File: cs_lagr_clogging.c

package info (click to toggle)
code-saturne 4.3.3%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 77,992 kB
  • sloc: ansic: 281,257; f90: 122,305; python: 56,490; makefile: 3,915; xml: 3,285; cpp: 3,183; sh: 1,139; lex: 176; yacc: 101; sed: 16
file content (371 lines) | stat: -rw-r--r-- 12,955 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
/*============================================================================
 * Methods for particle clogging modeling
 *============================================================================*/

/*
  This file is part of Code_Saturne, a general-purpose CFD tool.

  Copyright (C) 1998-2016 EDF S.A.

  This program is free software; you can redistribute it and/or modify it under
  the terms of the GNU General Public License as published by the Free Software
  Foundation; either version 2 of the License, or (at your option) any later
  version.

  This program is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
  FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
  details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
 Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/

/*----------------------------------------------------------------------------*/

/*============================================================================
 * Functions dealing with the particle clogging modeling
 *============================================================================*/

#include "cs_defs.h"

/*----------------------------------------------------------------------------
 * Standard C library headers
 *----------------------------------------------------------------------------*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
#include <assert.h>

/*----------------------------------------------------------------------------
 *  Local headers
 *----------------------------------------------------------------------------*/

#include "bft_printf.h"
#include "bft_error.h"
#include "bft_mem.h"

#include "fvm_periodicity.h"

#include "cs_base.h"
#include "cs_interface.h"
#include "cs_mesh.h"
#include "cs_mesh_quantities.h"
#include "cs_parall.h"
#include "cs_prototypes.h"
#include "cs_search.h"
#include "cs_halo.h"

#include "cs_lagr.h"
#include "cs_lagr_dlvo.h"
#include "cs_lagr_roughness.h"

/*----------------------------------------------------------------------------
 * Header for the current file
 *----------------------------------------------------------------------------*/

#include "cs_lagr_clogging.h"

/*----------------------------------------------------------------------------*/

BEGIN_C_DECLS

/*! \cond DOXYGEN_SHOULD_SKIP_THIS */

/*============================================================================
 * Local structure declaration
 *============================================================================*/

static cs_lagr_clogging_param_t cs_lagr_clogging_param;

/*============================================================================
 * Static global variables
 *============================================================================*/

static const double _pi = 3.14159265358979323846;

/* Cut-off distance for adhesion forces (assumed to be the Born distance) */
static const cs_real_t  _d_cut_off = 1.65e-10;

/* Free space permittivity */
static const cs_real_t _free_space_permit = 8.854e-12;

/* Faraday constant */
static const cs_real_t _faraday_cst = 9.648e4;

/*! (DOXYGEN_SHOULD_SKIP_THIS) \endcond */

/*============================================================================
 * Public function for Fortran API
 *============================================================================*/

/*----------------------------------------------------------------------------
 * Clogging initialization.
 *
 * - Retrieve various parameters for storing in global structure.
 * - Compute and store the Debye screening length
 *----------------------------------------------------------------------------*/

void
cloginit (const cs_real_t   *water_permit,
          const cs_real_t   *ionic_strength,
          const cs_real_t   *jamming_limit,
          const cs_real_t   *min_porosity,
          const cs_real_t    temperature[],
          const cs_real_t   *valen,
          const cs_real_t   *phi_p,
          const cs_real_t   *phi_s,
          const cs_real_t   *cstham,
          const cs_real_t   *csthpp,
          const cs_real_t   *lambda_vdw
          )
{
#define PG_CST 8.314  /* Ideal gas constant */

  cs_lnum_t iel;

  const cs_mesh_t  *mesh = cs_glob_mesh;

  /* Retrieve physical parameters related to clogging modeling */
  /* and fill the global structure cs_lagr_clogging_param          */

  cs_lagr_clogging_param.water_permit = *water_permit;
  cs_lagr_clogging_param.ionic_strength = *ionic_strength;
  cs_lagr_clogging_param.jamming_limit = *jamming_limit;
  cs_lagr_clogging_param.min_porosity = *min_porosity;
  cs_lagr_clogging_param.valen = *valen;
  cs_lagr_clogging_param.phi_p = *phi_p;
  cs_lagr_clogging_param.phi_s = *phi_s;
  cs_lagr_clogging_param.cstham = *cstham;
  cs_lagr_clogging_param.csthpp = *csthpp;
  cs_lagr_clogging_param.lambda_vdw = *lambda_vdw;

  /* Allocate memory for the temperature and Debye length arrays */

  if (cs_lagr_clogging_param.temperature == NULL)
    BFT_MALLOC(cs_lagr_clogging_param.temperature, mesh->n_cells, cs_real_t);

  if (cs_lagr_clogging_param.debye_length == NULL)
    BFT_MALLOC(cs_lagr_clogging_param.debye_length, mesh->n_cells, cs_real_t);

  /* Store the temperature */

  for (iel = 0; iel < mesh->n_cells; iel++)
    cs_lagr_clogging_param.temperature[iel] = temperature[iel];

  /* Computation and storage of the Debye length                */

  for (iel = 0; iel < mesh->n_cells; iel++)

    cs_lagr_clogging_param.debye_length[iel]
      = pow(2e3 * pow(_faraday_cst,2)
            * cs_lagr_clogging_param.ionic_strength
            /  (  cs_lagr_clogging_param.water_permit
                * _free_space_permit * PG_CST
                * cs_lagr_clogging_param.temperature[iel]), -0.5);

#if 0 && defined(DEBUG) && !defined(NDEBUG)
  bft_printf(" epseau = %g\n", cs_lagr_clogging_param.water_permit);
  bft_printf(" valen   = %g\n", cs_lagr_clogging_param.valen);
  bft_printf(" fion   = %g\n", cs_lagr_clogging_param.ionic_strength);
  bft_printf(" temp[1]   = %g\n", cs_lagr_clogging_param.temperature[0]);
  bft_printf(" debye[1]   = %g\n", cs_lagr_clogging_param.debye_length[0]);
  bft_printf(" phi1   = %g\n", cs_lagr_clogging_param.phi1);
  bft_printf(" phi2  = %g\n", cs_lagr_clogging_param.phi2);
#endif
}

/*=============================================================================
 * Public function definitions
 *============================================================================*/

/*----------------------------------------------------------------------------
 * Clogging finalization.
 *
 * Deallocate the arrays storing temperature and Debye length.
 *----------------------------------------------------------------------------*/

void
cs_lagr_clogging_finalize(void)
{
  BFT_FREE(cs_lagr_clogging_param.temperature);
  BFT_FREE(cs_lagr_clogging_param.debye_length);
}

/*----------------------------------------------------------------------------
 * Clogging:
 *
 * - Compute the number of deposited particles in contact with the depositing
 *   particle
 * - Re-compute the energy barrier if this number is greater than zero
 *
 * parameters:
 *   particle         <-- pointer to particle data
 *   attr_map         <-- pointer to attribute map
 *   iel              <-- id of cell where the particle is
 *   energy_barrier   <-> energy barrier
 *   surface_coverage <-> surface coverage
 *   limit            <-> jamming limit
 *   mporos           <-> minimum porosity
 *
 * returns:
 *   number of deposited particles in contact with the depositing particle
 *----------------------------------------------------------------------------*/

int
cs_lagr_clogging_barrier(const void                     *particle,
                         const cs_lagr_attribute_map_t  *attr_map,
                         cs_lnum_t                       iel,
                         cs_real_t                      *energy_barrier,
                         cs_real_t                      *surface_coverage,
                         cs_real_t                      *limit,
                         cs_real_t                      *mporos)
{
  cs_real_t contact_area;
  cs_real_t deposited_radius;

  cs_real_t mean_nb_cont;

  cs_lnum_t  dim_aux = 1, contact_count[1];
  cs_real_t  contact_count_r[1];
  cs_real_t  value;
  cs_lnum_t  i;

  /* Computation of the number of particles in contact with */
  /* the depositing particle */

  /* Assuming monodispersed calculation */

  double p_diameter
    = cs_lagr_particle_get_real(particle, attr_map, CS_LAGR_DIAMETER);
  cs_real_t depositing_radius = p_diameter * 0.5;

  deposited_radius = depositing_radius;

  contact_area = _pi * pow(2. * pow(deposited_radius * depositing_radius, 0.5)
                           + deposited_radius,2);

  mean_nb_cont =   contact_area
                 * (*surface_coverage) / (_pi * pow(deposited_radius,2));

  /* Assuming Poisson distribution */

  value = 700.;
  if (mean_nb_cont > value) {
    CS_PROCF(normalen, NORMALEN)(&dim_aux, contact_count_r);
    contact_count[0] = (int) contact_count_r[0] * pow(mean_nb_cont,0.5) + mean_nb_cont;
  }
  else {
    CS_PROCF(fische, FISCHE)(&dim_aux, &mean_nb_cont, contact_count);
  }

  /* If the surface coverage is above the jamming limit,
     we are in multilayer deposition, so the contact number
     must be greater than zero  */

   /* The surface coverage must be greater than zero */
  if (*surface_coverage > cs_lagr_clogging_param.jamming_limit) {
    contact_count[0] +=1;
  }

#if 0 && defined(DEBUG) && !defined(NDEBUG)
  if (mean_nb_cont > 0) {
    bft_printf("mean number = %g\n", mean_nb_cont);
    bft_printf("calculated number = %d\n",  contact_count[0]);
  }
#endif

  if (contact_count[0] == 0) {

    *energy_barrier = 0.0;

    /* Computation of the energy barrier */

    for (i = 0; i < 101; i++) {

      cs_real_t  step = cs_lagr_clogging_param.debye_length[iel]/30.0;

      cs_real_t distp = _d_cut_off + i*step;

      cs_real_t var1
        = cs_lagr_van_der_waals_sphere_plane(distp,
                                             depositing_radius,
                                             cs_lagr_clogging_param.lambda_vdw,
                                             cs_lagr_clogging_param.cstham);

      cs_real_t var2
        = cs_lagr_edl_sphere_plane(distp,
                                   depositing_radius,
                                   cs_lagr_clogging_param.valen,
                                   cs_lagr_clogging_param.phi_p,
                                   cs_lagr_clogging_param.phi_s,
                                   cs_lagr_clogging_param.temperature[iel],
                                   cs_lagr_clogging_param.debye_length[iel],
                                   cs_lagr_clogging_param.water_permit);

      cs_real_t var = var1 + var2;

      if (var > *energy_barrier)
        *energy_barrier = var;
      if (var < 0.)
        *energy_barrier = 0.;

    }

    *energy_barrier =  *energy_barrier / (0.5 * p_diameter);
  }

  else if (contact_count[0] > 0) {

    *energy_barrier = 0.0;

    /* Computation of the energy barrier */
    for (i = 0; i < 101; i++) {

      cs_real_t  step = cs_lagr_clogging_param.debye_length[iel]/30.0;

      cs_real_t distcc =   _d_cut_off + i*step
                         + depositing_radius + deposited_radius;

      cs_real_t var1
        = cs_lagr_van_der_waals_sphere_sphere(distcc,
                                              deposited_radius,
                                              depositing_radius,
                                              cs_lagr_clogging_param.lambda_vdw,
                                              cs_lagr_clogging_param.csthpp);

      cs_real_t var2
        = cs_lagr_edl_sphere_sphere(distcc,
                                    deposited_radius,
                                    depositing_radius,
                                    cs_lagr_clogging_param.valen,
                                    cs_lagr_clogging_param.phi_p,
                                    cs_lagr_clogging_param.phi_p,
                                    cs_lagr_clogging_param.temperature[iel],
                                    cs_lagr_clogging_param.debye_length[iel],
                                    cs_lagr_clogging_param.water_permit);

      cs_real_t var = contact_count[0] * (var1 + var2);

      if (var > *energy_barrier)
        *energy_barrier = var;
      if (var < 0.)
        *energy_barrier = 0.;

    }

    *energy_barrier =  *energy_barrier / (0.5 * p_diameter);
  }

  *limit = cs_lagr_clogging_param.jamming_limit;
  *mporos = cs_lagr_clogging_param.min_porosity;

  return contact_count[0];
}

/*----------------------------------------------------------------------------*/

END_C_DECLS