate quadrature available */
          add = _analytic_quad_tet5(tcur, xv1, xv2, f.center, xc, ana);
          break;
        default:
          bft_error(__FILE__, __LINE__, 0, _("Invalid quadrature type.\n"));

        } /* Quad rule */

        values[c_id] += add;

      } // Loop on edges

    } // Loop on faces

  } // Loop on cells

}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Compute the integral over a dual cell (or a portion) of a value
 *         defined on a selection of (primal) cells
 *
 * \param[in]      const_val   constant value
 * \param[in]      n_loc_elts  number of elements to consider
 * \param[in]      elt_ids     pointer to the list od selected ids
 * \param[in, out] values      pointer to the computed values
 */
/*----------------------------------------------------------------------------*/

static void
_dcsd_by_value(const double       const_val,
               const cs_lnum_t    n_elts,
               const cs_lnum_t   *elt_ids,
               double             values[])
{
  const cs_connect_index_t  *c2v = cs_cdo_connect->c2v;
  const cs_cdo_quantities_t  *quant = cs_cdo_quant;
  const cs_real_t  *dual_vol = quant->dcell_vol; /* scan by c2v */

  if (elt_ids == NULL) {

    assert(n_elts == quant->n_cells);
    for (cs_lnum_t c_id = 0; c_id < n_elts; c_id++)
      for (cs_lnum_t j = c2v->idx[c_id]; j < c2v->idx[c_id+1]; j++)
        values[c2v->ids[j]] += dual_vol[j]*const_val;

  }
  else { /* Loop on selected cells */

    for (cs_lnum_t i = 0; i < n_elts; i++) {
      cs_lnum_t  c_id = elt_ids[i];
      for (cs_lnum_t  j = c2v->idx[c_id]; j < c2v->idx[c_id+1]; j++)
        values[c2v->ids[j]] += dual_vol[j]*const_val;
    }

  }

}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Compute the integral over a (primal) cell of a value related to
 *         scalar density field
 *
 * \param[in]      const_val   constant value
 * \param[in]      n_loc_elts  number of elements to consider
 * \param[in]      elt_ids     pointer to the list od selected ids
 * \param[in, out] values      pointer to the computed values
 */
/*----------------------------------------------------------------------------*/

static void
_pcsd_by_value(const double       const_val,
               const cs_lnum_t    n_elts,
               const cs_lnum_t   *elt_ids,
               double             values[])
{
  const cs_cdo_quantities_t  *quant = cs_cdo_quant;

  if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for if (quant->n_cells > CS_THR_MIN)
    for (cs_lnum_t c_id = 0; c_id < quant->n_cells; c_id++)
      values[c_id] = quant->cell_vol[c_id]*const_val;
  }

  else { /* Loop on selected cells */
# pragma omp parallel for if (n_elts > CS_THR_MIN)
    for (cs_lnum_t i = 0; i < n_elts; i++) {
      cs_lnum_t  c_id = elt_ids[i];
      values[c_id] = quant->cell_vol[c_id]*const_val;
    }
  }

}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Get the values at each primal faces for a scalar potential
 *         defined by an analytical function on a selection of (primal) cells
 *
 * \param[in]      ana         pointer to the analytic function
 * \param[in]      n_loc_elts  number of elements to consider
 * \param[in]      elt_ids     pointer to the list od selected ids
 * \param[in, out] values      pointer to the computed values
 */
/*----------------------------------------------------------------------------*/

static void
_pfsp_by_analytic(cs_analytic_func_t    *ana,
                  const cs_lnum_t        n_elts,
                  const cs_lnum_t       *elt_ids,
                  double                 values[])
{
  cs_get_t  result;

  const double  tcur = cs_time_step->t_cur;
  const cs_cdo_quantities_t  *quant = cs_cdo_quant;
  const cs_sla_matrix_t  *c2f = cs_cdo_connect->c2f;

  /* Initialize todo array */
  bool  *todo = NULL;

  BFT_MALLOC(todo, quant->n_vertices, bool);

# pragma omp parallel for if (quant->n_faces > CS_THR_MIN)
  for (cs_lnum_t f_id = 0; f_id < quant->n_faces; f_id++)
    todo[f_id] = true;

  for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells

    cs_lnum_t  c_id = elt_ids[i];

    for (cs_lnum_t j = c2f->idx[c_id]; j < c2f->idx[c_id+1]; j++) {

      cs_lnum_t  f_id = c2f->col_id[j];
      if (todo[f_id]) {
        ana(tcur, quant->face[f_id].center, &result);
        values[f_id] = result.val;
        todo[f_id] = false;
      }

    } // Loop on cell vertices

  } // Loop on selected cells

  BFT_FREE(todo);
}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Get the values at each primal vertices for a scalar potential
 *         defined by an analytical function on a selection of (primal) cells
 *
 * \param[in]      ana         pointer to the analytic function
 * \param[in]      n_loc_elts  number of elements to consider
 * \param[in]      elt_ids     pointer to the list od selected ids
 * \param[in, out] values      pointer to the computed values
 */
/*----------------------------------------------------------------------------*/

static void
_pvsp_by_analytic(cs_analytic_func_t    *ana,
                  const cs_lnum_t        n_elts,
                  const cs_lnum_t       *elt_ids,
                  double                 values[])
{
  cs_get_t  result;

  const double  tcur = cs_time_step->t_cur;
  const cs_cdo_quantities_t  *quant = cs_cdo_quant;
  const cs_connect_index_t  *c2v = cs_cdo_connect->c2v;

  /* Initialize todo array */
  bool  *todo = NULL;

  BFT_MALLOC(todo, quant->n_vertices, bool);

# pragma omp parallel for if (quant->n_vertices > CS_THR_MIN)
  for (cs_lnum_t v_id = 0; v_id < quant->n_vertices; v_id++)
    todo[v_id] = true;

  for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells

    cs_lnum_t  c_id = elt_ids[i];

    for (cs_lnum_t j = c2v->idx[c_id]; j < c2v->idx[c_id+1]; j++) {

      cs_lnum_t  v_id = c2v->ids[j];
      if (todo[v_id]) {
        ana(tcur, quant->vtx_coord + 3*v_id, &result);
        values[v_id] = result.val;
        todo[v_id] = false;
      }

    } // Loop on cell vertices

  } // Loop on selected cells

  BFT_FREE(todo);
}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Get the values at each primal faces for a scalar potential
 *
 * \param[in]      const_val   constant value
 * \param[in]      n_loc_elts  number of elements to consider
 * \param[in]      elt_ids     pointer to the list od selected ids
 * \param[in, out] values      pointer to the array storing the values
 */
/*----------------------------------------------------------------------------*/

static void
_pfsp_by_value(const double       const_val,
               cs_lnum_t          n_elts,
               const cs_lnum_t   *elt_ids,
               double             values[])
{
  const cs_cdo_quantities_t  *quant = cs_cdo_quant;
  const cs_sla_matrix_t  *c2f = cs_cdo_connect->c2f;

  /* Initialize todo array */
  bool  *todo = NULL;

  BFT_MALLOC(todo, quant->n_vertices, bool);

# pragma omp parallel for if (quant->n_faces > CS_THR_MIN)
  for (cs_lnum_t f_id = 0; f_id < quant->n_faces; f_id++)
    todo[f_id] = true;

  for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells

    cs_lnum_t  c_id = elt_ids[i];

    for (cs_lnum_t j = c2f->idx[c_id]; j < c2f->idx[c_id+1]; j++) {

      cs_lnum_t  f_id = c2f->col_id[j];
      if (todo[f_id])
        values[f_id] = const_val, todo[f_id] = false;

    } // Loop on cell vertices

  } // Loop on selected cells

  BFT_FREE(todo);
}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Define a value to each DoF such that a given quantity is put inside
 *         the volume associated to the list of cells
 *
 * \param[in]      quantity_val  amount of quantity to distribute
 * \param[in]      n_loc_elts    number of elements to consider
 * \param[in]      elt_ids       pointer to the list od selected ids
 * \param[in, out] values        pointer to the array storing the values
 */
/*----------------------------------------------------------------------------*/

static void
_pvsp_by_qov(const double       quantity_val,
             cs_lnum_t          n_elts,
             const cs_lnum_t   *elt_ids,
             double             values[])
{
  const cs_cdo_quantities_t  *quant = cs_cdo_quant;
  const cs_real_t  *dc_vol = quant->dcell_vol;
  const cs_connect_index_t  *c2v = cs_cdo_connect->c2v;
  const cs_sla_matrix_t  *c2f = cs_cdo_connect->c2f;
  const cs_sla_matrix_t  *f2c = cs_cdo_connect->f2c;
  const cs_sla_matrix_t  *f2e = cs_cdo_connect->f2e;
  const cs_sla_matrix_t  *e2v = cs_cdo_connect->e2v;

  /* Initialize todo array */
  bool  *cell_tag = NULL, *vtx_tag = NULL;

  BFT_MALLOC(cell_tag, quant->n_cells, bool);
  BFT_MALLOC(vtx_tag, quant->n_vertices, bool);

# pragma omp parallel for if (quant->n_vertices > CS_THR_MIN)
  for (cs_lnum_t v_id = 0; v_id < quant->n_vertices; v_id++)
    vtx_tag[v_id] = false;
# pragma omp parallel for if (quant->n_cells > CS_THR_MIN)
  for (cs_lnum_t c_id = 0; c_id < quant->n_cells; c_id++)
    cell_tag[c_id] = false;

  /* First pass: flag cells and vertices */
# pragma omp parallel for if (n_elts > CS_THR_MIN)
  for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells

    const cs_lnum_t  c_id = elt_ids[i];

    cell_tag[c_id] = true;
    for (cs_lnum_t j = c2v->idx[c_id]; j < c2v->idx[c_id+1]; j++)
      vtx_tag[c2v->ids[j]] = true;

  } // Loop on selected cells

  /* Second pass: detect cells at the frontier of the selection */
# pragma omp parallel for if (n_elts > CS_THR_MIN)
  for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells

    const cs_lnum_t  c_id = elt_ids[i];

    for (cs_lnum_t j = c2f->idx[c_id]; j < c2f->idx[c_id+1]; j++) {

      const cs_lnum_t  f_id = c2f->col_id[j];

      bool is_ext_face = false;
      for (cs_lnum_t l = f2c->idx[f_id]; l < f2c->idx[f_id+1]; l++)
        if (!cell_tag[f2c->col_id[l]]) is_ext_face = true;

      if (is_ext_face) {
        for (cs_lnum_t l = f2e->idx[f_id]; l < f2e->idx[f_id+1]; l++) {

          const cs_lnum_t  e_id = f2e->col_id[l];
          const cs_lnum_t  shift_e = 2*e_id;

          vtx_tag[e2v->col_id[shift_e]] = false;
          vtx_tag[e2v->col_id[shift_e+1]] = false;

        } // Loop on face edges
      } // This face belongs to the frontier of the selection (only interior)

    } // Loop on cell faces

  } // Loop on selected cells

  /* Third pass: compute the (really) available volume */
  double  volume = 0.;
# pragma omp parallel for reduction(+:volume) if (n_elts > CS_THR_MIN)
  for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells

    const cs_lnum_t  c_id = elt_ids[i];

    for (cs_lnum_t j = c2v->idx[c_id]; j < c2v->idx[c_id+1]; j++)
      if (vtx_tag[c2v->ids[j]])
        volume += dc_vol[j];

  } // Loop on selected cells

  double val_to_set = quantity_val;
  if (volume > 0)
    val_to_set /= volume;

# pragma omp parallel for if (quant->n_vertices > CS_THR_MIN)
  for (cs_lnum_t v_id = 0; v_id < quant->n_vertices; v_id++)
    if (vtx_tag[v_id])
      values[v_id] = val_to_set;

  BFT_FREE(cell_tag);
  BFT_FREE(vtx_tag);
}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Get the values at each primal vertices for a scalar potential
 *
 * \param[in]      const_val   constant value
 * \param[in]      n_loc_elts  number of elements to consider
 * \param[in]      elt_ids     pointer to the list od selected ids
 * \param[in, out] values      pointer to the array storing the values
 */
/*----------------------------------------------------------------------------*/

static void
_pvsp_by_value(const double       const_val,
               cs_lnum_t          n_elts,
               const cs_lnum_t   *elt_ids,
               double             values[])
{
  const cs_cdo_quantities_t  *quant = cs_cdo_quant;
  const cs_connect_index_t  *c2v = cs_cdo_connect->c2v;

  /* Initialize todo array */
  bool  *todo = NULL;

  BFT_MALLOC(todo, quant->n_vertices, bool);

# pragma omp parallel for if (quant->n_vertices > CS_THR_MIN)
  for (cs_lnum_t v_id = 0; v_id < quant->n_vertices; v_id++)
    todo[v_id] = true;

  for (cs_lnum_t i = 0; i < n_elts; i++) { // Loop on selected cells

    cs_lnum_t  c_id = elt_ids[i];

    for (cs_lnum_t j = c2v->idx[c_id]; j < c2v->idx[c_id+1]; j++) {

      cs_lnum_t  v_id = c2v->ids[j];
      if (todo[v_id])
        values[v_id] = const_val, todo[v_id] = false;

    } // Loop on cell vertices

  } // Loop on selected cells

  BFT_FREE(todo);
}

/*============================================================================
 * Public function prototypes
 *============================================================================*/

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Set shared pointers to main domain members
 *
 * \param[in]  quant       additional mesh quantities struct.
 * \param[in]  connect     pointer to a cs_cdo_connect_t struct.
 * \param[in]  time_step   pointer to a time step structure
 */
/*----------------------------------------------------------------------------*/

void
cs_evaluate_set_shared_pointers(const cs_cdo_quantities_t    *quant,
                                const cs_cdo_connect_t       *connect,
                                const cs_time_step_t         *time_step)
{
  /* Assign static const pointers */
  cs_cdo_quant = quant;
  cs_cdo_connect = connect;
  cs_time_step = time_step;
}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Compute the value related to each DoF in the case of a density field
 *         The value defined by the analytic function is by unity of volume
 *
 * \param[in]      dof_flag    indicate where the evaluation has to be done
 * \param[in]      ml_id       id related to a cs_mesh_location_t structure
 * \param[in]      ana         accessor to values thanks to a function pointer
 * \param[in]      quad_type   type of quadrature (not always used)
 * \param[in, out] retval      pointer to the computed values
 */
/*----------------------------------------------------------------------------*/

void
cs_evaluate_density_from_analytic(cs_flag_t              dof_flag,
                                  int                    ml_id,
                                  cs_analytic_func_t    *ana,
                                  cs_quadra_type_t       quad_type,
                                  double                 retval[])
{
  /* Sanity check */
  if (retval == NULL)
    bft_error(__FILE__, __LINE__, 0, _err_empty_array);

  /* Retrieve information from mesh location structures */
  const cs_lnum_t  *n_elts = cs_mesh_location_get_n_elts(ml_id);
  const cs_lnum_t  *elt_ids = cs_mesh_location_get_elt_list(ml_id);

  /* Sanity checks */
  assert(n_elts != NULL);
  cs_mesh_location_type_t  ml_type = cs_mesh_location_get_type(ml_id);
  if (elt_ids != NULL && ml_type != CS_MESH_LOCATION_CELLS)
    bft_error(__FILE__, __LINE__, 0, _err_not_handled);

  /* Perform the evaluation */
  if (dof_flag & CS_FLAG_SCAL) { /* DoF is scalar-valued */

    if (cs_cdo_same_support(dof_flag, cs_cdo_primal_cell))
      _pcsd_by_analytic(ana, n_elts[0], elt_ids, quad_type, retval);

    else if (cs_cdo_same_support(dof_flag, cs_cdo_dual_cell))
      _dcsd_by_analytic(ana, n_elts[0], elt_ids, quad_type, retval);

    else
      bft_error(__FILE__, __LINE__, 0, _err_not_handled);

  }
  else
    bft_error(__FILE__, __LINE__, 0, _err_not_handled);

}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Compute the value related to each DoF in the case of a density field
 *         Accessor to the value is by unit of volume
 *
 * \param[in]      dof_flag  indicate where the evaluation has to be done
 * \param[in]      ml_id     id related to a cs_mesh_location_t structure
 * \param[in]      get       accessor to the constant value to set
 * \param[in, out] retval    pointer to the computed values
 */
/*----------------------------------------------------------------------------*/

void
cs_evaluate_density_from_value(cs_flag_t       dof_flag,
                               int             ml_id,
                               cs_get_t        get,
                               double          retval[])
{
  /* Sanity check */
  if (retval == NULL)
    bft_error(__FILE__, __LINE__, 0, _err_empty_array);

  /* Retrieve information from mesh location structures */
  const cs_lnum_t  *n_elts = cs_mesh_location_get_n_elts(ml_id);
  const cs_lnum_t  *elt_ids = cs_mesh_location_get_elt_list(ml_id);

  /* Sanity checks */
  assert(n_elts != NULL);
  cs_mesh_location_type_t  ml_type = cs_mesh_location_get_type(ml_id);
  if (elt_ids != NULL && ml_type != CS_MESH_LOCATION_CELLS)
    bft_error(__FILE__, __LINE__, 0, _err_not_handled);

  /* Perform the evaluation */
  if (dof_flag & CS_FLAG_SCAL) { /* DoF is scalar-valued */

    if (cs_cdo_same_support(dof_flag, cs_cdo_primal_cell))
      _pcsd_by_value(get.val, n_elts[0], elt_ids, retval);

    else if (cs_cdo_same_support(dof_flag, cs_cdo_dual_cell))
      _dcsd_by_value(get.val, n_elts[0], elt_ids, retval);

    else
      bft_error(__FILE__, __LINE__, 0, _err_not_handled);

  }
  else
    bft_error(__FILE__, __LINE__, 0, _err_not_handled);

}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Compute the contribution related to a quantity defined by analytic
 *         function for all the degrees of freedom
 *
 * \param[in]      dof_flag    indicate where the evaluation has to be done
 * \param[in]      ml_id       id related to a cs_mesh_location_t structure
 * \param[in]      ana         accessor to values thanks to a function pointer
 * \param[in, out] retval      pointer to the computed values
 */
/*----------------------------------------------------------------------------*/

void
cs_evaluate_potential_from_analytic(cs_flag_t              dof_flag,
                                    int                    ml_id,
                                    cs_analytic_func_t    *ana,
                                    double                 retval[])
{
  cs_get_t  result;

  /* Sanity check */
  if (retval == NULL)
    bft_error(__FILE__, __LINE__, 0, _err_empty_array);

  const cs_cdo_quantities_t  *quant = cs_cdo_quant;
  const double  tcur = cs_time_step->t_cur;

  /* Retrieve information from mesh location structures */
  const cs_lnum_t  *n_elts = cs_mesh_location_get_n_elts(ml_id);
  const cs_lnum_t  *elt_ids = cs_mesh_location_get_elt_list(ml_id);

  /* Sanity checks */
  assert(n_elts != NULL);
  cs_mesh_location_type_t  ml_type = cs_mesh_location_get_type(ml_id);
  if (elt_ids != NULL && ml_type != CS_MESH_LOCATION_CELLS)
    bft_error(__FILE__, __LINE__, 0, _err_not_handled);

  /* Perform the evaluation */
  if (dof_flag & CS_FLAG_SCAL) { /* DoF is scalar-valued */

    if (cs_cdo_same_support(dof_flag, cs_cdo_primal_vtx)) {

      if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for private(result) if(quant->n_vertices > CS_THR_MIN)
        for (cs_lnum_t v_id = 0; v_id < quant->n_vertices; v_id++) {
          ana(tcur, quant->vtx_coord + 3*v_id, &result);
          retval[v_id] = result.val;
        }
      }
      else
        _pvsp_by_analytic(ana, n_elts[0], elt_ids, retval);

    } /* Located at primal vertices */

    else if (cs_cdo_same_support(dof_flag, cs_cdo_primal_face)) {

      if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for  private(result) if(quant->n_faces > CS_THR_MIN)
        for (cs_lnum_t f_id = 0; f_id < quant->n_faces; f_id++) {
          ana(tcur, quant->face[f_id].center, &result);
          retval[f_id] = result.val;
        }
      }
      else
        _pfsp_by_analytic(ana, n_elts[0], elt_ids, retval);

    } /* Located at primal faces */

    else if (cs_cdo_same_support(dof_flag, cs_cdo_primal_cell) ||
             cs_cdo_same_support(dof_flag, cs_cdo_dual_vtx)) {

      if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for  private(result) if(quant->n_cells > CS_THR_MIN)
        for (cs_lnum_t c_id = 0; c_id < quant->n_cells; c_id++) {
          ana(tcur, quant->cell_centers + 3*c_id, &result);
          retval[c_id] = result.val;
        }
      }
      else
        for (cs_lnum_t i = 0; i < n_elts[0]; i++) { // Loop on selected cells
          cs_lnum_t  c_id = elt_ids[i];
          ana(tcur, quant->cell_centers + 3*c_id, &result);
          retval[c_id] = result.val;
        }

    } /* Located at primal cells or dual vertices */

    else
      bft_error(__FILE__, __LINE__, 0, _err_not_handled);

  }
  else
    bft_error(__FILE__, __LINE__, 0, _err_not_handled);

}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Define a value to each DoF in the case of a potential field in order
 *         to put a given quantity inside the volume associated to ml_id
 *
 * \param[in]      dof_flag  indicate where the evaluation has to be done
 * \param[in]      ml_id     id related to a cs_mesh_location_t structure
 * \param[in]      get       accessor to the constant value related to the
 *                           quantity to put in the volume spanned by ml_id
 * \param[in, out] retval    pointer to the computed values
 */
/*----------------------------------------------------------------------------*/

void
cs_evaluate_potential_from_qov(cs_flag_t       dof_flag,
                               int             ml_id,
                               cs_get_t        get,
                               double          retval[])
{
  /* Sanity check */
  if (retval == NULL)
    bft_error(__FILE__, __LINE__, 0, _err_empty_array);

  /* Retrieve information from mesh location structures */
  const cs_lnum_t  *n_elts = cs_mesh_location_get_n_elts(ml_id);
  const cs_lnum_t  *elt_ids = cs_mesh_location_get_elt_list(ml_id);

  /* Sanity checks */
  assert(n_elts != NULL);
  cs_mesh_location_type_t  ml_type = cs_mesh_location_get_type(ml_id);
  if (elt_ids != NULL && ml_type != CS_MESH_LOCATION_CELLS)
    bft_error(__FILE__, __LINE__, 0, _err_not_handled);

  /* Perform the evaluation */
  bool check = false;
  if (dof_flag & CS_FLAG_SCAL) { /* DoF is scalar-valued */

    if (cs_cdo_same_support(dof_flag, cs_cdo_primal_vtx))
      if (elt_ids != NULL) {
        _pvsp_by_qov(get.val, n_elts[0], elt_ids, retval);
        check = true;
      }

  } /* Located at primal vertices */

  if (!check)
    bft_error(__FILE__, __LINE__, 0,
              _(" Stop evaluating a potential from 'quantity over volume'.\n"
                " This situation is not handled yet."));
}

/*----------------------------------------------------------------------------*/
/*!
 * \brief  Store the value related to each DoF in the case of a potential field
 *
 * \param[in]      dof_flag  indicate where the evaluation has to be done
 * \param[in]      ml_id     id related to a cs_mesh_location_t structure
 * \param[in]      get       accessor to the constant value to set
 * \param[in, out] retval    pointer to the computed values
 */
/*----------------------------------------------------------------------------*/

void
cs_evaluate_potential_from_value(cs_flag_t       dof_flag,
                                 int             ml_id,
                                 cs_get_t        get,
                                 double          retval[])
{
  /* Sanity check */
  if (retval == NULL)
    bft_error(__FILE__, __LINE__, 0, _err_empty_array);

  const cs_cdo_quantities_t  *quant = cs_cdo_quant;

  /* Retrieve information from mesh location structures */
  const cs_lnum_t  *n_elts = cs_mesh_location_get_n_elts(ml_id);
  const cs_lnum_t  *elt_ids = cs_mesh_location_get_elt_list(ml_id);

  /* Sanity checks */
  assert(n_elts != NULL);
  cs_mesh_location_type_t  ml_type = cs_mesh_location_get_type(ml_id);
  if (elt_ids != NULL && ml_type != CS_MESH_LOCATION_CELLS)
    bft_error(__FILE__, __LINE__, 0, _err_not_handled);

  /* Perform the evaluation */
  if (dof_flag & CS_FLAG_SCAL) { /* DoF is scalar-valued */

    if (cs_cdo_same_support(dof_flag, cs_cdo_primal_vtx)) {

      if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for if (quant->n_vertices > CS_THR_MIN)
        for (cs_lnum_t v_id = 0; v_id < quant->n_vertices; v_id++)
          retval[v_id] = get.val;
      }
      else
        _pvsp_by_value(get.val, n_elts[0], elt_ids, retval);

    } /* Located at primal vertices */

    else if (cs_cdo_same_support(dof_flag, cs_cdo_primal_face)) {

      if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for if (quant->n_faces > CS_THR_MIN)
        for (cs_lnum_t f_id = 0; f_id < quant->n_faces; f_id++)
          retval[f_id] = get.val;
      }
      else
        _pfsp_by_value(get.val, n_elts[0], elt_ids, retval);

    } /* Located at primal faces */

    else if (cs_cdo_same_support(dof_flag, cs_cdo_primal_cell) ||
             cs_cdo_same_support(dof_flag, cs_cdo_dual_vtx)) {

      if (elt_ids == NULL) { /* All the support entities are selected */
# pragma omp parallel for if (quant->n_cells > CS_THR_MIN)
        for (cs_lnum_t c_id = 0; c_id < quant->n_cells; c_id++)
          retval[c_id] = get.val;
      }
      else
        for (cs_lnum_t i = 0; i < n_elts[0]; i++) // Loop on selected cells
          retval[elt_ids[i]] = get.val;

    } /* Located at primal cells or dual vertices */

    else
      bft_error(__FILE__, __LINE__, 0, _err_not_handled);

  }
  else
    bft_error(__FILE__, __LINE__, 0, _err_not_handled);

}

/*----------------------------------------------------------------------------*/

END_C_DECLS