1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
/*============================================================================
* Code_Saturne documentation page
*============================================================================*/
/*
This file is part of Code_Saturne, a general-purpose CFD tool.
Copyright (C) 1998-2018 EDF S.A.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*----------------------------------------------------------------------------*/
/*!
\page cs_user_radiative_transfer Examples of data settings for radiative transfers
\section radiat_activ Activation of the module
The module can be activated in the \ref usppmo routine in
\ref cs_user_parameters.f90. The corresponding keyword is \c iirayo in the
\ref cs_glob_rad_transfer_params structure.
This member can take the values:
- \ref radiat::iirayo "iirayo" = 0: module desactivated.
- \ref radiat::iirayo "iirayo" = 1: the module is activated and the Discrete
Ordinates Method is used.
- \ref radiat::iirayo "iirayo" = 2: the module is activated and the P1 model
is used.
\section radiat_param Radiation module specific parameters.
When the module is activated, its specific input parameters should be set in
the \ref cs_user_radiative_transfer_parameters function of the
\ref cs_user_radiative_transfer.c file.
\section cs_user_radiative_transfer_h_cs_user_radiative_transfer_parameters Calculation options for the radiative transfer module.
Radiative transfer parameters may be defined using the
\ref cs_user_radiative_transfer_parameters function.
\snippet cs_user_radiative_transfer.c cs_user_radiative_transfer_parameters
\section cs_user_radiative_transfer_h_boundary_conditions Radiative transfer boundary conditions
\image html radiative_tr_sketch.gif "Sketch of thermal flux in boundary walls"
The radiative boundary condition is based on the calculation of a new wall
temperature. This temperature is computed with a thermal flux balance:
\f[{ Q_{conduction} = Q_{convection} + (Q_{rayt_{absorption}} - Q_{rayt_{emission}}}) \f]
Therefore :
\f[ \dfrac{xlamp}{epap} (T_{fluid} - T_{wall})
= h_{fluid} (T_{fluid} - T_{wall}) + epsp (Q_{incid} - \sigma * T_{wall}) \f]
\note In \c Code_Saturne the flux is positive when it is oriented from inside to outside.
| Body | Emissivity |
|------------------------------|------------------:|
| polished steel | 0.06 |
| oxidized steel | 0.80 |
| steel rough | 0.94 |
| polished aluminium | 0.04 |
| oxidiezd aluminium (inside) | 0.09 |
| oxidized aluminium (wet air)| 0.90 |
| brick | 0.93 |
| concrete | 0.93 |
| paper | 0.8 to 0.9 |
| water | 0.96 |
\subsection bound_faces Boundary faces identification
Boundary faces may be identified using the \ref getfbr function,
or preferrably, through boundary zones, defined using the
GUI or the \ref cs_user_zones function..
\subsection init_fin Initialization and finalization
The following declaration and initialization block needs to be added
for the following examples:
\snippet cs_user_radiative_transfer_bcs.c loc_var
<b> Remaining initialisation</b>
ivar: number of the thermal variable
\snippet cs_user_radiative_transfer_bcs.c ivar
Min and Max values for the wall temperatures (clipping otherwise)
\f$ T_{min} \f$ and \f$T_{max} \f$ are given in Kelvin.
\snippet cs_user_radiative_transfer_bcs.c temp
\subsection assign2 Assign boundary conditions to boundary wall
\section cs_user_radiative_transfer_bcs_zones Zone definitions
For each boundary face face_id, a specific output (logging and
postprocessing) zone id may be assigned. This allows realizing balance
sheets by treating them separately for each zone. By default, the
output zone id is set to the general (input) zone id associated to a face.
To access output zone ids (both for reading and modifying), use the
\ref cs_rad_transfer_get_output_b_face_zone_ids function.
The zone id values are arbitrarily chosen by the user, but must be
positive integers; very high numbers may also lead to higher memory
consumption.
\paragraph wall_carac Wall characteristics
\warning The unit of the temperature is the Kelvin
\paragraph manda Mandatory data
- \c isothp(ifac) boundary face type
- \c itpimp -> Gray wall with fixed inside temperature
- \c ipgrno -> Gray wall with fixed outside temperature
- \c iprefl -> Reflecting wall with fixed outside temperature
- \c ifgrno -> Gray wall with fixed conduction flux
- \c ifrefl -> Reflecting wall with fixed conduction flux
- \c tintp(ifac) inside wall temperature (Kelvin)
initialize thwall at the first time step.
If \c isothp = \c itpimp, the value of thwall is fixed to \c tintp
In the other case, \c tintp is only for initialization.
\paragraph data Other data (depending of the isothp)
- \c rcodcl = conduction flux
- \c epsp = emissivity
- \c xlamp = conductivity (\f$W.m^{-1}.K^{-1}\f$)
- \c epap = thickness (\f$m\f$)
- \c textp = outside temperature (\f$K\f$)
\subsection ex Examples of boundary conditions
Here is a list of examples:
\subsubsection ex1 Gray or black wall with profil of fixed inside temperature
For wall boundary faces, selection criteria: color 1 \n
\snippet cs_user_radiative_transfer_bcs.c example_1
\subsubsection ex2 Gray or black wall with fixed outside temperature \f$ T_{ext} \f$
For wall boundary faces, selection criteria: color 2 \n
\snippet cs_user_radiative_transfer_bcs.c example_2
\subsubsection ex3 Reflecting wall (\f$ epsp = 0 \f$) with fixed outside temperature \f$ T_{ext} \f$
For wall boundary faces, selection criteria: color 3 \n
\snippet cs_user_radiative_transfer_bcs.c example_3
\subsubsection ex4 Gray or black wall and fixed conduction flux through the wall
For wall boundary faces which have the color 4: \n
\f[
\begin{array}{rcl}
\frac{\texttt{xlamp}}{\texttt{epap}} \cdot (T_{wall} - T_{ext})
&=& \text{fixed conduction flux in } W.m^{-2} \\
&=& \texttt{rodcl(ifac,ivar,3)}
\end{array}
\f]
If the conduction flux is zero then the wall is adiabatic. The array \f$ \texttt{rcodcl(ifac,ivar,3)}\f$ has the value of the flux. \n
Flux density (< 0 if gain for the fluid)
- For temperature \f$T\f$, in \f$ W.m^{-2}\f$:
\f[ rcodcl(ifac,ivar,3)=C_p (viscls+\frac{visct}{\sigma})\cdot \grad{T}\cdot \vect{n} \f]
- For enthalpy \f$h\f$, in \f$ W.m^{-2} \f$:
\f[ RCODC(IFAC,IVAR,3)=(viscls+\frac{visct}{\sigma})\cdot \grad{H} \cdot \vect{n}\f]
\snippet cs_user_radiative_transfer_bcs.c example_4
\subsubsection ex5 Reflecting wall and fixed conduction flux through the wall
For wall boundary faces which have the color 5:\n
\f[
\frac{xlamp}{epap} \cdot (T_{wall} - T_{ext}) = \text{fixed conduction flux}
\f]
and \f$ epsp = 0 \f$
If the conduction flux is zero then the wall is adiabatic.
Flux density (< 0 if gain for the fluid)
- For temperatures \f$T\f$, in \f$ W.m^{-2} \f$:
\f[ rcodcl(ifac,ivar,3) = C_p (viscls+\frac{visct}{\sigma}) \cdot \grad{T}\cdot \vect{n} \f]
- For enthalpies \f$h\f$, in \f$ W.m^{-2} \f$:
\f[ rcodcl(ifac,ivar,3) = (viscls+\frac{visct}{\sigma}) \cdot \grad{H} \cdot \vect{n} \f]
\snippet cs_user_radiative_transfer_bcs.c example_5
\subsubsection w Warning
For all boundary faces that are not wall it is MANDATORY to impose a number of
zone in the array \c izfrdp. For each zone, informations will be displayed in the listing.
\snippet cs_user_radiative_transfer_bcs.c w
Verification that all boundary faces have been treated
\snippet cs_user_radiative_transfer_bcs.c check
\subsection end_loop End of the loop on the boundary faces
\snippet cs_user_radiative_transfer_bcs.c end_radiative
\subsection format_radiative_trans Format
\snippet cs_user_radiative_transfer_bcs.c format_radiative
\section abso_flux Absorption coefficient and net radiation flux
The absorption coefficient and the net radiation flux for the radiative module
can be defined in \ref cs_user_radiative_transfer.c through the
\ref cs_user_rad_transfer_absorption
and \ref cs_user_rad_transfer_net_flux subroutines.
\subsection abso Absorption coefficient
The absorption coefficient is defined in \ref cs_user_rad_transfer_absorption.
\subsubsection arg Arguments of cs_user_rad_transfer_absorption
\snippet cs_user_radiative_transfer.c arg_1
\subsubsection var Local variables to be added
\snippet cs_user_radiative_transfer.c loc_var_dec_1
\subsubsection abso_coeff_computation Computation of the absorption coefficient
\snippet cs_user_radiative_transfer.c abso_coeff
\subsubsection format_1 Format
\snippet cs_user_radiative_transfer.c format_1
\subsection cs_user_rad_transfer_net_flux Net radiation flux
The net radiation flux is computed in \ref cs_user_rad_transfer_net_flux.
\subsubsection arg2 Arguments of cs_user_rad_transfer_net_flux
\snippet cs_user_radiative_transfer.c arg_2
\subsubsection var2 Local variables to be added
\snippet cs_user_radiative_transfer.c loc_var_dec_2
\subsubsection init Initialization
At the end of the subroutine, if \c iok is different from zero, some faces
have been forgotten and the calculation stops.
\snippet cs_user_radiative_transfer.c init
\subsubsection net_flux_computation Computation of the net radiation flux
\snippet cs_user_radiative_transfer.c net_flux
\subsubsection format_2 Format
\snippet cs_user_radiative_transfer.c format_2
*/
|